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The formation and properties of envelope dispersive shock wave (DSW) excitations from repulsive
nonlinear waves in a magnetic film are studied. Experiments involve the excitation of a spin wave step
pulse in a low-loss magnetic Y3Fe5O12 thin film strip, in which the spin wave amplitude increases rapidly,
realizing the canonical Riemann problem of shock theory. Under certain conditions, the envelope of the
spin wave pulse evolves into a DSW that consists of an expanding train of nonlinear oscillations with
amplitudes increasing from front to back, terminated by a black soliton. The onset of DSW self-cavitation,
indicated by a point of zero power and a concomitant 180° phase jump, is observed for sufficiently large
steps, indicative of the bidirectional dispersive hydrodynamic nature of the DSW. The experimental
observations are interpreted with theory and simulations of the nonlinear Schrödinger equation.
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In a nonlinear, hydrodynamic medium where dispersion
dominates over dissipation, an initial, abrupt increase in a
physical quantity (e.g., the water height) can evolve into an
expanding waveform composed of a soliton edge followed
by diminishing amplitude modulations. Such a nonlinear
wave train is called a dispersive shock wave (DSW) [1]. The
phenomenon of DSWs is ubiquitous in nature, appearing in
dispersive media as diverse as the ocean [2,3], intense laser
light [4–6], electron beams [7], ultracold atoms [8–10], and
viscous fluids [11]. It is the superfluid or dispersive hydro-
dynamic analog of a viscous shock wave in a gas [1]. In
contrast to the entropy production and energy dissipation due
to friction in viscous shock waves, however, a DSW
conserves energy, converting the potential energy of an
initial jump into the kinetic energy of nonlinear oscillations.
The simplest dispersive hydrodynamics are unidirectional

or bidirectional; bidirectional waves correspond to the exist-
ence of a fluid velocity in addition to a fluid density and the
coexistence of two distinct wave families with different
velocities. A universal model of bidirectional dispersive
waves is thenonlinear Schrödinger (NLS) equation [1],which
can reproduce, for example, the wave function dynamics of a
Bose-Einstein condensate [8–10] and the envelope dynamics
of lightbeamsinnonlinearmedia [4–6].Celebrated featuresof
the NLS model include bright solitons and modulational
instability inattractivemedia [12]anddarksolitonsandDSWs
in repulsive media [13,14]. A canonical, textbook problem in
shock wave theory is the Riemann problem, consisting of an
initial, steep change in the hydrodynamic medium’s thermo-
dynamic variables, e.g., density and velocity [15]. For the
repulsive NLS equation, the Riemann problem can result in
the generation of an envelope DSW with a dark soliton edge
[1,13,14]. Further, the derivative profile of the DSW phase
oscillates in tandemwith the amplitude. In terms of dispersive
hydrodynamics, the square of the DSW amplitude

corresponds to a fluid density, while the phase gradient is
analogous toa fluidvelocity.Anotablepropertyof sufficiently
large NLS DSWs is the generation of a zero density (or a
vacuum) point with a distinct 180° phase jump. This corre-
sponds to the spontaneous cavitation of a DSW, a property
unique to dispersive, vis-à-vis viscous, shock waves. What is
more, in the reference frame of the dark soliton edge, a
cavitatingDSWexhibitsa surprising feature: theupstreamand
downstream velocity fields point into the DSW from both
sides [1,14]. One can see that the phase plays a rather major
role in bidirectional dispersive hydrodynamics in general and
self-cavitating DSWs, in particular.
Experimentally, DSWs have been observed in various

bidirectional media [4–6,8–10,16,17]. All observations to
date, however, have been limited to the evolution of the
amplitude (or density) of either localized or periodic pulses,
while the phase (or velocity) features have never been
studied. In other words, although previous experiments have
reported oscillations that appear to go to zero amplitude, they
did not measure the phase to make a definitive determination
of the self-cavitating signature of DSWs.
This Letter reports the first observation of bona fide self-

cavitating envelopeDSWs. The experiments use surface spin
waves in a Y3Fe5O12 (YIG) thin film strip that exhibits
repulsive nonlinearity and low damping [18], enabling
approximate bidirectional dispersive hydrodynamics. The
experiments demonstrate envelope DSWs resulting from a
step amplitude increase, realizing the dispersive hydrody-
namic equivalent of the dam break problem of shallow water
theory or, equivalently, the shock tubeproblemof viscous gas
dynamics. Self-cavitation is characterized through both
amplitude and phase measurements as well as simulations.
The results not only advance the fundamental understanding
of DSW physics, but also help interpret various hydro-
dynamic effects, such as turbulence and decoherence, in
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bidirectional nonlinear wave systems including ocean sur-
face waves, optical waves, and spin waves [19–21].
Figure 1(a) depicts the experimental setup. The setup

includes a 36.5-mm-long, 1.3-mm-wide YIG thin film strip
cut from a YIG wafer grown on a single-crystal Ga3Gd5O12

substrate via liquid phase epitaxy [22]. TheYIG film shows a
ferromagnetic resonance linewidth of ∼0.35 Oe at 5 GHz,
which corresponds to an effective Gilbert damping constant
of ∼9.8 × 10−5. Two 50-μm-wide, 2-mm-long microstrips
are placed above theYIG strip for the excitation anddetection
of spin waves, and their separation (l) is 20.8 mm. The YIG
strip is magnetized to saturation by a magnetic field of
1323 Oe, which is in the YIG plane and perpendicular to the
YIG strip length. This film-field configuration supports the
propagation of surface spin waves [23–25] with repulsive
nonlinearity [18]. For theDSWmeasurements, the excitation
transducer is fedwith amicrowave step pulsewhose power is
P1 just before the step and P2 just after. Such a microwave
pulse excites a spin wave step in the YIG. During the
measurements, P1 and P2 are varied over 1 μW− 80mW,
but the carrier frequency f0 is fixed to 6.045 GHz.
Figures 1(b), 1(c), and 1(d) show the characteristics of

the device in Fig. 1(a). Figure 1(b) presents the amplitude
of the transmission coefficient S21 measured at a micro-
wave power of 20 μW over a frequency (f) range of
5.75–6.30 GHz. In Fig. 1(c), the blue curve presents the
spin wave dispersion curve determined from the phase of
S21ðfÞ, ϕðfÞ, while the red curve shows a fit. To obtain
the experimental curve, the spin-wave wave number kðfÞ
was calculated from ϕðfÞ, using ϕðfÞ ¼ kðfÞlþ ϕ0

(ϕ0, a phase constant) and taking k ¼ 0 at the low cutoff
frequency fcut ¼ 5.792 GHz of the transmission. The
fitting used [18,24]

2πf ¼ jγj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0ðH0 þ 4πMsÞ þ

�
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2
4πMs

�
2

ð1 − e−2kdÞ
s

;

ð1Þ
where jγj is the gyromagnetic ratio, H0 is the field, 4πMs
is the magnetization of the YIG, and d is the YIG film
thickness. The horizontal dotted and dashed lines in
Figs. 1(b) and 1(c) indicate f0 and fcut, respectively.
Figure 1(d) gives the output power as a function of the
input power measured at f0. The shaded area indicates the
P2 range in which pronounced DSWs were observed.
The data in Fig. 1(b) indicate a spin wave passband of

5.79–6.20 GHz, in which f0 is centrally located. The trans-
mission profile is relatively smooth, indicating that the spins
on the YIG film surfaces are unpinned and a repulsive
nonlinearity is expected for the entire frequency range. In
films with pinned surface spins, the nonlinearity is repulsive
only in narrow frequency ranges [26,27]. The fit in Fig. 1(c) is
nearly perfect and yields jγj ¼ 2.88 MHz=Oe, 4πMs ¼
1870 G, and d ¼ 11.0 μm. The 4πMs value is slightly larger
than the bulk value, mainly due to the assumption of a zero
anisotropy field in Eq. (1). The dispersive characteristics
of a wave are determined by the dispersion coefficient
D¼½∂2ð2πfÞ=∂k2�. Using the experimental curve in
Fig. 1(c), one obtains D ¼ −11.8 × 103 cm2=ðrad sÞ at
f0 ¼ 6.045 GHz, very close to the theoretically calculated
value -11.3 × 103 cm2=ðrad sÞ. The data in Fig. 1(d) indicate
that the spin wave is linearly damped in the 10−4 − 1 mW
input power range but is nonlinearly damped for powers
larger than 10 mW. This nonlinearity derives mainly from
four-wave interactions [12,28].
The DSW data are presented in Figs. 2–5. Figure 2

depicts the main results. Figures 2(a) and 2(b) present the
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FIG. 1. Experimental configuration and spin-wave character-
istics. (a) Schematic of the experimental setup. (b) Transmission
response of the YIG film strip measured at an input power of
P ¼ 20 μW. (c) Experimental (blue) and theoretical (red) dis-
persion curves of spin waves in the YIG film strip. (d) Output
power of the YIG film strip device measured as a function of P at
6.045 GHz.
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FIG. 2. Demonstration of a cavitating envelope DSW. (a) Input
signal: top—amplitude; bottom—phase. (b) Output signal: top—
amplitude; bottom—phase. (c) Zoom-in display of the output
signal shown in (b): top—power (amplitude square); bottom—
phase; insert—phase derivative (degree=ns). The red curve in
(c) shows a numerical fit to a black soliton profile.
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input and output signals, respectively. In each column, the
top and bottom panels present the amplitude and phase
profiles, respectively. The phase profiles are relative to that
of a continuous wave with f0 ¼ 6.045 GHz. In Fig. 2(c),
the top panel shows the square of the amplitude data in
Fig. 2(b), and the bottom shows the same phase data in
Fig. 2(b). The red curve in Fig. 2(c) shows a fit to the square
of a black soliton profile [12]

uðtÞ ¼ u0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sech2

�
u0vg

ffiffiffiffi
N
D

r
ðt − t0Þ

�s
; ð2Þ

where u denotes the spin wave amplitude, u0 is the black
soliton background amplitude, vg ¼ ∂ð2πfÞ=∂k is the group
velocity, N ¼ ∂ð2πfÞ=∂ðjuj2Þ is the nonlinearity coefficient
[18], and t0 is a time constant. Calculations using the
experimental parameters yielded vg¼5.0×106 cm=s and
N ¼ −7.7 × 109 rad=s. u0 and t0 are fitting parameters,
equal to 3.28 × 10−2 and 277 ns, respectively, for the fit in
Fig. 2(c). All the data were taken with P1 ¼ 0.14 mW
and P2 ¼ 3.47 mW.
The data in Fig. 2 indicate that an envelopeDSWis formed

consisting of a train of dark solitonlike dips, with broadening
widths from small-amplitude oscillations to termination at a
black solitonlike envelope. The observed trailing edge oscil-
lation has almost zero amplitude at its center, a 175° phase
jump, and a profile that can be fittedwith Eq. (2). The fact that
theDSWis terminated by a near 180° phase jump and a black
solitonlike oscillation indicates self-cavitation and the for-
mation of a vacuum point where the phase gradient is
theoretically infinite [14]. Although this solitonlike oscilla-
tion clearly exhibits nonlinear character, the modeling,
discussed later, predicts that the DSW has not yet reached
its long-time, steady configuration. In the insert, the derivative
of the phase profile shows an oscillation behavior, with both
the oscillation period and amplitude increasing from the front
to the back. Note that the derivative at the oscillation center is
beyond the vertical scale and the oscillation reverses polarity,
indicative of a vacuum point. Following the DSW is a
rarefaction wave (RW), a smooth, expansion wave exhibiting
weak oscillations in both amplitude and phase [8]. The long-
time evolution of an initial step in the amplitude for the NLS
model has been classified [14], resulting in a DSWconnected
to a RW by an intermediate state. According to the classi-
fication and the experimental parameters here, one can expect
a faster DSW followed by a slower RW. This prediction is
evident in Fig. 2. The phase in Fig. 2(b) reveals an approx-
imately constant, negative slope for the RW. This frequency
shift is due to nonlinear dispersion and corresponds to a
concomitant positivek shift, as expected by the initial step that
maintains a constant frequency.
Figures3and4presentdatarevealingthatDSWformationis

sensitive to the characteristics of the initial step. Figure 3
presents data measured with P2 ¼ 3.47 mW while the ratio
P2=P1 rangesfrom1.6 to50.AsP2=P1 is increased,thesoliton

dip at the DSWedge deepens, with a gray solitonlike dip for
P2=P1 up to7.6.Ablack solitonlike edgeanda corresponding
vacuum point appear forP2=P1 ¼ 16, consistent with theory
that predicts self-cavitation for P2=P1 > 9 [1,14]. Higher
P2=P1 leads to the migration of the vacuum point away from
the soliton edge and into theDSWinterior, which can be seen,
e.g., in Fig. 3(g) where the sharpest phase jump now occurs at
the secondary DSWoscillation, again consistent with theory
[1,14]. In contrast to the DSW, the phase profile of the RW
remains relatively unchangedwith increasingP2=P1, indicat-
ing that the concomitant oscillations are weak and essentially
linear. As P2=P1 is increased, the DSWamplitude relative to
the RW amplitude is reduced, also expected. Therefore, the
amplitude of the jump is important for DSW development,
derivingfromthefact thatat thejump,bothvg andDvarydueto
a nonlinearity-induced dispersion shift. In addition, one can
also see that the DSW oscillation shown in Fig. 3(e) has an
average frequency of about 68MHz,while that in Fig. 3(f) has
an average frequency of about 65 MHz. This observation
agrees qualitatively with the theoretical expectation that the
average oscillation frequency of the DSW scales with power.
Note that when P2=P1 was increased from 16 to 24, P2 was
kept constant while P1 was decreased.
Figure 4 shows data measured when P1 and P2 were

increased but P2=P1 was kept constant at ∼24. The low-
power case in Fig. 4(a) lacks the large-amplitude modu-
lation and phase coherence typical of DSWs, while the
other cases in Figs. 4(b)–4(e) exhibit nonlinear effects such
as increasing amplitude modulations, large phase gradients,
and vacuum points. This indicates that nonlinearity is a
prerequisite for DSW formation. Figures 4(d) and 4(e)
exhibit complex dynamics that deviate from the NLS
predictions, likely due to higher-order nonlinear processes.
Figure 5 presents data measured at different positions (x)

along the YIG strip, revealingDSWdevelopment. In contrast
to those presented in Figs. 1–4, these datawere obtained using
an inductive probe [29,30], not a microstrip. For maximum
resolution, the figure limits the presentation to the modu-
lations associated with the DSW, neglecting the accompany-
ing RW. The data indicate how an initial step develops into a
DSW, revealing the expanding nature of DSWs in contrast to
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PRL 119, 024101 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
14 JULY 2017

024101-3



the sharp transition in viscous shocks. The fact that DSW
formation requires sufficient propagation length is because
nonlinearity requires certain propagation time to develop
[31,32]. Different from the black solitonlike oscillations in
Figs. 2–4, the oscillations in Fig. 5 do not show nearly zero
intensity at their centers. This is mainly because the propa-
gation distance for the data in Fig. 5 is much shorter than that
for the data in Figs. 2–4, while self-cavitation requires a
sufficient propagation distance, as demonstrated by the
simulations. Note that the inductive probe has a lower

sensitivity than the microstrip transducer and therefore yields
noisy signals when x ≥ 20 mm.
The experimental observations are reproduced by simu-

lations using the NLS equation with damping. Simulations
utilized the parameters associated with the experiments and a
fitted initial wave amplitude as the spin wave power cannot
be precisely determined. The simulation details are given in
the Supplemental Material [33], while the main results are
featured in Fig. 6. The signals in Fig. 6(a) demonstrate the
spatial development of the DSW, which is consistent with
that in Fig. 5. The rapid transition time (3 ns) for the initial
step results in a Gibbs-type phenomenon [34] with two
essentially linear wave packets at short distances (1.9 mm).
At 10.4 mm, nonlinearity enhances the lower wave packet
resulting in a DSW, while the amplitude of the upper wave
packet rarefies into a RW. Consequently, one can trace the
weak RW oscillations observed to the rapid step transition.
At the output transducer (20.8 mm), the DSW exhibits a
vacuum point, which at 101.1 mm has migrated into the
interior of the DSW. As shown in Fig. 6(a), the primary role
of the damping is to reduce the amplitude by about 20%
during the course of propagation. Although not shown in
Fig. 6, if a slower step is used, the RWoscillation amplitude
is diminished, and DSW development takes longer. This
suggests that the experimental observations occur in a
transient regime, prior to the long-time regime where the
solution to the step problem reaches a fully developed state
[14]. Then the DSW trailing edge has not yet reached its
long-time, solitonic character. The fact that the experiment
does not clearly show the predicted intermediate state, which
is expected to occur at an intensity of 2.9 in Fig. 2(b), results
from a relatively short evolution distance as well as higher-
order nonlinearity [35,36] and nonlinear damping [35,37,38]
that are neglected in the simulations. Figure 6(b) presents the
amplitude and phase results at x ¼ 20.8 mm, while Fig. 6(c)
presents the same data but over a narrower time scale. In
Fig. 6(b), the DSW is observed followed by an intermediate
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transition state. The RW follows with decreasing oscillations
that result from the sharp Riemann problem. One can see
a remarkable similarity between the results in Figs. 6(b)
and 6(c) and Figs. 2(b) and 2(c), supporting the interpretation
of the experimental observations.
In summary, this work demonstrates self-cavitating

envelope DSWs for spin waves. The DSW consists of a
train of dark solitonlike dips with depths increasing from
front to back, terminated by a black solitonlike oscillation.
DSW formation is sensitive to the characteristics of the
initial spin wave step. A sufficient propagation distance is
required for the initial step to evolve into a DSW. Future
studies include the exploration of the entire NLS phase
diagram for the Riemann problem, DSW-RW interactions,
and DSW-soliton interactions. Note that during the revision
of this Letter, the development of self-cavitating DSWs was
also reported for light waves [39].
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