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Abstract. For modeling convective flows over a sphere or within a spherical shell, pseudospectral (PS)
methods are in general far more cost-effective than finite difference- (or finite element) methods.  This study
confirms this, and proceeds by comparing a Fourier-PS implementation (based on a longitude-latitude grid) with
one using spherical harmonics. For similar resolutions, both these versions are found to be of similar accuracy.
However, the former is computationally about one order of magnitude faster.

Introduction.   
Convective flows in spherical geometries arise in many areas, such as geophysics, astrophysics,

and meteorology (key references in these areas include Bunge et.al. 1995, Glatzmaier and Roberts, 1995,
Trenberth, 1992 and Zhang and Yuen, 1996). A very simple but still very useful model problem is obtained
by considering solid body rotation in different directions over a spherical surface. For the four methods
considered here, a third (radial) direction can be added with little further difficulty, to obtain the geometry
of a 3-D spherical shell or of a full sphere. 

Figures 1 and 2 illustrate schematically two different discretization ideas:

i. longitude-latitude - type grids, and
ii. spherical harmonics (these are not immediately associated with any specific grid, but represent

functions in terms of expansion coefficients).

Numerous additional discretization ideas have been attempted, e.g. grids which refine the faces of regular
polyhedra [Taylor et.al., 1997] or combine overlapping stereographic coordinate systems [Browning et.al.,
1989].  

In the comparisons that follow, we consider four numerical methods; three based on the
discretization  i  and one on ii:

i. FD-2 Second order finite differences,
FD-4 Fourth order finite differences,
PS-F Pseudospectral (PS) approximation based on approximating derivatives by FFTs in both

longitude- and latitude directions [Merilees 1973, 1974, Fornberg 1995, 1996], and
ii. PS-SH PS approximation based on a spherical harmonic (SH) representation of the dependent

variable [Hack and Jakob, 1992] - derivatives are calculated by analytic manipulation of
the coefficients in the SH expansion.
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The test problem is described further in Section 2. It amounts to solid-body rotation in different
directions over a sphere; generalizations to general variable coefficients and inclusion of nonlinearities are
straightforward for the FD-2, FD-4 and PS-F - methods, but require for PS-SH conversions between
expansion coefficients and grid-based representations during each time step [Eliasen et.al. 1970, Orszag,
1970]. Section 3 gives more details about the numerical implementations, and computational results are
presented in Section 4. Section 5 presents some conclusions - notably the great advantages in accuracy and
cost of the PS methods over finite differences, and in cost of  PS-F over PS-SH. 

The basic idea when using longitude-latitude grids is to simply let FD or PS stencils extend right
across the poles - taking note of the fact that a pole does not represent any physical singularity (at most
causing change of sign for certain vector quantities). This very simple approach has previously been found
to be more accurate than the use of special "pole conditions" in 2-D polar regions; cf. comparisons on the
same Bessel eigenvalue problem [Fornberg 1995, 1996 (pp 87-88)] vs. [Huang and Sloan, 1993,
Matsushima and Marcus, 1995].  

Test Problem.
Numerous test problems have been proposed for flows over a sphere. One set  [Williamson et.al.

1992 a,b] includes seven different ones, all designed to test aspects relevant to meteorology. We confine
ourselves here to the first one from this set - solid-body rotation in an arbitrary direction, cf. Figure 3.
Figure 4 enlarges the area where the two equatorial lines meet, and illustrates  the notation used in the two
spherical coordinate systems. Solid body rotation amounts to a steady increment in the -direction.ϕ
Expressed in the -system, this amounts to solving the PDE(ϕ, θ)

(1)∂ h
∂ t

+ u
a cos θ

∂ h
∂ ϕ + v

a
∂ h
∂ θ = 0

where
u = u0 (cos θ cos α − sin θ sin ϕ sin α),

. (2)v = − u0 cos ϕ sin α

In the test runs, we make the (dimensional) choices 

 m (mean radius of the earth),a = 6.37122 ⋅ 106

(making a full rotation take 12 days).u0 = 2 π a
12 days

≈ 40 m/s

As initial condition, we choose a 'cosine bell'  

h(ϕ, θ) =







h0

2

1 + cos π r

R

 if r < R

0 if r ≥ R

with   m,   and   (r thush0 = 1000 R = a
3

, r = a arccos [sin θc sin θ + cos θc cos θ cos (ϕ − ϕc)]

becoming the great circle distance between  and the center  taken as (0,0)).(ϕ, θ) (ϕc, θc)

Analytical solutions to the convection problem described by (1) and (2) can readily be obtained
from the transformation rules between the spherical coordinate systems shown in Figures 3 and 4:



sin θ = −sin ϕ cos θ sin α + sin θ cos α
(3)sin ϕ cos θ = sin ϕ cos θ cos α + sin θ sin α

and in reverse
sin θ = sin ϕ cos θ sin α + sin θ cos α

. (4)sin ϕ cos θ = sin ϕ cos θ cos α − sin θ sin α

Several different choices of the inclination α of the rotation axis were tested numerically. It has
been noted earlier [Williamson et.al. 1992 a,b] that the choice of  represents a particularlyα = π

2 − 0.05
critical case. We present here results only in this case (since other cases gave similar results). Convection
occurs here almost straight over the poles; the small deviation from  eliminates possibly beneficialπ

2
symmetries.

Numerical methods.
 The four methods are summarized briefly below:

FD-2 The spatial differences are approximated with the second order accurate FD formula

(5)∂ h
∂ ϕ ≈ − 1

2 h(ϕ − ∆ϕ) + 1
2 h(ϕ + ∆ϕ) / ∆ϕ

and similarly for   The -grid differs from the schematic illustration in Figure 1 in that the horizontalθ. (ϕ, θ)
grid lines are shifted by a distance of  (to eliminate the need of approximating (1) at the poles, i.e.∆θ/2
where ).  A discretization parameter M denotes that we use 4 M + 1 points in the direction  andcos θ = 0 ϕ−
2 M in the direction:θ−

 ,ϕ i = i ⋅ ∆ϕ , i = −2M, ... , 2M
θ j = j − M − 1

2
 ⋅ ∆θ , j = 1, ... , 2M

where   Whenever a FD stencil were to extend outside the basic grid, values need to be∆ϕ = ∆θ = π
2M .

fetched according to the periodicities indicated by dashed arrows in the right part of Figure 1.

To avoid severe CFL stability restrictions near the poles, increasingly many high frequency
components for h in the ϕ−direction were removed as the poles were approached, so as to obtain a roughly
uniform spatial resolution over the full sphere (reminiscent of this same exact property of truncated
spherical harmonics expansions). Such  ϕ−direction filtering was applied for the FD-2, FD-4 and PS-F
methods.

FD-4 The FD-4 scheme is implemented exactly as the FD-2 scheme above with the exception that (5) is
replaced by the fourth order accurate approximation - again similarly for θ:

 . (6)∂ h
∂ ϕ ≈ 

1
12 h(ϕ − 2∆ϕ) − 2

3 h(ϕ − ∆ϕ) + 2
3 h(ϕ + ∆ϕ) − 1

12 h(ϕ + 2∆ϕ) / ∆ϕ



PS-F One can implement FD formulas still wider than (6). In the limit of width (and formal order of
accuracy) tending to infinity, one obtains the Fourier PS method. An effective way to implement this limit
method is to transform the periodic data to Fourier space (by an FFT), perform differentiation analytically
on the resulting interpolating trigonometric polynomial and, with inverse FFT, obtain the derivative values
at all the grid points (see [Fornberg, 1996] for theory and implementation details).

PS-SH The spherical harmonic technique is by far the most complicated of the four to implement. We
refer the reader to [Fornberg, 1996] for a brief general overview of spherical harmonics. Actual
implementation has described in some detail [Hack and Jakob, 1992]. In brief:  Figure 2 illustrates the top
of an infinite triangular array of basis functions. Whenever this array is truncated after a full row (fixed n),
an expansion using these functions will possess - for arbitrary rotations over the sphere - the same
remarkable property that truncated Fourier expansions possess with regard to periodic translations: only
existing expansion coefficients will get modified; no higher expansion terms will ever need to be introduced.
In spite of the impossibility of distributing more than 20 grid points fully uniformly over a sphere, a
truncated spherical harmonics expansion achieves an entirely uniform resolution across the whole sphere.
Given the coefficients of such an expansion, differentiation in both  and  can be carried out analyticallyϕ θ
by recursive manipulations of the expansion coefficients. The inclusion of variable coefficients will either
lead to complicated convolutions in spherical harmonics space or, which is more effective, the expansion is
converted over to grid data, variable coefficients are applied pointwise, and the result is converted again
into an expansion. In general, for each time step, one conversion each way is required. The costs for these
are included in the operation count estimates given below.

Results.
Figure 5 displays the numerical solutions on the 'unrolled' (ϕ,θ)-grid for methods FD-2, FD-4 and

PS-F. In all cases, a standard fourth order Runge-Kutta scheme was used to advance the solutions 12 days
(one full revolution) in time. The time steps were sufficiently small that time errors are negligible - all
errors seen are due to the spatial approximations. For both grid densities,  the error in PS-F is invisible - as
it is for PS-SH. The shown PS-F results can therefore also serve to illustrate the initial cosine bells. The
errors in the FD methods are far higher; grid refinement to reach an accuracy to match the PS methods is
prohibitive in both computer time and memory already at the error level achieved here with the PS methods.
To assess the difference between PS-F and PS-SH, we need to display the errors differently. Table 1
compares the relative errors in the L2- and L∞- norms after the 12-day (one revolution) test runs:

TABLE  1
Comparison of errors after one revolution (α = π/2 - 0.05)

Norm PS-F
M = 16

PS-SH
T31  (n = 31)

 L2  (integrated over sphere)  0.018  0.014

L∞  (max norm)  0.016  0.012



PS-F with M = 16 and PS-SH with n = 31 (in the notation of Foster et.al. 1992, Hack and Jakob 1992)
correspond to approximately the same number of unknowns (and grid points for the associated PS-SH
grid). The errors are essentially equivalent (PS-SH with n = 30 instead of n = 31 would be less accurate
than PS-F, M = 16). 

The operation counts (including all floating point operations) for one calculation of the two space
derivatives in (1) become approximately:

PS-F: 48 M + 336 M 2 + 240 M 2 log2 4M
PS-SH: 8 + 15.6 n + 195 n2+550 n2 log2 n + 35.2 n3 (see Foster et.al. 1992)

 
Table 2 compares these costs for the two grid sizes considered here:

TABLE 2
Comparisons of operation counts for equivalent resolution; PS-F vs. PS-SH

PS - Fourier PS - Spherical Harmonics

Grid Resolution Size  M = Operation Count Size  n = Operation Count

64 × 32 16 0.455 ⋅ 106 31 3.855 ⋅106

128 × 64 32 2.065 ⋅ 106 63 22.63⋅106

Conclusions.
Four numerical schemes; FD-2, FD-4, PS-F and PS-SH have been compared for a simple

convective model problem in spherical geometry. The two PS methods prove to be far more accurate than
the FD methods (with FD-4 notable more accurate than FD-2 at only a minor increase in cost). At the same
level of discretization, PS-F and PS-SH are of comparable accuracy. However the former is not only far
easier to implement - the operation count is also approximately an order of magnitude lower.
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Figure 1. Longitude-latitude grid for a sphere. The dotted arrows indicate how the data repeats(ϕ, θ)−
periodically.

 

Figure 2. Zero contour lines for some low-order spherical harmonics.



Figure 3. Solid body rotation over a sphere in a direction forming an angle α relative to the
computational longitude-latitude grid (as measured between the equatorial lines or between
the poles).  

Figure 4. An arbitrary point expressed in both the  and  coordinate systems(ϕ, θ) (ϕ , θ )
(corresponding to computational grid and grid associated with rotation respectively).



M = 16  (64×32 grid) M = 32 (128×64 grid)

FD-2

FD-4

PS-F

Figure 5. Numerical solutions after one revolution for methods FD-2, FD-4 and PS-F.


