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Ubiquitous nonlinear waves in dispersive media include localized solitons and extended hydrodynamic
states such as dispersive shock waves. Despite their physical prominence and the development of thorough
theoretical and experimental investigations of each separately, experiments and a unified theory of solitons
and dispersive hydrodynamics are lacking. Here, a general soliton-mean field theory is introduced and
used to describe the propagation of solitons in macroscopic hydrodynamic flows. Two universal adiabatic
invariants of motion are identified that predict trapping or transmission of solitons by hydrodynamic states.
The result of solitons incident upon smooth expansion waves or compressive, rapidly oscillating dispersive
shock waves is the same, an effect termed hydrodynamic reciprocity. Experiments on viscous fluid conduits
quantitatively confirm the soliton-mean field theory with broader implications for nonlinear optics,
superfluids, geophysical fluids, and other dispersive hydrodynamic media.
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Long wavelength, hydrodynamic theories abound in
physics, from fluids [1] to optics [2], condensed matter
[3] to quantum mechanics [4], and beyond. Such theories
describe expansion and compression waves until breaking.
When the physics at shorter wavelengths are predominantly
dispersive, dispersive hydrodynamic theories [5,6] are used
to describe shock waves of a spectacularly different char-
acter than their dissipative counterparts. Dispersive shock
waves (DSWs) consist of coherent, rank-ordered, nonlinear
oscillations that continually expand [6,7]. Observations in a
wide range of physical media that include quantum matter
[8,9], optics [10,11], classical fluids [12,13], and magnetic
materials [14] demonstrate the prevalence of DSWs.
Another celebrated feature of dispersive hydrodynamic

media are localized, nonlinear solitary waves. When they
exhibit particlelike properties such as elastic, pairwise
interactions, solitary waves are called solitons [15] and
have been extensively studied both theoretically [16] and
experimentally [17]. The focus here is on solitary waves
that exhibit solitonic behavior, i.e., elastic or near-elastic
interaction; henceforth we refer to them as solitons. Despite
their common origins, solitons and dispersive hydrody-
namics have been primarily studied independently.
Utilizing the scale separation between extended hydro-

dynamic states and localized solitons (see Fig. 1), we
propose in this Letter a general theory of solitonic dis-
persive hydrodynamics encapsulated by a set of effective
partial differential equations for the hydrodynamic mean
field, the soliton’s amplitude, and its phase. We identify two
adiabatic invariants of motion and show that they lead to
two pivotal predictions. First, the soliton trajectory is a
characteristic of the governing equations that is directed
by the mean field, a nonlinear analogue of wave packet

trajectories in quantum mechanics [4]. This implies that
solitons are either trapped by or transmitted through a
hydrodynamic state, depending on the relative amplitudes
of the soliton and the hydrodynamic “barrier.”
The second prediction we term hydrodynamic reciproc-

ity. Given an incident soliton amplitude and the far-field
mean conditions, the adiabatic invariants are used to predict
when the soliton is trapped or transmitted and, in the latter
case, what its transmitted amplitude and phase shift are.
Hydrodynamic reciprocity means that the trapping, trans-
mission amplitude and phase relations are the same for
soliton interactions with smooth, expanding rarefaction
waves (RWs) and compressive, oscillatory DSWs.
We confirm these predictions with experiments on

the interfacial dynamics of a viscous fluid conduit, a

DSW

rarefaction

FIG. 1. Representative initial configuration and evolution (top
to bottom) for solitonic dispersive hydrodynamics. The narrow
soliton on the uniform mean field ū− is transmitted through the
broad hydrodynamic flow if it reaches and propagates freely on
the uniform mean field ūþ. The hydrodynamic flow exhibits
expansion (rarefaction) and compression that leads to a dispersive
shock wave.
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model dispersive hydrodynamic medium [18] that has
been used previously to investigate solitons [19–21] and
DSWs [13]. Although soliton-DSW interaction has been
observed previously [13], the nature and properties of the
interaction were not explained. We stress that the theory
presented is general and applies to a wide range of physical
media [8–14].
Experiments are performed on the interfacial dynamics

of a buoyant, viscous fluid injected from below into a
miscible, much more viscous fluid matrix. Because of
negligible diffusion and high viscosity contrast, the two-
fluid interface serves as the dispersive hydrodynamic
medium [18,19]. The experimental setup is similar to
that described in Ref. [13] and consists of a tall acrylic
column filled with glycerol (viscosity 12.0� 0.2 P, density
1.259� 0.001 g=cm3). A nozzle at the column base serves
as the injection point for the interior fluid (viscosity
0.85� 0.01 P, density 1.229� 0.001 g=cm3), a miscible
solution of glycerol, water, and black food coloring. By
injecting at a constant rate (0.25 or 0.77 ml=min), the
buoyant interior fluid establishes a vertically uniform fluid
conduit. Although predicted to be unstable, our experiment
operates in the convective regime [22]. By varying the
injection rate, conduit solitons, RWs, and DSWs can
be generated at the interface between the interior and
exterior fluids.
Observations of the hydrodynamic transmission and

trapping of solitons resulting from their interaction with
RWs and DSWs are depicted in Fig. 2. The contour plots
in Figs. 2(b) and 2(f) show that transmitted solitons exhibit
a smaller (larger) amplitude and faster (slower) speed
postinteraction with a RW (DSW). The transmitted
solitons experience a phase shift due to hydrodynamic
interaction, defined as the difference between the post- and

preinteraction spatial intercept. Our measurements show a
negative (positive) phase shift for the soliton transmitted
through a RW (DSW). Sufficiently small incident solitons
in Figs. 2(d) and 2(h) do not emerge from the RWor DSW
interior during the course of experiment, remaining trapped
inside the hydrodynamic state.
We now present a theory to explain these observations by

considering a general dispersive hydrodynamic medium
with nondimensional scalar quantity uðx; tÞ (e.g., conduit
cross-sectional area) governed by

ut þ VðuÞux ¼ D½u�x; x ∈ R; t > 0: ð1Þ
VðuÞ is the long-wave speed, D½u� is an integro-differential
operator, and Eq. (1) admits a real-valued, linear dispersion
relation with frequency ωðk; ūÞ, where k is the wave
number and ū is the background mean field. We assume
V 0ðuÞ > 0 so that the dispersive hydrodynamic system
has convex flux [23]. The dispersion is assumed negative
(ωkk < 0) for definiteness. We also assume that Eq. (1)
satisfies the prerequisites for Whitham theory, an approxi-
mate description of modulated nonlinear waves that accu-
rately characterizes dispersive hydrodynamics in a wide
range of physical systems [5,6].
Many models can be expressed in the form of Eq. (1). In

the Supplemental Material [24], we perform calculations
for the Korteweg–de Vries (KdV) equation, VðuÞ ¼ u,
D½u� ¼ −uxx, a universal model of weakly nonlinear,
dispersive waves, and the conduit equation, VðuÞ ¼ 2u,
D½u� ¼ u2ðu−1utÞx, an accurate model for our experi-
ments [18].
The dynamics of DSWs, RWs, and solitons for Eq. (1)

can be described using Whitham theory [5], where a
nonlinear periodic wave’s mean ū, amplitude a, and wave
number k are assumed to vary slowly via modulation
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FIG. 2. Experiments demonstrating soliton transmission and trapping with hydrodynamic states. Representative image sequences
(a),(c),(e),(g) and space-time contours (b),(d),(f),(h) extracted from image processing are shown. The contour intensity scale is the
dimensionless conduit cross-sectional area relative to the smallest area. (a),(b) Soliton-RW transmission. (c),(d) Soliton-RW trapping.
(e),(f) Soliton-DSW transmission. (g),(h) Soliton-DSW trapping.
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equations. The modulation equations admit an asymptotic
reduction in the noninteracting soliton wave train regime
0 < k ≪ 1 [26,27]:

ūt þ VðūÞūx ¼ 0; at þ cða; ūÞax þ fða; ūÞūx ¼ 0;

kt þ ½cða; ūÞk�x ¼ 0: ð2Þ

The first equation is for the decoupled mean field, which is
governed by the dispersionless,D → 0, Eq. (1). The second
equation describes the soliton amplitude a, which is
advected by the mean field according to the soliton
amplitude-speed relation cða; ūÞ and the coupling function
fða; ūÞ. The final equation expresses wave conservation [5]
and describes a train of solitons with spacing 2π=k ≫ 1.
The soliton train here is a useful, yet fictitious construct
because we will only consider the soliton limit k → 0 of
solutions to Eq. (2). Equation (2) with cða; ūÞ ¼ a=3þ ū
and fða; ūÞ ¼ 2a=3 corresponds to the soliton limit of the
KdV-Whitham system of modulation equations, shown in
Ref. [28] to be equivalent to the soliton modulation
equations determined by other means [26] with application
to shallow water soliton propagation over topography in
Refs. [26,29–31]. The general case of Eq. (2) was derived
in Ref. [27] and can be interpreted as a mean field
approximation for the interaction of a soliton with the
hydrodynamic flow. In contrast to standard soliton pertur-
bation theory where the soliton’s parameters evolve tem-
porally [32], solitonic dispersive hydrodynamics require
the soliton amplitude aðx; tÞ be treated as a spatiotemporal
field. We note that the equations in Eq. (2) can be solved
sequentially by the method of characteristics [26].
It will be physically revealing to diagonalize the system

of equations in Eq. (2) by identifying its Riemann
invariants [5]. Owing to the special structure of Eq. (2)
with just two characteristic velocities V < c, it is always
possible to find a change of variables to Riemann
invariant form that diagonalizes the system. The mean
field equation is already diagonalized with ū the Riemann
invariant associated to the velocity V. The second
Riemann invariant, q ¼ qða; ūÞ, is associated with the
velocity c. q can be found by integrating the differential
form fdūþ ðc − VÞda [5] (see the Supplemental Material
[24]). For KdV, qða; ūÞ ¼ a=2þ ū, whereas for the
conduit equation,

cða; ūÞ ¼ fū2 þ ðaþ ūÞ2½2 lnð1þ a=ūÞ − 1�gū=a2;
qða; ūÞ ¼ cða; ūÞ½cða; ūÞ þ 2ū�=ū: ð3Þ

The third Riemann invariant is found by direct integration
of the wave number equation to be the quantity kpðq; ūÞ
given by

pðq; ūÞ ¼ exp

�
−
Z

ū

ū0

Cuðq; uÞ
VðuÞ − Cðq; uÞ du

�
; ð4Þ

where C(qða; ūÞ; ū)≡ cða; ūÞ. For KdV, pðq; ūÞ ¼
ðq − ūÞ−1=2. The change of variables q ¼ qða; ūÞ and
p ¼ pðq; ūÞ diagonalizes Eq. (2):

ūt þ VðūÞūx ¼ 0; qt þ Cðq; ūÞqx ¼ 0;

ðkpÞt þ Cðq; ūÞðkpÞx ¼ 0: ð5Þ
We seek solutions to Eq. (5) subject to an initial mean

field profile ūðx; 0Þ ¼ ū0ðxÞ and an initial soliton of
amplitude a0 located at x ¼ x0 (see, e.g., Fig. 1). But we
require initial soliton and wave number fields aðx; 0Þ and
kðx; 0Þ for all x in order to give a properly posed problem
for Eq. (2). Admissible initial conditions are obtained by
recognizing this as a special solution, a simplewave inwhich
all but one of the Riemann invariants are constant [5]. The
nonconstant Riemann invariant must be ū to satisfy the
initial condition and therefore satisfies ū ¼ ū0(x − VðūÞt).
The initial soliton amplitude and position determine the
constant Riemann invariant q0 ¼ q(a0; ū0ðx0Þ). An initial
wave number k0 determines the other constant Riemann
invariant k0p0 ¼ k0p(q0; ū0ðx0Þ). As we will show, the
value of k0 > 0 is not relevant so can be arbitrarily chosen.
Wenow showhow this solution physically describes soliton-
mean field interaction.
A smooth, initial mean field, e.g., in Fig. 1, will evolve

according to the obtained implicit solution until wave
breaking occurs. Our interest is in the interaction of a
soliton with the expansion and compression waves that
result. In dispersive hydrodynamics, the simplest examples
of these are RWs and DSWs, respectively, which are
most conveniently generated from step initial data. We
therefore analyze the obtained general solution subject to
step initial data,

ūðx;0Þ ¼ ū�; aðx;0Þ ¼ a�; kðx;0Þ ¼ k�; �x > 0;

ð6Þ
that model incident and transmitted soliton amplitudes a−
and aþ through the mean field transition ū− to ūþ for
soliton train wave numbers k− and kþ. The mean field
dynamics depend upon the ordering of ū− and ūþ. When
ū− < ūþ, the mean field equation admits a RW solution,
otherwise an unphysical, multivalued solution. Short-wave
dispersion regularizes such behavior and leads to the
generation of a DSW. We consider each case in turn.
The transmission of a soliton through a RW is shown

experimentally in Figs. 2(a) and 2(b). The incident soliton
“climbs” the RW and emerges from the interaction with
altered amplitude and speed. The mean field is the self-
similar, RW solution with uðx; tÞ ¼ ū� for�x > �V�t and

ūðx; tÞ ¼ V−1ðx=tÞ; V−t ≤ x ≤ Vþt; ð7Þ
where V� ¼ Vðū�Þ and V−1 is the inverse of V. Constant q
and kp correspond to adiabatic invariants of the soliton-
mean field dynamics that yield constraints on the amplitude,
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mean field, and wave number parameters we call the
transmission and phase conditions:

qða−; ū−Þ ¼ qðaþ; ūþÞ;
k−
kþ

¼ pðqþ; ūþÞ
pðq−; ū−Þ

: ð8Þ

The first adiabatic invariant qða; ūÞ determines the trans-
mitted soliton amplitude aþ in terms of the incident soliton
amplitude a− and the mean fields ū�. The second adiabatic
invariant determines the ratio k−=kþ, which in turn yields
the soliton’s phase shift due to hydrodynamic interaction.
Equation (8) is the main theoretical result of this Letter and
describes the trapping or transmission of a soliton through a
RW and a DSW.
The necessary and sufficient condition for soliton trans-

mission is a positive transmitted soliton amplitude aþ > 0,
which places a restriction on the incident soliton amplitude
a−. For the conduit equation, Eq. (3) implies c− > ccr ¼
−ū− þ ðū2− þ 8ūþū−Þ1=2. For KdV, a−>acr¼2ðūþ−ū−Þ.
In both cases, we find that the transmitted soliton’s ampli-
tude is decreased, aþ < a−, and its speed is increased,
cþ > c−. More generally, sgnðaþ − a−Þ ¼ −sgnðqūqaÞ and
sgnðcþ−c−Þ¼sgnðCūÞ (see Supplemental Material [24]).
The soliton phase shift is Δ ¼ xþ − x−, where x� are the

x intercepts of the soliton pre- (−) and post- (þ) hydro-
dynamic interaction. Given the initial soliton position x−,
the contraction or expansion of the soliton train determines
the phase shift as Δ=x− ¼ k−=kþ − 1 ¼ pþ=p− − 1.
Hence, the ratio k−=kþ in the phase condition Eq. (8),
not the arbitrary initial wave number k−, determines the
soliton phase shift. Our use of a fictitious soliton train is
therefore justified.
We also determine the soliton-RW trajectory. A soliton

with position xðtÞ propagates through the mean field along
a characteristic of the modulation system Eq. (2),

dx
dt

¼ C(q; ūðx; tÞ); xð0Þ ¼ x−; ð9Þ
where the soliton amplitude aðx; tÞ varies along the traje-
ctory according to the adiabatic invariant q(aðx;tÞ;ūðx;tÞ)¼
qða−;ū−Þ. The phase shift from integration of Eq. (9) equals
Δ from the adiabatic invariant in Eq. (8), as expected.
When aþ ≤ 0 in Eq. (8), the soliton is trapped by the

RW, as in experiment, Figs. 2(c) and 2(d).
If ū− > ūþ, a DSW is generated. Soliton-DSW trans-

mission is experimentally depicted in Figs. 2(e) and 2(f).
An incident soliton propagates through the DSW, exhibit-
ing a highly nontrivial interaction, ultimately emerging
with altered amplitude and speed.
In contrast to the soliton-RW problem, the modulation

equations (2) are no longer valid throughout the soliton-
DSW interaction. Instead, the mean field equation is
replaced by the DSW modulation equations [6,7]. We seek
a simple wave solution for soliton-DSW modulation.
Because DSW generation occurs only for t > 0, the
soliton-DSW modulation system for t < 0 reduces exactly
to Eq. (2), i.e., that of soliton-RW modulation. For t < 0,
the adiabatic invariants Eq. (8) hold. By continuity of the

modulation solution, these conditions must hold for t ≥ 0
outside the DSWmodulation. In particular, soliton-RWand
soliton-DSW interaction both satisfy the same transmission
and phase conditions Eq. (8). This fact, termed hydro-
dynamic reciprocity, is due to time reversibility of the
governing equation (1) and is depicted graphically in Fig. 3.
Equations (3) and (8) for the conduit equation indicate

that solitons incident upon DSWs exhibit a decreased
transmitted speed ccr < cþ < c− and an increased trans-
mitted amplitude aþ > acr > a−. acr and ccr are precisely
the amplitude and speed of the DSW’s soliton leading edge
[33]. Hydrodynamic reciprocity therefore implies that the
transmitted soliton’s amplitude is decreased (increased),
its speed is increased (decreased), and its phase shift is
negative (positive) relative to the soliton incident upon the
RW (DSW), as observed experimentally in Fig. 2. Using
the transmission and phase conditions Eq. (8), we accu-
rately predict the conduit soliton trajectory post-DSW
interaction without any detailed knowledge of soliton-
DSW interaction (see Supplemental Material [24]).
In contrast to soliton-RW transmission, because cþ > Vþ,

solitons with amplitude aþ initially placed to the right of
the step will interact with the DSW if aþ<acr. Then the
transmission conditionEq. (8) impliesa−<0; i.e., the soliton
cannot transmit back through theDSW. Instead, the soliton is
effectively trapped as a localized defect in the DSW interior
as observed experimentally in Figs. 2(g) and 2(h).
The transmission and phase conditions Eq. (8) for the

conduit equation are shown in Fig. 4. For soliton-RW
interaction, the abscissa and ordinate are a− and aþ,
respectively reversed for soliton-DSW interaction.
Hydrodynamic reciprocity implies that the transmission
condition on these axes is the same for soliton-RW and
soliton-DSW transmission. Reciprocity is confirmed by
experiment and numerical simulations of the conduit equa-
tion in Fig. 4(a), that slightly deviate from soliton-mean field
theory as the amplitudes increase, consistentwith previously
observed discrepancies [13,19,33]. Reciprocity of the phase

(a) (b)

FIG. 3. Graphical depictions of hydrodynamic reciprocity.
(a) Space-time contour plot of soliton-DSW (t > 0) and soliton-
RW (t < 0) interaction with two solitons satisfying the trans-
mission condition Eq. (8). For jtj sufficiently large, the soliton
speeds are the same. (b) If the soliton post-DSW interaction (top,
left to right) is used to initialize soliton-RW interaction (bottom,
right to left), the post-RW interaction soliton has the same
properties as the pre-DSW interaction soliton.
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shift is also confirmed by conduit equation numerics in
Fig. 4(b). Our experiments provide definitive evidence of
soliton-hydrodynamic transmission, trapping, reciprocity,
and the theory’s efficacy.
We have introduced a general framework for soliton-

mean field interaction. The dynamics exhibit two adiabatic
invariants that describe soliton trapping or transmission.
The existence of adiabatic invariants for soliton-mean field
interactions of compression (DSW) and expansion (RW)
imply hydrodynamic reciprocity. This describes a concep-
tually new notion of hydrodynamic soliton “tunneling,”
where the potential barrier is the mean field, obeying the
same equations as the soliton [34].
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