
Solar Panels and Optimization
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Image of the Sun. The image was taken from the astrophysics department at Stanford
University.

Introduction

In this lab you will analyze how the efficiency of a solar panel depends on the season and its
orientation. The solar radiation falling on a tilted plane (such as a solar panel) depends on
numerous factors: the orientation of the plane, the time of the day, the season, the weather,
etc. In the next few sections you will learn more about how this affects the power we can
receive from solar panels.

Figure 1: Sketch shows the Earth orbiting the Sun and the position of the Earth during
different seasons.



Figure 2: The angle s at the equator. The angle s is measured between the sun ray and
the plane of the equator at noon. This implies that at summer solstice s = 23◦, at winter
solstice s = −23◦ and the vernal/autumnal equinox s = 0◦.

The Earth and the Sun

The Earth’s orbit about the Sun is almost circular so for this lab we will assume that the
distance to the Sun is constant. However, the axis of the Earth is tilted relative to the plane
in which the Earth moves around the Sun. The angle between the axis and a normal to
this plane is roughly 23◦. As indicated in Figure 1, the north pole points away from the
Sun during the northern hemisphere winter, and points toward the Sun during the northern
hemisphere summer. Now let us imagine that we stand on the equator. We introduce the
angle s as illustrated in Figure 2. In words, the angle s determines the angle between you
(if you are standing straight up on the equator at noon) and a line from the center of the
Earth to the center of the Sun. By ”noon”, we mean the time of the day when the Sun is at
its highest position in the sky. As we can see from Figure 2, s ≈ 23◦ on June 20 (summer
solstice) and on March 19th (vernal equinox) s = 0◦. Hence, we can think of s as describing
the time of the year. This angle s will be of great importance in the lab, so let us summarize
its values in a table.

Table 1: Angle s for Times of Year

Date s Increasing/Decreasing

Dec. 21, 2017 s = −23◦

Dec. 22, 2017 - March 19, 2018 −23◦ < s ≤ 0◦ Increasing with time
March 20, 2018 - June 20, 2018 0◦ < s ≤ 23◦ Increasing with time
June 21, 2018 - Sept. 21, 2018 23◦ > s ≥ 0◦ Decreasing with time
Sept. 22, 2018 - Dec. 20, 2018 0◦ > s ≥ −23◦ Decreasing with time

IMPORTANT: The functions we use later will require that we convert degrees to radians.
For example, for 23 degrees:

23◦ =
23π

180
radians ≈ 0.4 radians

Radiation incident on a tilted plane

In this lab we will be interested in the solar radiation incident on a tilted plane. Consider
a solar panel that maintains a fixed angle with respect to the ground throughout the entire



day. Let u be the angle between the plane and the ground. If u = 0◦, then the plane is lying
on the ground and if u = 90◦ the plane is standing up vertically. Also, if u is negative, the
solar panel is facing south, and if u is positive, it is facing north. Understanding this might
give you a better idea of what’s going on when you look at your 3D plot in question 2.

We will also introduce an angle t to be an angle proportional to the time of day such that
t = −90◦ = −π

2
radians at dawn, t = 0◦ at noon, and t = 90◦ = π

2
radians at dusk. If I0

is the intesity of solar radiation (measured in W
m2 , where W = J

s
incident on the ground,

then the intensity of radiation on a plane, Ip, tilted at an angle u at time of day and year
corresponding to t and s respectively is given by the function:

Ip(s, t, u) = I0(cos s cosu cos t− sin s sinu)

Additional Factors

There are more factors that affect the radiation on the plane. There is also an absorption
factor which is strongly dependent on the distance the sun’s rays have traveled through the
atmosphere before reaching the ground. The law describing absorption is called Beer’s law.
Let us describe the absorption with a function A(s, t) such that 0 < A(s, t) ≤ 1. Here
A(s, t) = 1 means that all the sunlight passes through the atmosphere (no absorption), and
the absorption of light by the atmosphere increases with decreasing values of A(s, t). Hence
a low value (A(s, t) ≈ 0) means that almost no sunlight makes it through (very high absorp-
tion).

We will also take different weather patterns into account since the solar radiation on the
ground varies with cloudiness. Let us describe the cloudiness with a function C(s, t) such
that 0 < C(s, t) ≤ 1. Here C(s, t) = 1 means that there are no clouds, and the cloudiness
increases with decreasing values of C(s, t). Hence a low value (C(s, t) ≈ 0) means that the
sky is covered with thick black thunder clouds. The total amount of energy received per
square meter and per day is now given by the following equation:

W (s, u) =
∫ tmax

tmin

A(s, t)C(s, t)Ip(s, u, t)dt

Here tmin and tmax are the angles that were discussed above. These angles limits represent
the time of sunrise and sunset respectively. These times vary over the year, however, on the
equator these times are relatively constant. To simplify the mathematics, we will assume
that for our purposes we can use tmin = −π

2
and tmax = π

2
throughout the year. This is an

approximation. For a more careful analysis of the problem, we should let these times depend
on the season, i.e. on s.



Problem Statement

The Boulder company ”Solar Power Inc.” (invented for this lab) has asked you to do a
consulting job for them. They will explore solar panels on the pacific island ”Suluclac” which
is located on the equator. A meteorologist has described their weather by the cloudiness
function:

C(s, t) =
3− (1 + (s− 0.2)2) cos2 t

3

where s and t are the angles related to the time of year and day as previously defined. A
physicist has derived the following formula describing the energy (measured in kWh

m2day
) where

1 kWh = 3.6× 106J collected by the solar panel each day:

W (s, u) = 1 + (1 + 0.65s− 1.2s2− 0.4s3 + 0.35s4) cosu+ (1.4s− 0.4s2− 1.5s3− 0.35s4) sin(u)

Note that this equation is only valid when s and u are given in radians. This energy equation
has already incorporated effects due to absorption and cloudiness, so the function W (s, u)
is already in the form you will use for this lab. Also remember that the angle u of the solar
panel is fixed on a given day. We are not working with a panel that moves throughout the
day to follow the sun by hour. A panel like this might collect more solar energy, but it also
requires a more expensive mechanical set up, so a solar panel with a fixed angle u, which
may be changed manually on, say, a daily or weekly basis to at least account for the time of
year, is often more practical.

The company now wants you to answer the following questions.

1. Create a labeled 3D plot of C(s, t) over the domainD = {−0.4 ≤ s ≤ 0.4,−π
2
≤ t ≤ π

2
},

which will help you visualize average cloudiness. Use the information on C(s, t) from
the introduction (under ”Additional Factors”) along with your plot to describe in words
how the cloudiness varies on Suluclac over the course of the average day and over the
course of a year.

2. In the domain D, find the critical point(s) of W (s, u) and compute the energy at the
point(s).

(a) First create a 3D plot of W (s, u) with the given domain to get an idea of what is
going on.

(b) Create a contour plot of W (s, u) to find where the gradient is zero in order to
determine the initial guess for a possible critical point.

(c) Use the Mathematica command FindRoot to find the points at which the gradient
ofW (s, u) is the zero vector. In order to do this, you will need to give the FindRoot
function an initial guess for a critical point so that it will search in that local area.

(d) Classify the critical point(s) as local maxima, local minima or saddle points.

(e) Compute the energy at these points.



3. Next, we will look for extreme points that may occur on the edges of our domain by
fixing the value of one variable at the edge of its boundary to form a function that
depends only on the variable that is not fixed.

(a) Find all extreme points on the edges. As an example, s, the angle proportional
to the time of year is bounded below by −0.4 at winter solstice and above by 0.4
at summer solstice. If we fix s to be 0.4, then we will look for the local max of
the function W (0.4, u) by taking its derivative and setting it to zero. Notice that
when we plug in 0.4 for s in the two variable function W (s, u), we end up with
a single variable function W (0.4, u). We can then use FindRoot on d

du
W (0.4, u)

to find possible critical points. If we fix s to be -0.4, we look for the local max of
W (−0.4, u). It works the same way if we fix values of u on the other two edges. If
it appears obvious to you that a particular edge will have no critical points, then
you don’t have to do the derivative test on that edge. Explain why you can see
this from your 3D Plot.

(b) Use your 3D plot to explain if the points you found in part (a) are maxima,
minima, saddle points, etc.

4. Compute the energy at the points that you found above, as well as at the four corners
of the boundary.

(a) Plug in the values you just found in Question 3 to the W (s, u) function. Then
plug in corner values. For example, check the corner value of W (−0.4, π

2
).

(b) Specify if these values (points from Question 3, and corner points) are global
maxima or global minima in the domain of the function by comparing them to
the energy at the critical point(s) found in Question 2.

For example, if the value at one of the corners turns out to be smaller than any
of the other values observed, then the value at that corner would be the global
minimum for the given domain. Also important to note is that if we were to
increase the size of the domain, we might have different global extrema, but for
this problem we are only focused on the domain given at the beginning of the lab
because it is most relevant to our application. Make sure you’ve defined your
domain correctly!

5. Recall that the angle u refers to the angle that a fixed solar panel makes with the
ground. The solar panel doesn’t move on its own. It will stay at the same angle until
someone manually changes it. Suppose we hire someone to change the angle u of the
solar panel on a regular basis, maybe once at the end of each day, so that on any given
day we end up collecting as much energy as we can based on the angle s that the
equator makes with the incoming sun rays.

During what season of the year will we end up collecting the most solar energy? Ex-
plain your answer, i.e. don’t just say ”When there is more light!”.



Also, remember that the angle s is proportional to the season of the year. In radians,
s goes from 0.4 at summer solstice (the longest day of the year) all the way down to
0 at autumnal equinox, then down to −0.4 at the winter solstice (the shortest day of
the year), back up to 0 at the vernal equinox, and back to 0.4 at the summer solstice.

6. Look back at the 3D plot that you created in Question 2. It should be clear that for
any fixed value of s, there is an optimal angle u that will maximize the amount of solar
energy collected. For fixed s, finding the optimal value of u is equivalent to finding
the maximum of a single variable function. In the following steps, you will find the
optimal angle u for discrete values of s from −0.4 to 0.4. The Mathematica code will
be a little tricky, so we will walk you thought it.

(a) First create a table with values of s starting with s = −0.4 and increasing in steps
of 0.02 up to s = 0.4. We will use the command Table and store the table as
svals. The Mathematic code for this step is:

svals = Table[s,{s,-0.4,0.4,0.02}];
(b) Next, we want to find the values of u that will maximize the energy collected

at each of the s values in our previous table. Again, we will use the Table com-
mand, but what we want to store is the values of u that will make d

du
W (si, u) = 0,

where si is one of the discrete s values in the table from (a). We will call this
table uvals. To find the maximizing u values, we will need to use FindRoot.
In general, you will need to take some care in selecting your initial guess at each
step, but in this case an initial guess of zero will work for each root we need to find.

uvals = Table[FindRoot[D[W[s,u],u],{u,0}],{s,-0.4,0.4,0.02}];

You will have to have your function W (s, u) defined in Mathematica as W[s,u]

first for this code to work!

(c) We will want to plot an optimal path in our domain and overlay this on our
contour plot for W (s, u). To plot our path, we will use ListPlot which will plot
discrete points when coordinates are specified in the su-plane. We will create this
overlaid plot in three steps.

i. Create a table called coords containing the su-coordinates corresponding to
the optimal path:

coords = Table[{svals[[i]],u}/.uvals[[i]],{i,Length[svals]}];

ii. Next create a plot of the optimal path. Since we have discrete points, we will
use ListPlot:

IdealPointsPlot = ListPlot[coords,PlotStyle->Red];

iii. You should have already created a contour plot of W (s, u) in Question 2. If
you haven’t already done so, store this plot. For example, go back to the



code where you created the plot and type WContours = ContourPlot[...].
Now we will overlay our plot of the optimal path onto the contour plot:

Show[WContours,IdealPointsPlot]

(d) Does your optimal path make sense based on what you wee from your 3D graph
of W (s, u)? Explain.

7. Suppose that the solar panels need to be replaced once per year, and suppose it takes
a significant amount of time to replace them, i.e. days or weeks. Also, suppose that
during the replacement process, we can’t collect any solar energy. What time of year
should we replace the panels? Explain.

Solar Power Inc. wants you to describe all your results in a formal written report, containing
an introduction, relevant equations, answers to all questions at appropriate places within
paragraphs and a conclusion.


