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1. INTRODUCTION

It is well known that Maxwell’s equations for a constant medium can be written in either
a first-order or a second-order form. For the simple case of one space dimension and
appropriate units, we have either

∂E

∂t
=

∂H

∂x
,

∂H

∂t
=

∂E

∂x
,

(1)

or

∂2E

∂t2
=

∂2E

∂x2
,

∂2H

∂t2
=

∂2H

∂x2
.

(2)

Numerical solution methods for discretizing second derivatives are available (for example,
centered finite differences in space and Nyström or Sẗormer methods in time). These
methods may have advantages in accuracy and stability over their first-derivative counter-
parts. However, the imposition of boundary conditions is more difficult in the second-order
formulation.

Liu [2] proposed finite difference (FD) discretizations of the first-order form that target
the second-order derivatives for accuracy. For example, we can discretize (1) in space by

∂En

∂t
=

1
h

(Hn+1 − Hn),

∂Hn

∂t
=

1
h

(En − En−1).
(3)
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Note the different approximations used on the right-hand sides; they are both first-order
accurate approximations of the derivatives in (1). However, one finds that

∂2En

∂t2
=

1
h2

(En+1 − 2En + En−1),

∂2Hn

∂t2
=

1
h2

(Hn+1 − 2Hn + Hn−1),
(4)

which are second-order accurate approximations of (2). Liu also proposed methods which
were first-order accurate on (1) and as much as sixth-order accurate on (2) (we denote
the accuracy of such a method by the pair (1,6)). In each case the coefficients in the
discretization forH are the antisymmetric counterpart to those forE. The coefficients
for each individual component do not themselves possess the usual antisymmetry seen in
accurate FD for the first derivative, and for this reason they were called “nonsymmetric”
in [2]. It is straightforward to find methods of this type with orders of accuracy (p,2m−p−1)
usingm unknown coefficients.

In [2] numerical experiments seemed to confirm the relevance of the second-derivative
accuracy. In each experiment a pulse was propagated in a periodic domain until such time as
it had returned to its original position. In this note we show that such times—more precisely,
integer multiples of half of the period—are special, and at all other times the accuracy is
governed by the (relatively inaccurate) approximation to first derivative. In a nonperiodic
problem these special times would not exist. We also show that the nonsymmetric methods
are inaccurate at all times in the presence of variable coefficients. We present the results of
a few experiments to verify our claims.

For the rest of this note we reserve the word “order” for reference to the order of accuracy
of a method and use the terms “first-derivative” and “second-derivative” to describe the
different PDE formulations.

2. ANALYSIS

The general solution for each component of (2) is given by d’Alembert’s formula. For
example,

E(x, t) = f(x − t) + f(x + t) +
∫ x+t

x−t

g(ξ) dξ, (5)

where

f(ξ) = E(ξ, 0),

g(ξ) =
∂E

∂t
(ξ, 0),

with periodic extensions outside the original intervalx ∈ [−L, L). By the first-order
formulation (1),g(ξ) = ∂H

∂x (ξ, 0).
The nonsymmetric FD methods are designed to be accurate representations of (2).

However,g(ξ) in d’Alembert’s formula is replaced by

∂H

∂x
(ξ, 0) + hpr(ξ), (6)

wherep is the order of accuracy of the FD method for thefirst derivative. Hence the same
order of error remains inE(x, t).
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Note that the leading term inr(ξ) is a higher-order derivative ofH(x, 0). Thusr has no
constant Fourier component. At the timest = mL, m ∈ N, the integral in (5) is overm full
periods ofg, so the contribution of the error term in (6) vanishes. At those times, and only
those times, the error is controlled by the accuracy of the second-derivative approximation
to (2).

The nonsymmetric methods also run into trouble with variable coefficients. In the
equations

∂E

∂t
= α(x)

∂H

∂x
,

∂H

∂t
= β(x)

∂E

∂x
,

(7)

the correct second-derivative form forE is

∂2E

∂t2
= αβ

∂2E

∂x2
+ αβ′ ∂E

∂x
.

But applying the method of (3) we get

∂2En

∂t2
= h−1αn(

∂Hn+1

∂t
− ∂Hn

∂t
)

= h−2αn(βn+1En+1 − (βn+1 + βn)En + βn−1En−1)

= αn(βn
∂2En

∂x2
+ β′

n

∂En

∂x
) +

1
2
hαn(β′′

n

∂En

∂x
+ β′

n

∂2En

∂x2
) + O(h2),

and the method is only first-order accurate.

3. NUMERICAL EXPERIMENTS

In this section we validate the claims made above. We run the 1D Maxwell equations (1)
on the periodic intervalx ∈ [−1, 1), with initial values

E(x, 0) = e−30x2
,

H(x, 0) = −e−30x2
.

Although not naturally periodic, these functions are comparable to double precision round-
off at the ends of the interval. In space we use the method called NS3 in [2], which is first
order on the first derivative and 6th order on the second derivative. We time step using
fourth-order Runge–Kutta with a time step1/2048, small enough so that all observed errors
are due to spatial discretization only.

Figure 1 shows the error for 64 and 128 points at evenly spaced times from 0 to 2 (i.e.,
up to one full traversal). The vertical scale on the time series is[−0.2, 0.2], indicating that
the errors are quite large. Furthermore, the grid refinement reduces error by about half,
consistent with first order accuracy. At the special timest = 1 andt = 2 the error is much
smaller. The maximum errors att = 2 are about8.99× 10−5 and1.52× 10−6. Their ratio
of about 60 implies an effective convergence order of 5.9.

We also tested the variable coefficient problem (7) withα(x) = 1+0.2 sin(πx), β(x) =
1− 0.2 cos(πx). The results are shown at the final timet = 2 in Fig. 2. The NS method of
type (1,6) is now first order accurate even at the final time, while Yee’s method [3] retains
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FIG. 2. Comparison of spatial discretizations for the variable-coefficient model problem (7) with slowly
varyingα andβ. Here the “exact” solution is obtained from an 8th-order method at the finest discretization. The
NS method is governed by the first-derivative accuracy, while standard methods such as Yee’s are unaffected.

second-order accuracy. Any standard staggered or nonstaggered FD method [1] would be
similarly unaffected.
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