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Abstract. Radial basis function (RBF) approximation is an extremely powerful tool for repre-
senting smooth functions in non-trivial geometries, since the method is meshfree and can be spectrally
accurate. A perceived practical obstacle is that the interpolation matrix becomes increasingly ill-
conditioned as the RBF shape parameter becomes small, corresponding to flat RBFs. Two stable
approaches that overcome this problem exist, the Contour-Padé method and the RBF-QR method.
However, the former is limited to small node sets and the latter has until now only been formulated
for the surface of the sphere. This paper focuses on an RBF-QR formulation for node sets in 1-D,
2-D, and 3-D. The algorithm is stable for arbitrarily small shape parameters. It can be used for
thousands of node points in 2-D and more still in 3-D. A sample matlab code for the 2-D case is
provided.
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1. Introduction. When using RBFs (radial basis functions), the best accuracy
is often achieved when their shape parameter ε is small, meaning that the basis
functions are relatively flat. It was for a number of years mistakenly believed by
many RBF practitioners that this computational regime inevitably was associated
with numerical ill-conditioning when, in fact, the only thing that was ill-conditioned
was the most immediate numerical algorithm (denoted RBF-Direct in some of the
current literature). So far, only two numerical algorithms have been presented that are
able to compute stably even in the ε→ 0 (increasingly flat) basis function limit: the
Contour-Padé method [13] (see [15] for the significantly improved RBF-RA version)
and the RBF-QR method [11]. These two methods are based on different principles,
and have different limitations. The Contour-Padé/RBF-RA method is limited to a
relatively low number of RBF nodes (N slightly less than a hundred in 2-D, more
in 3-D). The RBF-QR algorithm has previously been developed only for the case
when the nodes are distributed over the surface of a sphere, then allowing N -values
in the thousands. The present paper describes how the RBF-QR approach can also
be implemented for general domains in 1-D, 2-D and 3-D. With quasi-uniform nodes,
the algorithm works well for tens of points in 1-D, hundreds of points in 2-D, and
thousands of points in 3-D using double precision arithmetics. Using quad precision
increases the ranges significantly. We can for example solve for N = 2700 points in 2-
D retaining full double precision accuracy [8]. With quasi-uniform node distributions,
errors in typical RBF implementations will eventually grow with the number of nodes
for two reasons (i) increasing condition number, and (ii) an intrinsic ill-conditioning
of spectrally accurate methods on quasi-uniform node sets leading to large errors near
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boundaries. Making the basis functions less flat is frequently used to address (i),
then trading conditioning against accuracy. The present algorithm resolves the ill-
conditioning issue without any such trade-offs. The issue (ii) can then be addressed
separately. Here, this is done by clustering nodes towards the domain boundaries.
RBF-QR in double precision then works for thousands of node points in all three
cases.

The outline of the paper is as follows: Section 2 gives the background to the
ill-conditioning of the RBF-Direct approach. The RBF-QR method for the sphere is
briefly reviewed in Section 3 and then the planar 2-D algorithm for Gaussian RBFs
is derived in Section 4. The corresponding expansions for the 1-D and 3-D cases
are also given in this section. Implementation details are covered in Section 5 and
numerical results are demonstrated in Section 6. The conclusions in Section 7 are
followed by two appendices containing (A) a sample matlab code, and (B) a brief
overview of the steps in forming the 2-D polar-Chebyshev expansions of the Gaussian
RBFs and details concerning the truncation of the Chebyshev expansion in 1-D, the
polar-Chebyshev expansion in 2-D, and the spherical-Chebyshev expansion in 3-D.

2. The ill-conditioning of the RBF-Direct algorithm. Given a radial basis
function φ(r) and scattered data {xk, fk}, k = 1, 2, . . . , N , the RBF-Direct approach
for finding the interpolant

s(x, ε) =
N∑

k=1

λkφ(||x− xk||) (2.1)

simply computes the coefficients λk as the solution of the linear system

A λ = f, (2.2)

where the matrix A has the entries Aj,k = φ(||xj−xk||) and the column vectors λ and
f contain the λk and the fj values, respectively. When the basis functions are made
increasingly flat, the A-matrix becomes very ill-conditioned. As a result, the λk-values
become extremely large in magnitude (some positive and others negative), and a vast
amount of numerical cancellation then occurs when the O(1)-sized quantity s(x, ε)
is obtained in (2.1) through combination of these large quantities. Thus, in the flat
basis function regime, (2.2) and (2.1) form two successive ill-conditioned numerical
steps in obtaining a quantity s(x, ε) that we know in general depends in a well-
conditioned way on the data {xk, fk} [4], [6], [14], [20], [27]. Although (2.2) and (2.1)
mathematically define the RBF interpolant s(x, ε) for any value of ε, these equations
are very unsuitable for numerical use when ε is small. The Contour-Padé/RBF-RA
and the RBF-QR algorithms both compute exactly the same quantity s(x, ε), but
instead follow sequences of steps that all remain completely stable even when ε→ 0.

The exact rate by which the ill-conditioning of the A-matrix worsens for ε small
and N increasing was studied in [16]. In the case when the nodes xi are scattered
in 2-D, and using any of the standard RBF choices such as GA, MQ, IMQ, IQ (see
Table 2.1), the A-matrix will have 1 eigenvalue of size O(1), 2 of size O(ε2), 3 of size
O(ε4), . . . until all the N eigenvalues are accounted for. The BE radial functions were
shown in [7], [9] to have a number of unusual properties. The case with d = 2 is seen
in Table 2.2 to be anomalous in terms of conditioning, featuring particularly severe
ill-conditioning if implemented with RBF-Direct.

Much RBF literature has been devoted to finding ‘optimal’ values for the shape
parameter [5], [17], [24]. In some cases, this optimal value occurs in a shape parameter
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Table 2.1

The definitions of some infinitely smooth radial functions

Name Abbreviation Definition

Gaussian GA φ(r)=e− (εr)2

Multiquadric MQ φ(r)=
√

1 + (εr)2

Inverse multiquadric IMQ φ(r)=1/
√

1 + (εr)2

Inverse quadratic IQ φ(r)=1/(1 + (εr)2)

Bessel BE φd(r)=
Jd/2−1(εr)

(εr)d/2−1

Table 2.2

Number of eigenvalues of sizes O(1), O(ε2), O(ε4), O(ε6), . . .

1-D non-periodic case (GA, MQ, IMQ, IQ, BEd=2,3,4,... )
1 1 1 1 1 1 1 ...

2-D non-periodic case (GA, MQ, IMQ, IQ, BEd=3,4,5,... )
1 2 3 4 5 6 7 ...

2-D non-periodic case (BEd=2)
1 2 2 2 2 2 2 ...

On the surface of a sphere (GA, MQ, IMQ, IQ)
1 3 5 7 9 11 13 ...

3-D non-periodic case (GA, MQ, IMQ, IQ)
1 3 6 10 15 21 28 ...

regime where the ill-conditioning of RBF-Direct is not an issue. At other times, these
attempts have amounted to trying to strike a favorable balance between unavoidable
accuracy losses for large ε and avoidable RBF-Direct accuracy losses for low values of
ε. Since it is now understood that the ill-conditioning can be bypassed, such balances
need to be re-assessed. An accuracy-limiting factor other than ill-conditioning then
emerges in the decreasing ε-regime. This has previously been observed and discussed
from different perspectives several times, see for example [3], [11], [12], [16], [19], and
[20].

3. RBF-QR in the case of nodes on the surface of the unit sphere. This
case offers the algebraically simplest implementation of the RBF-QR method, and we
recall it briefly as a background to our following description of the 2-D non-periodic
case. If an RBF is centered at xk, its value at x (with both points on the surface of
the unit sphere) was shown in [2] to be expressible in a sum

φ(||x− xk||) = c0,0Y
0
0 (x) + ε2{c1,−1Y

−1
1 (x) + c1,0Y

0
1 (x) + c1,1Y

1
1 (x)}+ (3.1)

+ ε4{c2,−2Y
−2
2 (x) + c2,−1Y

−1
2 (x) + . . .+ c2,2Y

2
2 (x)}+

+ ε6{c3,−3Y
−3
3 (x) + c3,−2Y

−2
3 (x) + . . .+ c3,3Y

3
3 (x)}+

+ . . .

where Y ν
µ (x) are increasing order spherical harmonics (SPH). For all the standard

RBF types, simple explicit forms are available for all the coefficients cµ,ν [2], [11]. It
should be noted that the expansion (3.1) is not quite a Taylor expansion in ε since the
coefficients cµ,ν have a weak ε-dependence (however they converge to finite non-zero
values when ε → 0). In view of (3.1), a column vector of the RBFs, centered at the
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successive nodes, can be written
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where C is a matrix with entries of size O(1). At this intermediate stage, the ill-
conditioning due to the scaling of the RBFs has been confined to the diagonal matrix
E above. If we multiply from the left with any non-singular matrix, we obtain new
basis functions, but do not change the space that is spanned by them. We want to
utilize this observation to create a well conditioned basis in exactly the same space.
To achieve this, we split C = QR where Q is unitary and R is upper triangular and
then multiply with E−1

N Q∗, where E denotes the diagonal matrix with the increasing
powers of ε and Ek denotes the first (k × k) part of E. The product Q∗Q becomes
I and the product E−1

N RE becomes an upper triangular matrix with a diminishing
number of significant upper diagonals as ε decreases. The resulting column vector

Ψ(x) = E−1
N R E Y (x)

provides the well conditioned basis functions that we will use numerically. Expressed
in equation form, the steps just described amounted to starting with

Φ(x) = C E Y (x)

and then use as our new set of basis functions

Ψ(x) = E−1
N Q∗Φ(x) = E−1

N Q∗C E
︷︸︸︷

QR

Y (x) = E−1
N R E Y (x).

The matrix E−1
N R E is well conditioned, upper triangular, has a main diagonal with

elements of O(1), and has only a few significant superdiagonals. No unstable numerics
was used in forming this new basis function set (even in the ε→ 0 limit), and it still
spans exactly the same space as the original RBF set.

The number of independent functions associated with each power εj in (3.1),
{1, 3, 5, 7, . . .} for j = 0, 2, 4, . . . respectively, determines the rate by which the
powers enter in the diagonal of the E-matrix, and we see that this sequence perfectly
matches the counts for the sphere case given in Table 2.2. Thus, the RBF-QR al-
gorithm improves the conditioning just at the same rate as it otherwise would have
deteriorated, i.e., the conditioning remains essentially invariant with both N and ε.

4. RBF-QR in non-periodic Euclidian space. Consider a radial function
φ(r) with Taylor expansion φ(r) =

∑∞
j=0 cj(εr)

2j . If we center it at a point xk,
we have r = ‖x − xk‖. For example in 2-D, with xk = (xk, yk), this yields r =
√

(x− xk)2 + (y − yk)2 with the expansion in powers of ε

ψ(x, y, xk, yk) =

∞∑

j=0

cjε
2j((x− xk)

2 + (y − yk)
2)j . (4.1)
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The new functions of x and y that enter for each even power of ε are in turn

{1}, {x2, x, y2, y}, {x4, x3, x2y, x2y2, xy, xy2, y3, y4}, . . . (4.2)

corresponding to the sequence

power of ε 0 2 4 6 8 . . .
number of additional functions 1 4 8 12 16 . . . .

(4.3)

The sequence {1, 4, 8, 12, 16, . . .} does not match either of the sequences shown
for 2-D non-periodic cases in Table 2.2. Re-expansion of the radial functions in the
monomials (4.2) will therefore not allow the ill-conditioning to be fully eliminated.
This is true also for the 1-D case and in higher dimensions. The challenge thus
becomes to find alternative expansion functions for which the counting works out
correctly. We have so far found such expansions only in the GA and BE cases.

4.1. Expansion of the GA radial function. The radial function φ(r) =

e− ε2r2 centered at the point xk becomes

ψ(x, xk) = e−ε2‖x−xk‖
2

= e−ε2(x−xk)·(x−xk) = e−ε2(x·x)e−ε2(xk·xk)e2ε
2(x·xk). (4.4)

Only the last factor above mixes x and xk values. It has the Taylor expansion

e2ε
2(x·xk) = 1 + 2ε2(x · xk) +

(2ε2)2

2!
(x · xk)2 + · · · =

∞∑

j=0

(2ε2)j

j!
(x · xk)j . (4.5)

Our first derivation of the RBF-QR algorithm in the non-spherical case was for 2-D
non-periodic planar geometries. The 1-D and 3-D cases then followed by applying
similar techniques. Therefore, the description of the algorithm below focuses on the
2-D case, and only outlines the main features for other dimensions.

In 2-D, the radial function φ(r) = e− ε2r2 centered at the point (xk, yk) becomes

ψ(x, y, xk, yk) = e−ε2(x2+y2) · e−ε2(x2
k+y2

k) · e2ε2(x xk+ y yk), (4.6)

where the last factor has the Taylor expansion

e2ε
2(x xk+ y yk) = 1 + 2ε2(x xk + y yk) +

22ε4

2!
(x xk + y yk)

2 + . . . . (4.7)

Thanks to having factored out e−ε2(x2+y2) (a ‘harmless’ factor as ε→ 0), the degrees
of the polynomials in the subsequent Taylor expansion increase by just one order at a
time (rather than by two orders, as in (4.1) and (4.2)). In place of (4.2) the expansion
functions now are

e−ε2(x2+y2) · {{1}, {x, y}, {x2, xy, y2}, {x3, x2y, xy2, y3}, . . .} (4.8)

and (4.3) has become replaced by

power of ε 0 2 4 6 8 . . .
number of functions 1 2 3 4 5 . . . ,

(4.9)

now in perfect agreement with the corresponding sequence shown in Table 2.2.
This part of the algorithm, involving the factorization (4.4) and subsequent Tay-

lor expansion (4.5), is valid in any number of dimensions. In 3-D, we can note that

the counterparts to (4.6) and (4.8) involve factoring out e−ε2(x2+y2+z2) and then the
function set corresponding to ε2µ contains the 1

2 (µ+ 1)(µ+ 2) independent homoge-
neous monomials in (x, y, z) of degree µ. Again, the counting matches what is shown
for this case in Table 2.2, and the QR concept becomes fully applicable.
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4.1.1. Conditioning improvement by conversion to polar coordinates.

Many of the monomials in (4.8) become nearly linearly dependent when their de-
grees increase. Some of this will be circumvented if we express (4.6) in polar rather
than in (x, y) coordinates. With ψ(r, θ, rk, θk) denoting a GA radial function cen-
tered at the polar coordinate location (rk, θk), its value at the location (r, θ) follows

from rewriting (4.6) as e−ε2r2k · e−ε2r2 · e2ε2rkr(cos θk cos θ+sin θk sin θ) (cf. the first part of
Appendix B):

ψ(r, θ, rk, θk)= 2 · e−ε2r2k · e−ε2r2 · [
(ε2rkr)

0
{

1
2 · 1

0!0!Θ0

}
+

(ε2rkr)
2
{

1
2 · 1

1!1!Θ0 + 1
2!0!Θ2

}
+

(ε2rkr)
4
{

1
2 · 1

2!2!Θ0 + 3!1!Θ2 + 1
4!0!Θ4

}
+

· · · +
(ε2rkr)

1
{

1
1!0!Θ1

}
+

(ε2rkr)
3
{

1
2!1!Θ1 + 1

3!0!Θ3

}
+

(ε2rkr)
5
{

1
3!2!Θ1 + 1

4!1!Θ3 + 1
5!0!Θ5

}
+

+ . . . ].

(4.10)

Here Θm abbreviates (cosmθk cosmθ + sinmθk sinmθ). Since their patterns are
slightly different, the terms have been split into two groups, containing the powers
{ε0, ε4, ε8, . . .} and {ε2, ε6, ε10, . . .}, respectively. In place of (4.8), we now have

e−ε2r2{ {1},
r {cos θ, sin θ},
r2{1, cos 2θ, sin 2θ},
r3{cos θ, sin θ, cos 3θ, sin 3θ},

. . . }

. (4.11)

with (4.9) again valid.

Figure 4.1 displays the first four levels of the expansion functions in the case of
ε = 1, in the order they are listed in (4.11). They are all pure trigonometric modes in

the θ-direction. As ε is made smaller, the e−ε2r2 factor will become increasingly close
to one at finite distance from the origin and their amplitude will approach 1, r, r2, . . .
for the successive rows in Figure 4.1.

The conversion to polar coordinates is only valid in 2-D. For the 3-D case, spherical
harmonic expansion functions are used in the angular directions, and the key formula



STABLE COMPUTATIONS WITH GAUSSIAN RBFS 7

−2
0

2
−2

0
2
0

0.5

1

xy

ε0   

−2
0

2
−2

0
2

−0.5

0

0.5

xy

ε2   

−2
0

2
−2

0
2

−0.5

0

0.5

xy

−2
0

2
−2

0
2
0

0.2

0.4

xy

ε4   

−2
0

2
−2

0
2

−0.5

0

0.5

xy −2
0

2
−2

0
2

−0.5

0

0.5

xy

−2
0

2
−2

0
2

−0.5

0

0.5

xy

ε6   

−2
0

2
−2

0
2

−0.5

0

0.5

xy −2
0

2
−2

0
2

−0.5

0

0.5

xy −2
0

2
−2

0
2

−0.5

0

0.5

xy

Fig. 4.1. The expansion functions (4.11) that are needed for representing arbitrary translates

of the GA radial function φ(r) = e− (εr)2 , displayed in the case of ε = 1.

is given by

ψ(r, θ, φ, rk, θk, φk)= 4 · e−ε2r2k · e−ε2r2 · [
(2ε2rkr)

0
{

20

1!
0!
0!S0

}

+

(2ε2rkr)
2
{

20

3!
1!
1!S0 + 22

5!
2!
0!S2

}

+

(2ε2rkr)
4
{

20

5!
2!
2!S0 + 22

7!
3!
1!S2 + 24

9!
4!
0!S4

}

+

· · · +
(2ε2rkr)

1
{

21

3!
1!
0!S1

}

+

(2ε2rkr)
3
{

21

5!
2!
1!S1 + 23

7!
3!
0!S3

}

+

(2ε2rkr)
5
{

21

7!
3!
2!S1 + 23

9!
4!
1!S3 + 25

11!
5!
0!S5

}

+

+ . . . ],

(4.12)

where Sµ =

µ
∑′

ν=−µ

Y ν
µ (θk, φk)Y

ν
µ (θ, φ) with the prime indicating that the ν = 0 term is

halved. We have so far not investigated coordinate transformations in higher dimen-
sions.

The expressions corresponding to (4.10) and (4.11) for BE radial functions and a
discussion about generalizations to other RBF types can be found in [8].
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4.1.2. Further conditioning improvement through use of Chebyshev

polynomials. An RBF-QR implementation based on (4.10) performs much better
than one based on (4.6) together with (4.7). This is because the trigonometric modes
provide good independence in the θ-direction. We are still facing the problem that
high powers of r tend to be nearly linearly dependent. A more attractive basis than
monomials in r would be the Chebyshev polynomials. The relation between pure
powers and Chebyshev polynomials has the general form

r2j+p =

j
∑

ℓ=0

bℓT2ℓ+p(r), p = 0, 1, j = 0, 1, . . . ,

where the coefficients bℓ also depend on j and p. Explicit expressions can be found
in [29]. However, if we were to directly convert all powers by this formula, we would
increase the number of expansion functions at each level (except the first two), and
the counting would be off again. Instead we need to look at which combinations are
admissible. For the even powers of r, excluding the factor e−ε2r2 , the first four levels
are

ε0 r0

ε4 r2 r2 {cos(2θ), sin(2θ)}
ε8 r4 r4 {cos(2θ), sin(2θ)} r4 {cos(4θ), sin(4θ)}
ε12 r6 r6 {cos(2θ), sin(2θ)} r6 {cos(4θ), sin(4θ)} r6 {cos(6θ), sin(6θ)} .
The corresponding set for odd powers of r is

ε2 r1 {cos(θ), sin(θ)}
ε6 r3 {cos(θ), sin(θ)} r3 {cos(3θ), sin(3θ)}
ε10 r5 {cos(θ), sin(θ)} r5 {cos(3θ), sin(3θ)} r5 {cos(5θ), sin(5θ)} .
By factoring out the lowest power of r in each column and then converting the re-
maining powers, we arrive at a new set of expansion functions

ε0 T0
ε4 T2 r2T0 {cos(2θ), sin(2θ)}
ε8 T4 r2T2 {cos(2θ), sin(2θ)} r4T0 {cos(4θ), sin(4θ)}
ε12 T6 r2T4 {cos(2θ), sin(2θ)} r4T2 {cos(4θ), sin(4θ)} r6T0 {cos(6θ), sin(6θ)}
ε2 T1 {cos(θ), sin(θ)}
ε6 T3 {cos(θ), sin(θ)} r2T1 {cos(3θ), sin(3θ)}
ε10 T5 {cos(θ), sin(θ)} r2T3 {cos(3θ), sin(3θ)} r4T1 {cos(5θ), sin(5θ)} ,
where the expansion coefficients are now ε-dependent, but the counting for the leading
power of ε remains intact. As an example of how the conversion of a term with a
higher power of r to the Chebyshev basis does not introduce any new expansion
functions, consider the following example

ε12r6 cos(2θ) =
(

b3
{
ε12r2T4(r)

}
+ ε4b2

{
ε8r2T2(r)

}
+ ε8b1

{
ε4r2T0(r)

})

cos(2θ),

where the functions in all three terms can be found in the same column in the display
above, and where the lower order ones have extra powers of ε in the coefficient. Let
the new expansion functions be denoted by

{

T c
j,m(x) = e−ε2r2r2mTj−2m(r) cos((2m+ p)θ),

T s
j,m(x) = e−ε2r2r2mTj−2m(r) sin((2m+ p)θ), 2m+ p 6= 0,
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for j ≥ 0 and 0 ≤ m ≤ ⌊ j
2⌋ = j−p

2 , where p = 0 if j is even and p = 1 if j is odd.
Then we have an expansion of the Gaussian RBF that takes the general form

φk(x) = φ(‖x− xk‖) =
∞∑

j=0

j−p
2∑

m=0

dj,mcj,m(xk)T
c
j,m(x)

+

∞∑

j=0

j−p
2∑

m=1−p

dj,msj,m(xk)T
s
j,m(x), (4.13)

where the scale factor dj,m is O(ε2j) and chosen such that cj,m and sj,m are O(1).
For a brief derivation of the coefficients, see Appendix B. The scale factors are

dj,m =
ε2j

2j−2m−1
(
j+2m+p

2

)
!
(
j−2m−p

2

)
!
, (4.14)

and the coefficients are given by

cj,m(xk) = b2m+ptj−2m e−ε2r2k rjk cos((2m+ p)θk) 1F2(αj,m, βj,m, ε
4r2k), (4.15)

sj,m(xk) = b2m+ptj−2m e−ε2r2k rjk sin((2m+ p)θk) 1F2(αj,m, βj,m, ε
4r2k), (4.16)

where b0 = 1 and bm = 2, m > 0, t0 = 1
2 and tj = 1, j > 0, and the parameters for the

hypergeometric function are αj,m = j−2m+p+1
2 and βj,m =

[
j − 2m+ 1, j+2m+p+2

2

]
.

4.1.3. The final form of the expansions in the 1-D and 3-D cases. The 1-
D expansion is the simplest case, where we only need to convert powers into Chebyshev
polynomials. This leads to

φk(x) =
∞∑

j=0

djcj(xk) T̃j(x), (4.17)

with expansion functions

T̃j(x) = e−ε2x2

Tj(x). (4.18)

The scale factors and coefficients in this case are

dj =
2ε2j

j!
and cj(xk) = tje

−ε2x2
k xjk 0F1([ ], j + 1, ε4x2k). (4.19)

In 3-D, starting from (4.12), the final form becomes

φk(x) =

∞∑

j=0

j−p
2∑

m=0

dj,m

2m+p
∑

ν=−(2m+p)

cj,m,ν(xk)Tj,m,ν(x), (4.20)

with the spherical–Chebyshev expansion functions

Tj,m,ν(x) = e−ε2r2r2m Y ν
2m+p(θ, φ)Tj−2m(r), (4.21)

where the spherical coordinates are defined with θ as the co-latitude, i.e., θ = 0 at
the north pole, and

Y ν
µ (θ, φ) = P ν

µ (cos θ) cos(νφ), ν = 0, . . . , µ,
Y −ν
µ (θ, φ) = P ν

µ (cos θ) sin(νφ), ν = 1, . . . , µ,
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where P ν
µ (z) are the normalized associated Legendre functions. The scale factors are

dj,m = 23+p+4mε2j
( j+p+2m

2 )!

( j−p−2m
2 )!(j + 1 + p+ 2m)!

, (4.22)

and the coefficients become

cj,m,ν(xk) = tj−2m yν e
−ε2r2k rjk Y

ν
2m+p(θk, φk) 2F3(ρj,m, σj,m, ε

4r2k), (4.23)

where y0 = 1
2 and yν = 1, ν > 0, and the parameters to the hypergeometric function

are ρj,m =
[
j−2m+1

2 , j−2m+2
2

]
and σj,m =

[
j − 2m+ 1, j−2m−p+2

2 , j+2m+p+3
2

]
.

4.2. The RBF-QR algorithm in 2D expressed in matrix form. Consider
Gaussian RBFs centered at N different node points xk, k = 1, . . . , N evaluated at a
general point x = (x, y) = (r, θ). Then we have the relation






φ1(x)
...

φN (x)




 = C ·D ·














T c
0,0(x)
T c
1,0(x)
T s
1,0(x)
T c
2,0(x)
T c
2,1(x)
T s
2,1(x)
...














, or Φ(x) = C ·D · T (x),

where C is a rectangular matrix containing the coefficients cj,m and sj,m and D is a
diagonal matrix with the scaling coefficients dj,m. By QR-factorizing the coefficient
matrix C, we get the corresponding relation

Φ(x) = Q ·R ·D · T (x) = Q ·
[
R1 R2

]
[
D1 0
0 D2

]

· T (x)

= Q ·
[
R1D1 R2D2

]
· T (x),

where R1 is upper triangular and both R1 and D1 are N ×N .

The original basis {φk(x)}Nk=1 is not a good choice for small ε. We have chosen
the expansion functions Tj,m to be better conditioned and insensitive to the value of
ε. Accordingly, we want to change the basis to be more similar to the expansion func-
tions and we are allowed to take any linearly independent combination of {φk(x)}Nk=1

without changing the approximation space. We choose a new basis

Ψ(x) = D−1
1 R−1

1 QHΦ(x) =
[
I D−1

1 R−1
1 R2D2

]
· T (x) =

[

I R̃
]
· T (x),

which has a part exactly corresponding to the expansion functions plus a correction
part. The correction R̃ has to be computed with some care. First R−1

1 R2 is computed
through backward substitution. Then the scaling effects of D−1

1 and D2 should be
combined analytically to avoid over and/or underflow. All dangerous effects of the
leading powers of ε are contained in D1 and D2, but the resulting effect in R̃ is
harmless. Schematically, the elements are subjected to a scaling with the following
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block structure















...

O(ε4)
...

O(ε2) O(ε4) · · ·

O(ε0) O(ε2) O(ε4) · · ·















,

where the lowest power of ε is 0 (as above) or 2.

To interpolate or approximate data fj , given at locations y
j
, j = 1, . . . ,M , we

need to solve Aλ = f , where ai,j = ψj(yi). The matrix A is computed as

A = [Ψ(y
1
) · · ·Ψ(y

M
)]T = [T (y

1
) · · ·T (y

M
)]T

[
I

R̃T

]

= TT
1 + TT

2 R̃
T ,

where T1 contains the first N expansion functions evaluated at y
j
, j = 1, . . . ,M and

T2 the remaining expansion functions evaluated at the same locations. When we have
solved for λ the RBF approximant can be evaluated at any location x as

s(x, ε) = Ψ(x)Tλ.

The matrix versions of the RBF-QR algorithms in 1-D and and 3-D are completely
analogous to the 2-D case.

5. Numerical implementation. The RBF-QR algorithm can be implemented
in less than 100 lines of matlab code. Such an implementation for the 2-D case is
provided for reference in Appendix A. The basic steps in the algorithm are

1. Determine where to truncate the expansions of the RBFs.
2. Given {xk}Nk=1 and ε, form the matrix C. Also generate index vectors de-

scribing the scaling matrix D.
3. Factorize C = QR and then compute R̃.
4. Evaluate the expansion functions Tj,m at {xk}Nk=1 and compute the interpo-

lation matrix A.
5. Given data f , solve Aλ = f .
6. To find the solution at a point x, evaluate Ψ(x) using the expansion functions,

and form a linear combination using the coefficients λ.

There are some practical issues to consider in the implementation, and we briefly
comment on these here. First of all, the infinite expansion (4.13) must be truncated
at some j = jmax. The total number of terms retained, M , depends on jmax as

M =

(
jmax + d

d

)

, (5.1)

where d is the number of dimensions. The number of terms M is also the number
of columns in the matrix C, the size of the matrix D, and the number of rows in
T (x). The truncation is based on the scaling applied to the correction matrix R̃. This
scaling consists of a multiplication by D−1

1 from the left and by D2 from the right.
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Fig. 5.1. The number of expansion terms M as a function of N (left) and ε (right) in 2-D.
Solid lines correspond to double precision and dash-dot lines correspond to quad precision. To the
left, ε = 0.01, 0.1, 1, and 2 for double precision (bottom to top) and ε = 2 for quad precision. The
dashed line shows M = N . To the right N = 400, 800, and 1600.

The truncation point is determined in such a way that the compound scaling of the
largest element in the truncated part is less than the machine precision δM , i.e.,

max
i>M

Dii

min
1≤i≤N

Dii

< δM . (5.2)

Formulas for finding jmax are provided in Appendix B. The validity of the truncation
has been tested numerically and the given formulas were found to accurately predict
which terms influence the final result. Figure 5.1 shows how the number of terms M
depends of N and ε in 2-D.

Another practical issue arises because the Chebyshev polynomials are defined for
r ∈ [−1, 1]. Therefore, the computational domain under consideration must be scaled
in such a way that both node points and evaluation points fall within [−1, 1] in 1-D,
the unit disk in 2-D and the unit sphere in 3-D. In the provided reference code, we
assume that this scaling has been performed beforehand. Furthermore, we assume
that the point locations are given in polar coordinates.

For Gaussian RBFs, the limit interpolant as the shape parameter ε → 0 exists for
any distinct set of node points [9], [27]. However, the polar–Chebyshev expansion in
2-D and the spherical–Chebyshev expansion in 3-D can lead to a singular interpolation
matrix for certain (non-unisolvent) node configurations, such as all points on a line
(see [14] for examples like this for other types of RBFs). However, this problem
can be overcome by including “selective” column pivoting in the QR-factorization.
Selective indicates that we preserve the order of the basis functions as far as possible,
since the ordering is linked to the magnitude of the scaling coefficients in the matrix
D. Furthermore, we can only replace columns that are exactly linearly dependent.
Otherwise, the remaining small non-zero components in the corresponding column in
R̃ are scaled with a negative power of ε, causing divergence as ε→ 0. Determining a
criterion for exact linear dependence in floating point arithmetic is a delicate problem
and this is not included in the matlab-code provided here. A version with pivoting
(significantly slower due to an extra for-loop) can be downloaded from the second
author’s web site. It should be noted that non-unisolvent node configurations are
rare unless the node points are based on some special structure.
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6. Numerical experiments. In this section, we present computational results
for the RBF-QR method. We will first cover node clustering, which is shown to have
a significant influence on the performance for large N . Then the RBF-QR approach is
compared with RBF-Direct, and finally we give some examples of the computational
cost for using RBF-QR.

The numerical experiments in 1-D and 3-D are performed in matlab. For the 2-D
algorithm, a Fortran 90 implementation was used, which enabled us to run tests both
with double (64 bit) and quad (128 bit) floating point precision. Comparisons are
performed against the RBF-Direct method and also the Contour-Padé approach [13],
which was the first method allowing stable computation for small ε.

In order to display the stability and accuracy of the respective methods, a number
of smooth test functions have been selected. Even though the methods work also for
less smooth functions, these have been excluded since for these it is rarely advanta-
geous to use small ε, which is the shape parameter range we are addressing here. The
first function is constant and then the amount of variation is gradually increased. All
function values lie within the range [−1, 1]. For experiments in 1-D and 2-D, the
functions are evaluated with y = z = 0 or z = 0 respectively. The functions are

f1(x, y, z) = 1,

f2(x, y, z) =
165

165 + (x− 0.2)3 + 2(y + 0.1)3 + 0.5z3
,

f3(x, y, z) = exp(−(x− 0.1)2 − 0.5y2 + 2z2),

f4(x, y, z) = sin(x2 + 2y2)− sin(2x2 + (y − 0.5)2 + z2),

f5(x, y, z) = sin(2π(x− y − 0.5z)),

f6(x, y, z) = sin(2π(x2 + 2y2))− sin(2π(2x2 + (y − 0.5)2 + z2)).

Figure 6.1 shows f1–f6 evaluated over the unit disc (z = 0).
Errors are evaluated in maximum norm at a uniform/polar/spherical grid not

coinciding with the node points. As an example, in 2-D, we have used polar grids
with Nr = 15, 20 or 30 points uniformly distributed in the radial direction using
rk = 2k−1

2 h, k = 1, . . . , Nr with h = 2
2Nr−1 , and Nθ = 40, 60 or 80 points uniformly

distributed in the angular direction. No significant differences in the experimental
results were observed for the different choices of evaluation grids.

For those experiments in 2-D where the computational domain is not the unit
disc, the evaluation points are restricted to fall within the computational domain Ω.
Hence, the displayed results approximate the error

E(ε) = max
x∈Ω

|s(x, ε)− f(x)|.

6.1. Node clustering and convergence with N . The starting point for the
discussions of this section are the theoretical results given by Platte, Trefethen, and
Kuijlaars in [23]. The authors prove that an approximation procedure with exponen-
tial convergence for analytic functions, involving uniform node locations, inevitably
must lead to exponential ill-conditioning in terms of N .

6.1.1. The one-dimensional case. If we consider RBF approximation in the
1-D case, the exponential convergence is there in theory, both for RBF-Direct [22],
[30] and RBF-QR, which are different algorithms to compute the same approxima-
tion. The proof in [23] is given for uniform nodes, but in the discussion section, the
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Fig. 6.1. The test functions f1(x) to f6(x).

authors argue that the same principle should hold also for quasi-uniform node dis-
tributions. The left part of Figure 6.2, where increasing numbers of (quasi-uniform)
Halton points [18] are used for interpolation in 1-D, illustrates the result. Errors go
down exponentially with N as far as the conditioning allows and then grow exponen-
tially. The exponentially growing part closely matches the loss of accuracy predicted
by the conditioning of the expansion function matrix.

By replacing the node points xk in the Halton sequence with

x̃k = sin(πxk/2),

we get node points that are clustered similarly to Chebyshev points without being
restricted to specific locations. The result for clustered node points is shown in the
right part of Figure 6.2. In this case, convergence is limited only by the machine
precision. The plot stops at N = 60, but when the same experiment is run for
N = 1000, the errors are still not more than 10−13.
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Fig. 6.2. Interpolation over the interval [−1, 1] of f1–f6 using the RBF-QR approach with

Halton points xk (left), and clustered Halton points x̃k (right). The shape parameter was here
ε = 0.1.

6.1.2. The two-dimensional case. Moving to 2-D, the question of how to
cluster arises. Should clustering be connected with the expansion functions, which
are Chebyshev polynomials in the radial direction and trigonometric functions in the
angular direction, or should the clustering depend only on the computational domain?
For the unit disc, either viewpoint leads to the conclusion that clustering is needed
in the radial direction. Note that, if we conceptually (no practical difference) view
the polar coordinates as r ∈ [−1, 1] across the unit disc and θ ∈ [0, π], it is apparent
that clustering is needed only at the boundary (not at the origin). Starting from
(Cartesian) Halton points restricted to the unit disc, switching to polar coordinates,
and then modifying the radial coordinate as

r̃k = sin(πrk/2),

we arrive at the node set used in Figure 6.3. The left and right subfigures show results
for two different values of the shape parameter. The shape parameter does affect the
size of the error, but the qualitative behavior of the RBF-QR method is similar. The
figures show that clustering allows us to compute highly accurate interpolation results
for large numbers of points. However, even without clustering, we can for example
solve for N = 200 nodes with an accuracy of 10−12. This is relevant for methods
relying on local RBF approximations, where clustering might not be an option.

For the second 2-D experiment, we have chosen a domain that is far from circular.
The boundaries of the domain are given by the unit circle and the condition 0 ≤
(x−1.2)2−4y2 ≤ 1. The shape of the domain is shown in the right part of Figure 6.4.
The first question to answer is how RBF-QR works when the domain does not coincide
with the unit disc over which the expansion functions are defined. In the left part of
Figure 6.4, the interpolation results for regular and clustered Halton nodes are shown.
In both cases the performance is comparable to the results for the unit disc.

For the clustering, we explored different approaches. Clustering according to the
expansion functions, i.e., as for the unit disc is not the right approach, but it does
reduce the error to about 10−4 for large N , perhaps because some of the boundaries
are at the edge of the unit disc. Next, we tried an ad hoc clustering based on the
hyperbolic curves (x−1.2)2−4y2 = c2 and constant angle measured from an off center
location. This gave good results in most parts of the domain, but it did not treat
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Fig. 6.3. Interpolation over the unit disc using RBF-QR with Halton nodes (dashed lines) and
radially clustered Halton nodes (solid lines). Errors as a function of N are shown for test functions
f1(x, y) (◦), f4(x, y) (⋄), and f6(x, y) (⋆). The horizontal axis is linear in

√
N (the one-dimensional

resolution).

the three locations where the unit circle constitutes the boundary properly. Hence,
the errors were large there and the overall maximum norm of the error, although
lower than in the previous case for intermediate values of N , was again of order 10−4

at 3200 nodes. The third approach was successful and corresponds to the result in
Figure 6.4. We introduce a coordinate system, shown in the figure, such that all
domain boundaries coincide with coordinate lines. This is based on an arc length
parameterization along the domain and the hyperbolic constant c2 across, with a
slight modification to accommodate the area around (r, θ) = (1, 0). Then clustering
is performed as before in both of these coordinates.

The conclusion from these experiments is that as long as we can come up with a
measure of distance to the boundary and direction to the boundary, where all bound-
ary segments are included, clustering can be completely successful also for irregularly
shaped domains.
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Fig. 6.4. The left subfigure shows interpolation errors when using RBF-QR with Halton nodes
(dashed lines) and hyperbolically clustered Halton nodes (solid lines). Errors as a function of N are
shown for test functions f1(x, y) (◦), f4(x, y) (⋄), and f6(x, y) (⋆). The horizontal axis is linear
in

√
N . The right subfigure shows the computational domain and the coordinate lines used for

clustering nodes.
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6.1.3. The three-dimensional case. Figure 6.5 shows results for clustered and
quasi-uniform nodes in 3-D. The deterioration in the quasi-uniform case is notably
smaller than in 1-D and 2-D. For the unit disc and the unit sphere, the potential
ill-conditioning arises from the radial direction (the angular directions are periodic).
Using N = 20 points in 1-D corresponds to polynomial degree K = 19. For the
corresponding degree in 2-D and 3-D, we need N = 210 and N = 1540 points respec-
tively. Comparing these N -values in Figures 6.2, 6.3, and 6.5 shows that the accuracy
is similar and around 10−12. Hence, in 3-D, we can solve for very large numbers of
points, both with regular nodes and clustered nodes.
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Fig. 6.5. Interpolation inside the unit sphere using RBF-QR with Halton nodes (dashed lines)
and radially clustered Halton nodes (solid lines). Errors as a function of N are shown for test
functions f1(x, y) (◦), f4(x, y) (⋄), and f6(x, y) (⋆). The horizontal axis is linear in 3

√
N (the

one-dimensional resolution).

6.2. Comparisons between RBF-QR and RBF-Direct and convergence

with ε. In this section, we limit the investigations to the 2-D case. However, the
results are similar also in 1-D and 3-D. In the previous section, we established that
clustering nodes improves the numerical stability of interpolation with RBF-QR sig-
nificantly. Figure 6.6 shows that for RBF-Direct, the error behaviors for quasi-uniform
compared with clustered nodes are similar. As can be seen in the left subfigure, for
RBF-Direct, the error as a function of N levels off after the point where the inter-
polant can no longer be stably computed. This is a property that we have observed
consistently in all numerical experiments that we have performed here. Even though
the condition number of the interpolation matrix grows with N [16], the final result
corresponds to the best stable result for that particular choice of ε.

Using higher precision arithmetic can mitigate the effects of ill-conditioning to
some extent. In the following experiment, we compare the results for RBF-QR and
RBF-Direct using double and quad precision. Figure 6.7 shows results for a fixed N
and a range of ε-values. For large ε, RBF-QR and RBF-Direct give the same results,
whereas for small ε, RBF-Direct fails to produce meaningful results unless f(x) is
constant. In the implementation we used, the machine precision is of order 10−16 for
double and 10−34 for quad precision, i.e., the difference is 18 orders of magnitude.

The constant function is the only case where the actual error is smaller than the
quad machine precision. There, we can in fact observe a difference of 18 orders of
magnitude in the error between double and quad precision for RBF-QR. For RBF-
Direct, the difference in error is only about 9 orders of magnitude, even though the
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Fig. 6.6. Interpolation over the unit disc for RBF-QR (solid lines) and RBF-Direct (dashed
lines) using Halton nodes (◦) and radially clustered Halton nodes (⋄) for the test function f2(x).
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Fig. 6.7. Interpolation errors as a function of ε using RBF-QR (solid lines) and RBF-Direct
(dashed lines) for functions f1, f2, f3, and f5. In all cases N = 402 was used. For each method,
results computed in double (larger errors) and quad precision (smaller errors) are shown. All results
were computed using radially clustered Halton nodes. Note that for f5(x), the double and quad
precision results using RBF-QR are indistinguishable.

increase in precision is the same. This is a result of the severe ε-dependence of the
conditioning of the interpolation matrix for RBF-Direct. For N = 402 points in 2-
D, the condition number is proportional to ε−54 [16]. Accordingly, RBF-Direct can
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only trace the actual error curve up to a certain point, and the obtainable accuracy
depends on where this point is in relation to the best ε-value. The conclusion to draw
from this is that because RBF-QR is uniformly stable for all small ε-values it pays
off to increase the precision, but for RBF-Direct, it would be too costly to increase
the precision to counteract the ill-conditioning when ε is decreased. Furthermore, for
RBF-Direct, the growth rate of the condition number in terms of ε increases with N .

6.3. Computational cost. All timings are performed using the Fortran 90 im-
plementation of the 2-D algorithm. Figure 6.8 illustrates the computational cost of
RBF-QR compared with RBF-Direct and Contour-Padé. The left subfigure shows
that the computational cost grows as N3 as expected with direct matrix factoriza-
tions. For ε = 0 the cost of the RBF-QR method approaches 3 times the cost of
RBF-Direct, which is also expected. Both methods perform an LU-factorization and
RBF-QR performs an additional QR-factorization, which is twice the cost of an LU-
factorization. For ε = 0.1 the cost is approximately 5 times larger and for ε = 1 it is
7.6 times larger, asymptotically. The cpu-times shown are for quad precision compu-
tations. The ratios would be smaller in double precision since the number of columns
used by the RBF-QR methods grows with precision. On the specific computer we
used, quad precision arithmetic was emulated in software, making it about 70 times
slower than double precision arithmetic. When available in hardware, a speed ratio
of 4 would be more typical. With the problem sizes under consideration, it was still
feasible to use. Furthermore, the evaluation matrices can be precomputed and stored
for repeated use.

The right subfigure shows how the computational cost depends on the shape
parameter. All times are normalized against the cost for RBF-Direct using the same
precision. The Contour-Padé method [13] can only be used for small ε and N up to
about 70. It has a large initial cost, but evaluating for many ε-values is almost free
as indicated by the differing times per ε-value when computing for 100 values and
for only one value. The cost of RBF-QR grows with ε, but the growth is much less
pronounced for larger N and for double precision.
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Fig. 6.8. In the left subfigure, the dashed line indicates the slope of an O(N3) algorithm. The
cpu-time for RBF-Direct (◦) and RBF-QR (×) for ε = 0, 0.1, 1 (bottom to top) are shown. The
right subfigure shows the cost per ε-value to compute an interpolant using different algorithms as a
function of ε. The costs are scaled so that an RBF-Direct solve in the same precision has unit cost.

7. Conclusions. We have derived an RBF-QR method for interpolation or ap-
proximation with Gaussian RBFs in up to three space dimensions.
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The algorithm is numerically stable for small shape parameters, all the way to
ε = 0. The conditioning of the interpolation matrix grows with the problem size N
if nodes are uniformly distributed. However, the growth is less pronounced in higher
dimensions. If nodes are instead clustered towards the boundary, RBF-QR can be
used for problem sizes in the thousands without any significant loss of accuracy.

The algorithm is not very sensitive to the shape of the computational domain,
but in order to avoid ill-conditioning for larger N clustering towards the (irregular)
boundary must be performed. In the case of non-unisolvent node layouts, the algo-
rithm must be modified to include column pivoting.

The computational cost is higher than for RBF-Direct, but only by a factor that
is asymptotically independent of N and is decreasing when ε → 0. In the range of
intermediate to large values of N , RBF-QR is currently the only numerical algorithm
that can deliver an accurate result for small ε.

The RBF-QR method opens up new possibilities for all methods based on local
RBF approximation, such as RBF domain decomposition methods [1], [21] and RBF-
generated scattered node finite differences [10], [25], [26], [28], [31], since it is now
possible to compute for the best shape parameter value even if it lies in the small ε
regime.

Appendix A. MATLAB code for the RBF-QR algorithm in 2-D. The
following is a 100 line sample matlab code implementing the 2-D case of the RBF-
QR algorithm. Implementations of RBF-QR in 1-D, 2-D and 3-D together with
sample driver routines and subroutines for hypergeometric functions will be available
for downloading from the second author’s web site.
function [u]=RBF_QR_2D(ep,xk,xe,f)

%--- ep (scalar) : The shape parameter

%--- xk(1:N,1:2) : The center points in polar coordinates (r_k,theta_k)

%--- xe(1:Ne,1:2) : The evaluation points in polar coordinates

%--- f(1:N,1:Nf) : The data to interpolate, Nf different functions

%--- u(1:Ne,1:Nf) : The RBF interpolant evaluated at xe for each function

N = size(xk,1); Ne = size(xe,1);

mp = eps; % machine precision

%--- Find out how many columns are needed. (jN+1)(jN+2)/2=N

jN=ceil(-3/2+sqrt(9/4+2*N-2));

jmax = 1; ratio = ep^2/2;

while (jmax<jN & ratio > 1) % See if d_00 is smaller

jmax = jmax + 1;

ratio = ep^2/(jmax+mod(jmax,2))*ratio;

end

if (ratio < 1)

jmax = jN; ratio = 1;

end

ratio = ep^2/(jmax+1+mod(jmax+1,2))*ratio; % Look one step ahead

while (ratio*exp(0.223*(jmax+1)+0.212*(1-3.097*mod(jmax+1,2))) > mp)

jmax = jmax + 1;

ratio = ep^2/(jmax+1+mod(jmax+1,2))*ratio;

end

j = zeros(0,1); m=zeros(0,1); p=zeros(0,1); odd=1;

for k=0:jmax

odd = 1-odd;

j = [j; k*ones(k+1,1)]; p = [p; odd*ones(k+1,1)];

q(1:2:k+1,1) = (0:(k-odd)/2)’; q(2:2:k+1,1) = ((1-odd):(k-odd)/2)’;

m = [m;q(1:k+1)];
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end

co_si = zeros(size(j));

pos = find(2*m+p>0);

co_si(pos(1:2:end))=1; co_si(pos(2:2:end))=2;

%--- Precompute T_j(r), cos/sin(m*theta), and powers of r

%--- Note the usage of outer products in the arguments

Tk = cos(acos(xk(:,1))*(0:jmax)); Te = cos(acos(xe(:,1))*(0:jmax));

Hkc = cos(xk(:,2)*(1:jmax)); Hec = cos(xe(:,2)*(1:jmax));

Hks = sin(xk(:,2)*(1:jmax)); Hes = sin(xe(:,2)*(1:jmax));

Pk = ones(N,jmax+1);

for k=1:jmax

Pk(:,k+1) = xk(:,1).*Pk(:,k);

end

re2 = xe(:,1).^2; % Only even powers are needed for evaluation points

Pe = ones(Ne,(jmax-p(end))/2+1);

for k=1:(jmax-p(end))/2

Pe(:,k+1) = re2.*Pe(:,k);

end

%--- Compute the coefficient matrix

M = length(j);

rscale = exp(-ep^2*xk(:,1).^2); % Row scaling of C = exp(-ep^2*r_k^2)

cscale = 2*ones(1,M); % Column scaling of C = b_{2m+p}t_{j-2m}

pos = find(2*m+p == 0); cscale(pos) = 0.5*cscale(pos);

pos = find(j-2*m == 0); cscale(pos) = 0.5*cscale(pos);

C = Pk(:,j+1); % The powers of r_k and then the trig part

pos = find(co_si == 1); C(:,pos) = C(:,pos).*Hkc(:,2*m(pos)+p(pos));

pos = find(co_si == 2); C(:,pos) = C(:,pos).*Hks(:,2*m(pos)+p(pos));

C = C.*(rscale*cscale);

a = (j-2*m+p+1)/2; b=[j-2*m+1 (j+2*m+p+2)/2];

z = ep.^4*xk(:,1).^2;

for k=1:M

C(:,k) = C(:,k).*hypergeom(a(k),b(k,:),z);

end

%--- QR-factorize the coefficient matrix and compute \tilde{R}

[Q,R] = qr(C);

Rt = R(1:N,1:N)\R(1:N,N+1:M);

p1 = (1:N); p2 = (N+1):M; [pp2,pp1]=meshgrid(p2,p1);

if (M>N)

D = EvalD(ep,pp1,pp2,j,m,p);

Rt = D.*Rt;

end

%--- Evaluate the basis functions and compute the interpolation matrix.

V = exp(-ep^2*xk(:,1).^2)*ones(1,M).*Pk(:,2*m+1).*Tk(:,j-2*m+1);

pos = find(co_si == 1); V(:,pos) = V(:,pos).*Hkc(:,2*m(pos)+p(pos));

pos = find(co_si == 2); V(:,pos) = V(:,pos).*Hks(:,2*m(pos)+p(pos));

A = V(:,1:N) + V(:,N+1:M)*Rt.’;

%--- Solve the interpolation problem to obtain the coefficients lambda

lambda = A\f;

%--- Compute basis functions at evaluation points

Ve = exp(-ep^2*xe(:,1).^2)*ones(1,M).*Pe(:,m+1).*Te(:,j-2*m+1);

pos = find(co_si == 1); Ve(:,pos) = Ve(:,pos).*Hec(:,2*m(pos)+p(pos));

pos = find(co_si == 2); Ve(:,pos) = Ve(:,pos).*Hes(:,2*m(pos)+p(pos));

%--- Evaluate the solution

B = Ve(:,1:N) + Ve(:,N+1:M)*Rt.’;
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u = B*lambda;

function D=EvalD(ep,p1,p2,j,m,p)

%--- Compute the scaling effect of D_1^{-1} and D_2

sz = size(p1);

p1 = p1(:); p2 = p2(:);

D = ep.^(2*(j(p2)-j(p1)))./2.^(j(p2)-j(p1)-2*(m(p2)-m(p1)));

f1 = (j(p2)+2*m(p2)+p(p2))/2; f2 = (j(p2)-2*m(p2)-p(p2))/2;

f3 = (j(p1)+2*m(p1)+p(p1))/2; f4 = (j(p1)-2*m(p1)-p(p1))/2;

for k=1:length(D)

v1 = sort([(f1(k)+1):f3(k) (f2(k)+1):f4(k)]);

v2 = sort([(f3(k)+1):f1(k) (f4(k)+1):f2(k)]);

l1 = length(v1); l2 = length(v2);

v1 = [ones(1,l2-l1) v1]; v2 = [ones(1,l1-l2) v2];

D(k) = D(k)*prod(v1./v2);

end

D = reshape(D,sz);

Appendix B. Expansion and truncation details.. Here, we will briefly
describe the steps in deriving the final expansion of the Gaussian RBFs in the 2-D
case. Then we provide rules for truncating the expansions in the 1-D, 2-D, and 3-D
case.

B.1. Expansion steps. Starting from (4.5), we first expand the powers of the
scalar product in polar coordinates, x = (r, θ),

(x · xk)j = rjrjk cos
j(θ − θk) =

rjrjk
2j

j−p
2∑

m=0

(
j

j+p+2m
2

)

b2m+pΘ2m+p
︸ ︷︷ ︸

Θ̃2m+p

, (B.1)

where p = 0 if j is even and 1 otherwise, bm = 1 if m = 0 and 2 otherwise, and
Θm = cos(mθ) cos(mθk) + sin(mθ) sin(mθk) as in Equation (4.10). The next step is
to partially convert powers of r to Chebyshev polynomials as described in section 4.1.2.

rjΘ2m+p =
r2mΘ2m+p

2j−2m−1

j−p−2m
2∑

ℓ=0

(
j − 2m

ℓ

)

tj−2m−2ℓTj−2m−2ℓ(r)
︸ ︷︷ ︸

T̃j−2m−2ℓ(r)

, (B.2)

where tm = 1
2 if m = 0 and 1 otherwise. We define the scale factors

dj,m =
ε2j

2j−2m−1
(
j+2m+p

2

)
!
(
j−2m−p

2

)
!
, (B.3)

and then use them together with (B.1) and (B.2) inserted into (4.5) to get

e2ε
2(x·xk) =

∞∑

j=0

rjk

j−p
2∑

m=0

dj,mr
2mΘ̃2m+p

j−p−2m
2∑

ℓ=0

(
j − 2m

ℓ

)

T̃j−2m−2ℓ(r)

=

∞∑

j=0

rjk

j−p
2∑

m=0

dj,mr
2mΘ̃2m+pT̃j−2m(r)

∞∑

ℓ=0

dj+2ℓ,m

dj,m
r2ℓk

(
j − 2m+ 2ℓ

ℓ

)

,
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By noting that the final sum has the form of a standard Taylor expansion of a 1F2

hypergeometric function and rearranging the factors, it can be verified that it is equal
to 1F2(α, β, ε

4r2k), where α = j−2m+p+1
2 and β =

(
j − 2m+ 1, j+2m+p+2

2

)
. This

hypergeometric function can be computed either through its (rapidly converging)
series expansion or by using a library subroutine.

By going back to (4.4) and inserting the derived expression, we arrive at the final
expansion of the Gaussian RBF

ψ(x, xk) =
∞∑

j=0

j−p
2∑

m=0

dj,me
−ε2(xk·xk)rjk 1F2(α, β, ε

4r2k)
(

e−ε2(x·x)r2mT̃j−2m(r)Θ̃2m+p

)

.

The remaining step is to extract the coefficients, given in (4.15) and (4.16), which
should be O(1) assuming the scale factors were appropriately chosen.

B.2. Truncation rules. As briefly indicated in Section 5, truncation of the
expansions is carried out in terms of j and based on the magnitude of the scaling
coefficients. For more than one dimension, we need to consider the variation within
each block with fixed j. We have

min
0≤m≤ j−p

2

dj,m = dj,0 =







ε2j

2j−1( j+p
2 )!( j−p

2 )!
in 2-D,

23+pε2j( j+p
2 )!

( j−p
2 )!(j+p+1)!

in 3-D.

If ε is small enough, the scale factors dj or dj,0 are monotonically decreasing with j.
The limits are ε ≤ 1 in 1-D, ε ≤

√
2 in 2-D, and ε ≤ 4

√
6 in 3-D. Otherwise, there is

a local maximum leading to

min
1≤i≤N

Dii =







min(d0, djN ) = min(1, djN ) in 1-D,
min(d0,0, djN ,0) = min(2, djN ,0) in 2-D,
min(d0,0, djN ,0) = min(8, djN ,0) in 3-D,

where jN indicates the block containing the Nth column. In order to test a block
to determine if it is significant, we also need the largest scaling factor in that block.
These are well approximated by the following expressions

max
0≤m≤ j−p

2

dj,m ≈
{
e0.223j+0.212−0.657p dj,0 in 2-D,
e0.223j−0.012−0.649p dj,0 in 3-D.

Based on these relations, truncation is performed according to criterion (5.2) to obtain
jmax.
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