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A NUMERICAL METHOD FOR CONFORMAL MAPPINGS*

BENGT FORNBERG?

Abstract. A numertical technique is presented for calculating the Taylor coefficients of the analytic
function which maps the unit circle onto a region bounded by any smooth simply connected curve. The
method 1nvolves a quadratically convergent outer iteration and a super-linearly convergent inner iteration.
If N complex points are distributed equidistantly around the periphery of the unit circle, their images on the
edge of the mapped region, together with approximations for the N /2 first Taylor coefficients, are obtained
in O{ Nlog N) operations. A calculation of time-dependent waves on deep water is discussed as an example
of the potential applications of the method.
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1. Introduction. A large number of numerical methods have been proposed for
calculating approximations to the unique mapping which is described in the Riemann
mapping theorem. We will consider the problem of finding the leading Taylor
coefficients in a mapping from the unit circle to a given simply connected domain
bounded by a smooth curve J.

A book by Gaier (3] gives detailed descriptions of the methods known in 1964.
The introduction of the Fast Fourier Transform algorithm (FFT) shortly afterwards
(Cooley and Tukey [2], 1965) made possible dramatic increases in the efficiency of
some of these methods (Henrici [7]). The most important of the currently used
methods seem to be different approximations of Theodorsen’s integral equation
(Henrici [7], Gutknecht [4), [5]), Symm’s method (Symm (10}, Henrici [7], Hayes et al.
[6]), a method based on numerical solution of the Cauchy-Riemann equations in
conjunction with optimization techniques (Chakravarthy and Anderson [1]) and a
method based on some new integral equations (Menikoff and Zemack {9D). Theodor-
sen’s method 1s limited to regions which have single-valued representations in polar
coordinates. For almost all such regions, good performance also requires estimates for
certain relaxation parameters. The position of the N points on a fixed curve J, which
correspond to the N roots of unity in the mapping from the unit circle, can be found
in O(Nlog N ) operations. However, the proportionality constant depends strongly on
the shape of J. Symm’s method has a similar operation count for stmple regions, but
in addition, allows general regions with an increase in operation count to O(N*)
(Hayes et al. [6]). The method of Chakravarthy and Anderson [1] requires O(N g
operations if a Newton optimization technique is used, but may go somewhat faster
with an alternative conjugate gradient procedure. The method by Menikoff and
Zemach also costs O(N3) operations, but it allows an arbitrary distribution of the

computational points on the boundary.
Most of the methods address the problem of finding a mapping to or from a unit

circle. They establish first the mapping of the boundaries. From this follows then the
complete mapping function. The method we will present produces approximations to
the Taylor coefficients in the mapping from the unit circle onto the given region at the
same time as it finds the boundary correspondence. For this reason, we will describe it
as a method to map the unit circle onto a given region rather than a method for the

*Received by the editors January 24, 1980. This research was supported by Control Data Corporation
and by the U.S. Department of Energy Office of Basic Energy Sciences.
"Department of Applied Mathematics, California Institute of Technology, Pasadena, California 91125.

386



A NUMERICAL METHOD FOR CONFORMAL MAPPINGS 387

inverse mapping. The method has an operation count of O(Nlog N) for the general
case, 1.e.. without any restrictions on the region to be “near-circular” or “starshaped.”
The convergence rate appears to be only weakly affected by the complexity of the
region and no parameters are required to optimize the performance. Before we
describe the idea of the method, we will briefly illustrate some possible ill-conditioning
of the mapping problem and mention the application in fluid mechanics for which
this method was onginally developed.

Fig. | illustrates a typical case of mapping from the unit circle to a simple region
(descrided in the last section as test case 1 with a=.5). It transpires in this case that
more than 8000 Taylor coefficients of the mapping function are needed to obtain the
mapping with a 10 ~® accuracy. This in turn requires N, the number of points on the
periphery, to exceed 16,000. The density of the mapped points (uniform on the unit
circle) varies by as much as a factor of 400 along different parts of the edge. Very
small changes in the shape of the region will quite dramatically change the position of
some boundary points. It is clear that conformal mapping is an ill-conditioned
problem. One might try to avoid part of this difficulty by looking for a more
economical functional representation of the mapping function than a Taylor series.
Simply moving the origin would help the economy in this case, but would not help in
many others. For example, in cases of fixed shapes like airfoils, initial explicit
transforms can be used to first remove a corner or a cusp. A preliminary sequence of
transformations, for example with square root branch potints just outside indentations
in J, may be useful to make the region closer to a circle. Even with the implementa-
tion of such preliminary steps we must at some stage find the remaining mapping
between a near-circular region and a perfect circle.

Applications of conformal mappings include generation of computational grids
and simplifications of geometries for analytical work (for, example, to find electrical
fields or potential flows around bodies). Which method is most suitable depends on
the application, in particular on the type of geometry (with or without corners,
near-circular shape or not, etc.) and the importance of computational efficiency
(mapping performed only once or performed repeatedly). The mapping method
described in this paper was developed particularly for the calculation of time-
dependent waves on inviscid and irrotational deep water. We consider a periodic
section of deep water, as shown to the left in a complex z=x+iy -plane in Fig. 2, and
introduce a velocity potential ¢(x, y, ¢) such that ¢_and ¢, are the x- and y-velocities

{ - plane

FiG 1. Example of conformal mapping.
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F1G 2. The steps in a conformal mapping of a wavy surface on deep water 10 a fixed, flas surface.

of the fluid elements. The governing equation is

a2 32 )
1 + =0,
(1) ( RPN ¢
inside the fluid, with two conditions on the free surface. One is
d
2) Gr=—o (sl +4)),

(where g 1s a gravity constant) and the other one expresses the fact that fluid elements
on the surface remain on the surface. Fig. 2 illustrates how, at any step in 2 numerical
time marching, the wavy surface can be mapped to a flat one, leaving the form of (1)
unchanged. The denvatives ¢, and ¢,, required for a time step, can now be obtained
casily. In one test calculation, a second order modified Euler scheme was used to
advance a uniformly traveling periodic wavetrain five periods in space. The initial
condition was a Stokes’ wave with height over wavelength .09083 (cf. maximal wave
.14107) and a theorectical speed of 1.04155. Fig. 3 shows the solution at time
t=30.1628 superposed on the nitial wave. The very small discrepancy between the
curves at the top of the wave is caused by graphical straight line interpolation between

the 32 points used for the spatial discretization.

N
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Fi1G 3. The initial shape of a Stoke’s wave compared with the calculated shape and position after five periods.

(Spaticl resolution 32 points.)
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The 1dea of the mapping method can be described as follows: we introduce N
complex points {; ordered monotonically along the boundary curve J. The problem is
to find a strategy for moving these points along J so that. through the unique mapping
(which is unknown to us), they will come to correspond to the N roots of unity Z; on
the unit circle. For each guess of the positions of the points { . an analytic function

N/2
(3) ()= X dz
p=—(N/2}+1

1s mtroduced. The coefficients d, are obtained from a complex discrete Fourier
transform applied to the numbers .. The function {(z) becomes one particular case of
an analytic function which maps the points z; 1nto the points {, on J. However, this
function {(z) is in general singular for z=0. This is an unacceptable property of a
mapping function which is required to satisfy {(0)=0. We will describe a quadrati-
cally convergent strategy to move all the points ¢, along the curve J in such a way that
the function {(z) loses its singularities inside the unit circle and will satisfy {(0)=0. In
other words, we will make d,=0 for ¥=0, —1,-2,..., ~N/2+1. The coefficients o,
for »=1,2,3,..., N/2 will then approximate the Taylor coefficients of the mapping
function. Each step in this process gives rise to a linear problem which is solved by a
(super-linearly converging) conjugate gradient iteration.

This mapping method has been coded in vectorized Fortran on a CDC STAR- 100
computer (located at the Control Data Corporation Service Center in Arden Hills,
Minnesota). We wish to express our gratitude to Control Data Corporation for
making their STAR- 100 computer system available for this work.

2. Description of the outer iteration. The boundary curve J is assumed to be
smooth, simply connected and enclosing the origin in a complex plane. Since J is
smooth, the true mapping function £&z) can be represented by a convergent Taylor
series as |

(4) £(z)= § c,z”, 1z} S 1.

p=1
(We denote by {(z) the approximate mapping function we will determine). One more
condition than £(0)=0 (and {(0)=0) is needed to uniquely determine the mapping.
The condition 3£{/3z>0 is often used. We will instead require that {(l) lies at a
specified point on J. For values of z on the unit circle, i.e., 2(B)=e*"? 0Z8Z 1, (@)
becomes

(5) z(0)= S cer,

p=]

~This is called the “boundary correspondence function,” a uniquely determined peri-
odic function of #. We consider now (5) at the §—values . =k/N, k=0,1,... N—1,
and suppose that N is even (N a power of 2 is most efficient and will be assumed in
our operation count). We get

N2 N/2
(6) E=8z00))= 2  gemN= N gy
p=—(N/2)+1 o —(N/2)+1
where w = ¢2™/¥ and

(7) B, = E Cyt i

F=0
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defining ¢, =0 for »< 0. The error in accepting g, as an approximation for c, is

= &
(8) E,— ¢~ 2 Er+jN‘
=1

N can now be chosen so large that these errors for y=1,2,...,N/2 are within our

tolerance.
The discrete Fourner transform in (6) can be inverted

I "&S ; N N
—_— Ekatd =—-—-——-—-—+ . . n ——
(%) 5= N Eog“w I B

Hence, given the positions for the N points £, , we obtain all the coefficients g, by
applying one FFT. By choosing N sufficiently large, the values of g, »=—N/2+
i..... 0, become arbitrarily small, and those of g,, v=1,..., N /2 arbitrarily close to the
corresponding ¢,. This leads us to consider the following approximate analogue of (9):

1 S . N N
=_ - P =__+ F 4 B -—-I
(10) ©=N EU w7, y=mgtles

Here, the points {, lie monotonically along J and represent guesses for the numbers
¢ . We wish to move these points §, on J in such a way that 4, becomes equal to zero
for v=— N/2+1,...,0. With N free real parameters, we wish to make N /2 complex
numbers zero. This count of equations and unknowns appears correct, but we have
not yet prescribed a position to one of the points. It will transpire that the N equations
we obtain after linearization will form a system with rank only N-1 (to within
truncation errors).

We move the points {, in a two-step process. Given the tangential directions e,
(with |e ] = 1) at the points {; on J, we can try to move these points in the tangential

directions by distances f, in such a way that dy,d_,,...,d_y,,,, become zero:
1 & N

(11) 0= — (( +te)w™ ™,  v=——4+1,...,0.
N o 2

Afterwards, the points {, + 1. e, are moved back to the curve J. Since J 1s smooth, the
distance from the curve is O(¢%). From this follows the quadratic convergence of this

outer iteration.
By subtracting the vth equation in (11) from the »th equation in (10) we get N /2

complex linear equations for the N real unknowns #,:

| A N
(12a) =% > tew ™, v=—=+1,...,0,
k=0

or, using matrix notation:
(12b)

d, 1 1 I x 1 ] egto

d_, = —% ! w? w w : wih—2 eyl,

1
d-H;’2+I 1 whN/i1 N2 L 3N/2-3 _ : WN/2—I(N=1)

En—1in-1 |
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T'wo questions must now be investigated. |
I. Can the special structure of the coefficient matrix in the linear system (12) be

exploited to give a very fast method of solution?

2. The position of one point. for example {,, should be arbitrary. How is this
freedom present in (12)? These questions are discussed in the next three sections. A
practical implementation of the method and its performance on some test cases 1S

described 1n the final section.

3. Reformulation of the linear system of equations. Collecting the odd- and
even-numbered columns of the matrix in (12b) gives

d, 1 L ! [ e, fo
d—l I Hr'z "H.-'4 w‘”-z EZ I:
~t d_, =% 1wt w® wiN =4 €, w| 4
. - IPNRTY
d_ N3l ] wh=2  WIN=4 o UN/2- 1 | €x_7 | _‘-'an_
- B -
0 1 1 1 1
w[ 1 H’I wd wh’u!
(13) v w? xpboowt W Wik
N
I
W21 1 w2 2v-a wzw;z—u*
e, [
e, £
t
X €5 X >
la_
A €rv_y | N
or
] i
(14) '“—d= “ﬁFEDtO'F E WFEIt].

Here, F is the discrete Fourier transform matrix of order N/2. The matrices

1/VN/2 F,E,, E, and W are all unitary. Multiplication of any vector by any of
these matrices or their inverses will require at most O(Nlog N) operations.

Let us consider the following iteration: Given any real vector t, 9, solve (14) for
the uniquely determined complex vector t, @, remove the imaginary parts from t, @
and then solve (14) for t," where the imaginary parts that are obtained are again
removed.

The real vector t,‘" that results from one step of this iteration will depend
linearly on the initial vector t,@. There must therefore be a relation

(15) to " =4t,9 +p.
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Straightforward algebra gives now
2
(16) A=R'R. where R=Re C, C= ~ Eo FHWFE,.

A 1s symmetric and positive semidefinite and C is a unitary complex matrix. Since
| All, =1 R3S HCi|2=1, the eigenvalues A, of 4 satisfy

(17) 0S A S, 1'=0._,l,...,%{—1.

If there is a real solution ty,t, of (14), t,®=¢, must imply ¢,V =t, in (15). Hence.
t, must then satisfy

(18) Gty=b,

where G=1/—A4 is again positive semidefinite. Once t, has been computed, t, follows
from (14). The calculation of t,” from t,®, in particular the calculation of b by
starting with t, =0 in (15), and the multiplication of any real vector by G is
performed in O(Nlog N) operations if N is a power of 2.

We will now further investigate the eigenvalues of G and describe how the
conjugate gradient method can be applied very efficiently to solve a modification of
the system (18).

4. Eigenvalues of the G-matrix. The outer iteration was designed to force to zero
not only the coefficients & _,,d_,,. .., d_y,2+, but also d,, thereby ensuring {(0)=0.
The n.apping is still arbitrary with respect to a rotation. In particular, we should be
able to require 7, =0, where ¢, is the first component of the vector to- That means that
the point {; is not moved during the mapping process. Imposing 7, =0 is only
consistent with (18) if & is singular and if b lies in the subspace spanned by the
columns of G except the first one. This was true (to within truncation accuracy) in all
cases we tested. The following examples illustrate this result. and show typical
distributions for the remaining eigenvalues.

Example 1. Mapping of the unit circle onto itself. The pomts {, j=0,1,...,N-1,
become equidistantly spaced in this trivial mapping. Omitting a complex factor of unit

magnitude (corresponding to a rotation), the tangential direction at the point $; 1s

(19) - g=eN

The elements of C become in general

_ i . €In—1
(20) Coon = {1+ icotpr) o

where p=[2(n—m)+ 1]/ N. In this case, this simptlifies to

(21) C

m,

i
"= —ﬁ{ — 1 +I‘C'Dtp'??'}*
The elements of the matrix R are

(22) ' T n = — -j{?’
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independently of m and n. The matnx 4 has one eigenvalue equal to one and all the
others equal to zero. Therefore, the matrix G has one eigenvalue equal to zero and the

others equal to one.
The bottom line in (13) gives in this case

(23) —d_(npyar={t it iy )= F ity 1)

Since all the 7, are real, the requirement for a solution is that Imd_ y /5,,,=0. This is
satisfied since, in the mapping, all coefficients except the first one are absent. It is

possible to add the same constant to all ¢, in (13) and (18). This corresponds to a

rotation of the mapping. Fixing 7,=0 removes this ambiguity.
Example 2. We consider regions bounded by curves given in the complex plane

{=x+1iy by -
(24) Ay, @)=((x =5 +{(y—a))(1 —(x~ .5 -y} ~.1=0.
For a = oo, this defines a circle with center at x=.5, y=0. Fig. 4 shows the curves for
some different values of o down to a==.2746687749, at which point the region ceases
to be simply connected. Fig. 5 illustrates, for different «, the distribution of the
eigenvalues of G (and of the matrix G which we will introduce below).

In every example we have studied, the eigenvalues of the G show the same

pattern. One eigenvalue 1s zero to truncation error accuracy.and all others lie in a
heavy cluster around A= 1. A few double eigenvalues gradually move toward smaller
values of A as the complexity of the curve increases. Increasing the number of points
N for a fixed « made (to within truncation accuracy) no difference in this picture or in
the positions of the eigenvalues pairs. All additional eigenvalues simply joined the

cluster at A=1.

-1.0

2746687749
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Fi1G 4. The curves f(x, y, a)={{x —.5)? +.(y+a}1)(l —(x—.5)2 —y%)—.1 =0 for different values of a.
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FiG 5. Eigenvalues of G (virtually independent of N) and of G (every second dependent on N for different
values of o in the test case described in the texi.

In the case of extremely low values of N, such as N=4 or N =8, these eigenvalue
properties fail to hold to within truncation accuracy. (In particular, the matrix G is no
longer exactly singular.) This indicates that they are not exact properties of the
discrete systems. These observations suggest that a smooth curve has some kind of
spectrum with the same properties (but with A=1 a limit point) and that the discrete
method provides exponentially accurate approximations to it for increasing values of
N. We have not been able to find any theoretical support for these observations.

The previous discussion has suggested that we can require 7,=0 and also consider
one equation, for example, the first one, redundant. We write, therefore, (18)

ST | Y
g &' | t by
(25) TR W =
g: G { b
This leaves us to solve
(26) Gr=b.

The matrix G is positive semidefinite with only one eigenvalue equal to zero.
Therefore, G' 1s strictly positive definite, again with a cluster at A=1. In the case in
Example I, G has one eigenvalue equal to 1/N and all the others equal to one. Fig. 5
shows the eigenvalues of G corresponding to those of G described earlier in Example
> |

In every case we have studied, we have also noticed the same trend in the
eigenvalues of G. As we mentioned above, G was found to have an eigenvalue A, =0,
then double eigenvalues A, 5, A, 5, etc., clustering at A= 1. For each double e:lgenvalue
of G,G must have a single eigenvalue and the remaining eigenvalues of G must lie
between the pairs for G. We have noticed that these eigenvalues converge from above
toA,; =0,t0A,;,t0A, . etc,, witha rate which seems to be proportional to 1 /N as N

INCreases.
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5. Practical implementation of the mapping method. Conjugate gradient iterations
are applied to (20) 1n a straightforward manner (see for example Luenberger [8] for a

description of the method). We simplify the notation of (26) to

(27) Hx=b5.
The method is initialized by the steps
(28} choose x,=0,
compute ro=250— Hx,,
set  po=r,,
and then iterated for i=0,1,2,..., |
(29) ol
a; = ,
| p Hp,
x:'+l = x:' + H.r;pf’
r:'+ | = r:' o ﬂiji?
b = rilie
1 r,Tr, ,

p;’+1 l+]+bl-pl

We stop iterating when the changes in the x; are sufficiently small. The level of errors
that we desire to reach depends on the current accuracy in the quadratically conver-
gent outer iteration. The ith approximation in the conjugate gradient method can be

shown to minimize

(30) lx = x [l % ={x — %) "H(x - x,),
over all approximations of the form
(31) x;=xo+ P,_(H)H (x— x,),

where P,_, 1s any polynomial of degree i~ 1. This result is very favorable in cases with
mgﬂnvalue distnibutions like the one in Fig. 5 but with their exact positions unknown.
Complete convergence is assured in the same number of steps as there are distinct
groups of eigenvalues. Convergence to sufficient accuracy may take still fewer steps.

The computational cost of the inner iteration is dominated by the fast Fourier
transforms. Finding d (10) costs one transform over N points, or equivalently two
transforms over N /2 points (denote for simplicity 2 FFTs). Initializing the conjugate
gradient method adds 3 FFTs (to find b) and each iteration costs another 4 FFTs (to
evaluate Hp;). When the iterations are finished, 2 FFTs are needed to find t,. One
outer 1iteration with X inner iterations will therefore cost 7+4K FFTs. In the last
section, we will see that K 1s usually about six, which means that each outer iteration
typically requires about 30 FFTs (complex transforms over N/2 points).

The mapping method requires information about the boundary curve J in two
connections:

1) To find the tangent directions at each point.

11} To move a point back to the curve after it has been moved in the tangential

direction.

Any parameter representation of J can be used (for example polar coordinates if the
region is “starshaped”, spline representation between discrete points, etc.). For the test
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runs described below, we implemented the method assuming the curve J was given in
the form |

(32) ' flxp,a)=0,

with fixed a. (The parameter a allowed us to modify the curve.) Routines were

provided for evaluating f. f = df/dx and f, =4df/0dy at any point {,= x,+ iy, near J. A
unit tangential vector at {; on J 1s obtained as

(=5
(fF+£7)

and a point §, off the curve J can, to within sufficient accuracy, be brought back to
the curve with one step of a quadratically convergent Newton iteration:

(33)

f
34 d= :
o0 - (73+1)
X =Xo—df..
Yi=Vo— d'fr

Tests have to be made to determine the number of outer and inner iterations. The
rules implemented to obtain an automatic code were as follows:

1. Number of outer iterations. Each time an outer iteration is started, a residual
vector 1s obtained (which later forms the right-hand side of the linear system in the
inner iteration). Outer iterations are stopped when the maximal element of this vector
has not decreased by more than a factor of 2 since the last iteration. Since the outer
1terations are quadratically convergent, an improvement by a factor less than two
indicates that the rounding or truncation error level has been reached.

2. Number of inner iterations. The inner iterations use conjugate gradients to
approximate the vector tg; i.e., the distances the even-numbered points (apart from {,
which 1s held fixed) are to be moved. These iterations were performed until all
clements of t, had settled to within .001 of the size of the maximal element of t,,
These tests can easily be improved. Since the outer iterations are quadratically
convergent, the accuracy in the inner iterations ought to be increased correspond-
ingly. Also, the last outer iteration gives only a small improvement (at most by a
factor of two). For each special application, a test should be devised which allows this
last 1teration to be omitted. For example, in the case of solving a time-dependent
problem in a slowly changing geometry, it may be possible to use just one outer
iteration for each numerical time step in the main problem.

6. Test results. In this section, the application of the mapping method to the
following two one-parameter families of curves is described.
Case 1.

(35) fix, vy, nf)E((x- ,5)2+(_}?—£I)2)(1 ~(x— .5)2—y2)-— 1=0,

Fig. 4 showed these curves for some different values of a. The value a= o0 gives a
circle with center at (.5,0) and radius 1. The curve ceases to be “starshaped” (i.e.,
ceases to have a single-valued radius in polar coordinates) at o=.7675275331 and
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ceases to be simply connected at a=.2746687749. The mapping method was em-
ployed for values of a down to a=.5.
Case 2. (Cassint’s oval).

(36) f(x, y.a)=((x+a)’ +y*)(x—a)’+y?) - 1=0.

Fig. 6 shows these curves for some values of « ranging from 0 to 1. In the case a=0,
the curve becomes the unit circle. For a=1, it ceases to be simply connected. The
mapping function from the unit circle can in this case be found in closed form:

| — o ; gy ] =~ (2n}! ;za\27
(37) §(Z)=z( ' )=(l—a iz 3 2 za)

| —(az)’ n=0 (n!)*

Tables 1 and 2 illustrate the performance of the mapping method for these two test
cases. Fig. 7 shows some corresponding mappings. For each parameter value, the
inittal guess on the distribution of the points {; was obtained from the solution for the
previous value of a together with two Newton iterations to bring these points to the
curve for the new a. If the number of points N was doubled, a fourth-order
interpolation was used to find the positions of the new points. In most cases, larger
continuation steps in a than those shown would also have worked. At the bottom of
Table 1, we give one case in which we tested for the largest possible step. Tables 1 and
2 show the maximal distance any boundary point was moved in each step of the
mapping. In these two test cases, an approximate guide for finding the largest allowed
continuation step seemed to be that the initial point positions should not be in error
by more than about 0.25. If points had to be moved further than that tangentially to
the curve in the first outer iteration, they are likely to be returned to the curve in
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FI1G 6. The curves f(x, y, a)=({x+a)? +y)({(x—a)? +y2)—1 =() for different values of a.
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Fi1G 7. Examples of conformal mappings in the two test cases.
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places which are no more accurate or may be returned to the curve out of sequential
order. If a careful algorithm was developed for returning the point to the curve after
each tangential move, still larger continuation steps could probably be used.

We observe 1n the two test cases that the number of outer iterations seems to
depend mainly on the accuracy of the initial guess (which can be read from the
column labeled (“Max distance point moved in mapping”). The average number of
inner iterations for each outer iteration increased only marginally with increased
complexity of the boundary curve. It was found that the method generally produced a
uniform absolute accuracy in all the N/2 produced Taylor coefficients, and that the
error level agreed in size with the first omitted coefficients. The residual vector in the
outer iterations also reached this same size. The numbers displayed in the column
“Accuracy reached in Taylor coefficients” have been obtained as the maximal
clement in the final residual vector in the outer iterations. When we keep N fixed and
change the parameter a, the changes in the accuracy that was reached only reflect the
changes in the decay rates for the leading coefficients.

TaBLE |
Performance of the mapping method in test case ],

Nr. of Nr. of inner Max distance Accuracy reached Total comp.

: ] Max distance . i A
outer Hlerations per pomt moved  in Taylor ome {sec)
* N iterations outer iterations between curves 1N mapping coefthicients CDC STAR 100
&
s £ ©
3 3 <
o0 128 Points equidistantly distributed along the curve
o 1280 7 4 2 30 000 1000 q410-% T T T Tog ~ T "
20 128 4 4 4 4.0 047 028 17-10- 11 07
15 128 4 5 4 4.3 088 058 14.10-7 07
1.2 128 4 5 4 45 140 118 33-10~3 07
12 256 2 S 4 45 00l 001 97-10-¢ T os
10 256 4 5 5 50 137 176 17-10~3 1}
10 s12 2 5 4 45 T oo 000 40107 09
9 512 4 6 5 5.5 076 149 26-10~% 19
S 1024 3 6 5 57 000 000 98-10-1© 28
8§ 1024 5 6 6 6.0 082 206 42-10°7 48
8 2048 3 6 4 50 000 000 s5.10-1  s3
75 2048 5 6 3 54 042 147 58-10°° 04
72 2048 5 7 4 58 026 109 40-10"8 97
70 2048 4 7 4 58 018 083 30-1077 78
70 409 3 6 4 50 .000 000 31-10- 1 1.24
68 4096 5 7 4 538 018 091 38-10°10 2.24
66 4096 5 7 4 58 018 101 131077 224
64 4096 5 7 4 6.2 018 111 29.108 2.33
62 4096 4 7 7 7.0 018 122 191077 2.01
60 4096 4 8 7 75 018 135 84-10°7 2.10
60 8192 3 7 5 60 000 000 2310710 3.37
58 8192 5 g 5 6.6 018 149 78-10°9 5.92
56 8192 5 8 5 68 018 165 90-102 6.05
54 8192 5 8 5 6.8 019 182 221077 6.04
T %4 16384 3 7 2 47 000 000 28-10-10 686
52 16384 6 7 5 5.7 019 200 99.10-9 15.20
50 16384 7 8 5 64 019 218 15-10-7 19.22

Longest continuation step from a = .70, ¥ = 4096 that worked
64 4096 6 7 7 1.0 053 248 29-10°8 3.00
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TABLE 2
- Performance of the mapping method in test case 2.

MNr.oof N of inner Max distance  Accuracy reached Total comp.
. ouler 1LErations per Max distance pownt moved in Taylor time (scc)

* 7 Jterations  outer iterations  DELAEEN curves In MAappIing coefficients CDC STAR- 100
0 128 Points equidistantly distributed. (Exact mapping).
0. T T2 T 373 307 T e T To0 T T adio ™ T T TG T

5 128 S 5 2 26 133 127 A4.10 13 06

7 128 5 6 2 3.0 151 154 A7-10-10 06

8 128 4 3 3 30 114 139 66-107 05

9 128 4 3 3 3.0 163 257 g§1-10—4 05
9 256 3 3 3 30 o0 004 69107 06

93 256 4 3 3 30 068 143 37-10-F 07

95 256 3 3 3 30 055 137 47-10 4 06
95 sz 3 33 30 oo 004 47-10 " 10

97 512 4 3 3 30 069 212 75-10 ° 13
97 1024 3 3 3 30 om " o0r 22.10°% s

98 1024 4 3 3 30 044 172 34-10 % 24

99 1024 4 4 3 35 058 291 42-10 -4 26
99 248 3 4 3 37 o1z " om0 18-10°¢ T 32 T

993 2048 3 4 3 37 023 154 32-10°¢ 42
993409 3 4 3 37 o 003 18-10-8 57

895 4096 4 4 3 358 018 146 91-10 7 1.26

997 4096 4 4 3 318 022 220 42.10° 1.30
9978192 3 4 3 37 o007 005 65.10 8 7.38

998 8192 4 4 4 40 014 176 32.10-¢ 3.29

999 8192 3 4 4 40 018 293 14-10 4 2.49
99916384 2 4 4 40  on 020 16-10 =5 396
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