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Without ambiguity:
I choose τ ∈ T to maximize

EP[e−rτg(Xτ )]. (1)

With ambiguity:
I P : the set of plausible probabilities P, i.e. priors.
I Worst-case analysis: choose τ ∈ T to maximize

inf
P∈P

EP[e−rτg(Xτ )]. (2)

I Best-case analysis: choose τ ∈ T to maximize

sup
P∈P

EP[e−rτg(Xτ )]. (3)
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I Worst-case (or best-case) analysis:

The dominant approach...

Riedel (2009), Bayraktar & Yao (2011a, 2011b, 2014, 2017), Cheng
and Riedel (2013), Ekren et al. (2014), Nutz & Zhang (2015), ...

I What is missing?

An agent’s ambiguity attitude.

I Curley & Yates (1989), Heath & Tversky (1991):

With the same P , different agents have different levels of
ambiguity aversion.
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THE α-MAXMIN OBJECTIVE

Motivated by the α-maxmin preference in Ghirardato et al.
(2004), we propose to maximize

α inf
P∈P

EP[e−rτg(Xτ )] + (1− α) sup
P∈P

EP[e−rτg(Xτ )].

I Ambiguity is captured by P .
I Ambiguity attitude is captured by α ∈ [0, 1].

I α = 1: worst-case analysis (purely ambiguity-averse)
I α = 0: best-case analysis (purely ambiguity-loving)

Our goal: optimal stopping under any α ∈ [0, 1].
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TIME INCONSISTENCY

The problem

sup
τ∈T

(
α inf

P∈P
EP[e−rτg(Xτ )] + (1− α) sup

P∈P
EP[e−rτg(Xτ )]

)
(4)

is time-inconsistent!
I An α-maxmin preference induces time inconsistency.

(Schröder (2011) and Beissner et al. (2016))

Not meaningful to find an optimal stopping time here.
(unless one dictates his future selves’ behavior).
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I Problem Solved. Feeling Good?

0

τ̃(x) τ̃(x)(ω)

I The Reality:

0 t t′

τ̃(x) ?????τ̃(Xt) τ̃(Xt′)

I Time Inconsistency:
I τ̃(x), τ̃(Xt), τ̃(Xt′) may all be different.
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TOWER PROPERTY

I Time consistency of (1) = tower property of conditional
expectations.

I For (2) and (3),
I Epstein & Schneider (2003): tower property holds if

the set of priors is rectanguler
(stable under pasting conditional probabilities).

=⇒ Time consistency follows.
I Nutz and van Handel (2013), Bayraktar and Yao (2014),

Ekren et al. (2014), Nutz and Zhang (2015)...
I Under the α-maxmin preference,

I Schröder (2011), Beissner et al. (2016):
Tower property fails, even under “stable under pasting”.

I Time inconsistency is a genuine challenge for (4).
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How to resolve time inconsistency?

Consistent Planning [Strotz (1955-56)]

I Take into account future selves’ behavior.

Find an equilibrium strategy that
once being enforced over time,

no future self would want to deviate from.

I How to precisely define and find equilibrium strategies?



INTRODUCTION The Set-up MAIN RESULTS Applications

ITERATIVE APPROACH

Huang & Nguyen-Huu (2018):
Iterative approach for time-inconsistent stopping problems

I Equilibrium strategies = fixed points of an operator
I find equilibria easily via fixed-point iterations.

I Applications:
I non-exponential discounting;
I probability distortion.

Huang & Nguyen-Huu (2018), Huang & Zhou (2017, 2019),
Huang, Nguyen-Huu, and Zhou (2019)
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This talk:
I Model ambiguity + ambiguity attitude
I A time-inconsistent stopping problem under the
α-maxmin preference

I Iterative approach
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THE MODEL

I Ω := C([0,∞); Rd).
I Ωx := {ω ∈ Ω : ω0 = x}, ∀x ∈ Rd.

I B: canonical process.
I P(Ω): the set of probability measures on Ω.
I For any x ∈ Rd, let

P(x) ⊆ {P ∈ P(Ω) : P(Ωx) = 1, B is strong Markov under P}

denote the set of priors of an agent at x ∈ Rd.
I U(Rd): the set of universally measurable subsets of Rd.
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GAME-THEORETIC APPROACH

I Focus on hitting times to regions in Rd, i.e.,

τR := inf{t ≥ 0 : Bt ∈ R}, R ∈ U(Rd).

I For convenience, we call R ∈ U(Rd) a stopping policy.

I Given a stopping policy R ∈ U(Rd),

0 t

yourself today yourself at time t
x ∈ R? Xx

t ∈ R?

I Game-theoretic thinking at time 0:
Given that every future self will follow R,
I What is the best stopping strategy at time 0?
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BEST STOPPING STRATEGY

The agent at x ∈ Rd can either stop or continue.

I If she stops, gets g(x) right away.

I If she continues, she will eventually stop at the moment

ρR := inf {t > 0 : Bt ∈ R}.

0

Rcontinue

=⇒ Her α-maxmin expected payoff is then

J(x,R) := α inf
P∈P(x)

EP[e−rρRg(BρR)] + (1− α) sup
P∈P(x)

EP[e−rρRg(BρR)] .
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I The Best stopping policy at time 0 is

Θ(R) := SR ∪ (IR ∩ R),

where

SR := {x : g(x) > J(x,R)},
IR := {x : g(x) = J(x,R)},

CR := {x : g(x) < J(x,R)}.

0

RΘ(R)

I In general, Θ(R) 6= R.
I Player 0 wants to follow Θ(R), instead of R.
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EQUILIBRIUM

Definition
R ∈ U(Rd) is called an equilibrium if Θ(R) = R.

I Trivial Equilibrium: Consider R := Rd. Then IR = Rd, so
Θ(R) = SR ∪ (IR ∩ R) = R.

I In general, given any R ∈ B(Rd), carry out iteration:

R −→ Θ(R) −→ Θ2(R) −→ · · · −→ “equilibrium”??

I To show:
(i) R∗ := lim

n→∞
Θn(R) converges (ii) Θ(R∗) = R∗.
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STRONG FORMULATION

I d = 1 and P0: the Wiener measure.
I I = (`, r), for some given −∞ ≤ ` < r ≤ ∞. Consider

Xx,b,σ
t = x+

∫ t

0
b(Xx,b,σ

s )ds+

∫ t

0
σ(Xx,b,σ

s )dBs, P0-a.s. (5)

I L: the set of all b, σ : I→ R that are
(i) Lipschitz, grows linearly; (ii) σ2 > 0 on I.

I A: the set of all set-valued maps Π : I→ 2L.
I A∞: the set of all set-valued maps Π : I→ 2L satisfying:

for any x ∈ I, ∃ K > 0 such that for any (b, σ) ∈ Π(x),

|b(u)− b(v)|+ |σ(u)− σ(v)| ≤ K|u− v|
|b(u)|+ |σ(u)| ≤ K(1 + |u|), ∀u, v ∈ I.



INTRODUCTION The Set-up MAIN RESULTS Applications

STRONG FORMULATION

I For each x ∈ I and (b, σ) ∈ L, define

Px
b,σ := P0 ◦ (Xx,b,σ)−1 ∈ P(Ω). (6)

I Given Π ∈ A, we introduce

P(x) := {Px
b,σ : (b, σ) ∈ Π(x)}, ∀x ∈ I. (7)
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Lemma
Given x ∈ I and (b, σ) ∈ L, Xx,b,σ is a regular diffusion, i.e.,

for any x ∈ I, P0(Tx
y <∞) > 0, ∀y ∈ I.

This implies

Tx
(`,x) = Tx

(x,r) = 0 P0-a.s.

=⇒ ρ(`,x) = ρ(x,r) = 0 Px
b,σ-a.s.

Proposition

For any R ∈ U(I), R ⊆ Θ(R) . Then,

R∗ := lim
n→∞

Θn(R) =
⋃
n∈N

Θn(R).



INTRODUCTION The Set-up MAIN RESULTS Applications

CONVERGENCE IN CAPACITY

Standard SDE estimate + proof of Kolmogorov’s criterion:

Lemma
For any Π ∈ A∞, P(x) is relatively compact for all x ∈ I.

Introduce Rn := Θn(R), ρn := ρRn , ρ
∗ := ρR∗ .

Lemma
For any Π ∈ A∞ and ε > 0,

lim
n→∞

sup
P∈P(x)

P (|ρn − ρ∗| ≥ ε) = 0, (8)

lim
n→∞

sup
P∈P(x)

P
(
|Bρn − Bρ∗ | 1{ρn<∞} ≥ ε

)
= 0. (9)

Relies crucially on relative compactness of P(x).
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THE MAIN RESULT

Theorem

Fix Π ∈ A∞. Let g : I→ R be continuous and

lim
t→∞

e−rtg(Xx,b,σ
t ) = 0 P0-a.s., ∀x ∈ I, (b, σ) ∈ Π(x).

Then, for any R ∈ U(I), R∗ is an equilibrium, i.e.

Θ(R∗) = R∗.

Consequently,

E =
{

lim
n→∞

Θn(R) : R ∈ U(I)
}
.
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REAL OPTIONS VALUATION

I Applies financial option pricing techniques to corporate
investment decision making.
I Use risk-neutral pricing to evaluate the right, but not the

obligation, to undertake a business plan.

I Suffers model ambiguity more severely than pricing a
financial option...
I ... as the underlying can be neither tradable nor fully

observable.

I This leads to
I a set of plausible risk-neutral measures

=⇒ an interval of plausible values of a real option.
I How to deal with these multiple values?

Unclear in the literature....
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EXAMPLE
I g(x) = (K − x)+ for a given K > 0.
I The underlying is a GBM:

Xx,b,σ
t = x +

∫ t

0
bXx,b,σ

s ds +

∫ t

0
σXx,b,σ

s dBs, P0-a.s.,

for some unknown b ∈ R and σ > 0.
I Riskfree rate r > 0 is known.
I σ ∈ [σ, σ], for given 0 < σ < σ (uncertain volatility model)

=⇒ The α-maxmin objective:

J(x,R) = α inf
σ∈[σ,σ]

EP0
[
e−rTR(K − Xx,r,σ

TR
)+
]

+ (1− α) sup
σ∈[σ,σ]

EP0
[
e−rTR(K − Xx,r,σ

TR
)+
]
.
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Define

m1 :=
2r
σ2 , m2 :=

2r
σ2 .

a∗ :=
m1α+ m2(1− α)

1 + m1α+ m2(1− α)
K ∈ (0,K).

Proposition
I E = {(0, a] : a∗ ≤ a ≤ K}.
I (0, a∗] is optimal among E .

“Optimal” in the sense that for any a∗ ≤ a ≤ K,

J(x, (0, a∗]) ≥ J(x, (0, a]) ∀x ∈ (0,∞).

I Optimal equilibrium in Huang & Zhou (2019, 2017).
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OBSERVATIONS

I a∗ is increasing in α ∈ [0, 1].
I The larger α, the larger the optimal equilibrium (0, a∗].
I The more risk-averse,

the more eager to stop—to exit the uncertain environment.

I When σ = σ = σ (no ambiguity),

a∗ =
2r/σ2

1 + 2r/σ2 K.

This is exactly the optimal stopping threshold for

sup
τ∈T

EP0 [e−rτ (K − Xx,r,σ
τ )+]

(Theorem 2.7.2 in Karatzas and Shreve (1998)).
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SUMMARY

I Resolves the time-inconsistent stopping problem under the
α-maxmin preference
I Allow us to go beyond worst-case (best-case) analysis.

I Focuses on ambiguity aversion, a cause of time inconsistency
only slightly discussed in the literature.
I relative to non-exponential discounting, probability distortion,...

I Provides a new approach for real options valuation
I α-maxmin preference + equilibrium approach

I A new measurable projection theorem.
I does not require specific Borel structure.
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THANK YOU!!
I “Optimal Stopping under Model Ambiguity: a Time-Consistent

Equilibrium Approach”
(H. and X. Yu), Available @ arXiv:1906.01232.
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