# Optimal Stopping under Model Ambiguity — A Time-Consistent Equilibrium Approach

#### Yu-Jui Huang University of Colorado, Boulder

Joint work with Xiang Yu (Hong Kong Polytechnic University)



SIAM Conference on Financial Math Toronto, Canada June 5, 2019

| INTRODUCTION | The Set-up | MAIN RESULTS | Applications |
|--------------|------------|--------------|--------------|
| •0000000     | 00000      | 00000        | 000000       |
|              |            |              |              |

#### Without ambiguity:

• choose 
$$\tau \in \mathcal{T}$$
 to maximize

$$\mathbb{E}^{\mathbb{P}}[e^{-r\tau}g(X_{\tau})].$$
 (1)

#### With ambiguity:

- ▶ *P*: the set of *plausible* probabilities **P**, i.e. *priors*.
- Worst-case analysis: choose  $\tau \in \mathcal{T}$  to maximize

$$\inf_{\mathbb{P}\in\mathcal{P}} \mathbb{E}^{\mathbb{P}}[e^{-r\tau}g(X_{\tau})].$$
(2)

• Best-case analysis: choose 
$$\tau \in \mathcal{T}$$
 to maximize

$$\sup_{\mathbb{P}\in\mathcal{P}}\mathbb{E}^{\mathbb{P}}[e^{-r\tau}g(X_{\tau})].$$
(3)

| INTRODUCTION<br>00000000 | The Set-up<br>00000 | Main Results<br>00000 | Applications<br>000000 |
|--------------------------|---------------------|-----------------------|------------------------|
|                          |                     |                       |                        |
|                          |                     |                       |                        |

#### ► Worst-case (or best-case) analysis:

The dominant approach...

Riedel (2009), Bayraktar & Yao (2011a, 2011b, 2014, 2017), Cheng and Riedel (2013), Ekren et al. (2014), Nutz & Zhang (2015), ...

#### ► What is missing?

An agent's ambiguity attitude.

Curley & Yates (1989), Heath & Tversky (1991):
 With the same *P*, different agents have different levels of ambiguity aversion.

| INTRODUCTION | The Set-up | Main Results | Applications |
|--------------|------------|--------------|--------------|
| 000000000    | 00000      | 00000        | 000000       |
|              |            |              |              |

# The $\alpha$ -Maxmin Objective

Motivated by the  $\alpha$ -maxmin preference in Ghirardato et al. (2004), we propose to maximize

$$\alpha \inf_{\mathbb{P}\in\mathcal{P}} \mathbb{E}^{\mathbb{P}}[e^{-r\tau}g(X_{\tau})] + (1-\alpha) \sup_{\mathbb{P}\in\mathcal{P}} \mathbb{E}^{\mathbb{P}}[e^{-r\tau}g(X_{\tau})].$$

- Ambiguity is captured by  $\mathcal{P}$ .
- Ambiguity attitude is captured by  $\alpha \in [0, 1]$ .
  - $\alpha = 1$ : worst-case analysis (**purely ambiguity-averse**)
  - $\alpha = 0$ : best-case analysis (**purely ambiguity-loving**)

**Our goal:** optimal stopping under <u>any</u>  $\alpha \in [0, 1]$ .

| INTRODUCTION<br>000000000 | The Set-up<br>00000 | Main Results<br>00000 | Applications<br>000000 |
|---------------------------|---------------------|-----------------------|------------------------|
|                           |                     |                       |                        |
|                           |                     |                       |                        |

# TIME INCONSISTENCY

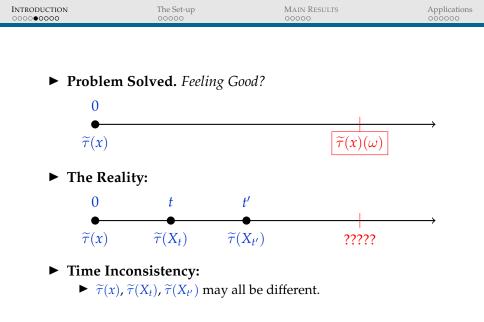
### The problem

$$\sup_{\tau \in \mathcal{T}} \left( \alpha \inf_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}}[e^{-r\tau}g(X_{\tau})] + (1-\alpha) \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}}[e^{-r\tau}g(X_{\tau})] \right)$$
(4)

#### is time-inconsistent!

 An α-maxmin preference induces time inconsistency. (Schröder (2011) and Beissner et al. (2016))

*Not* meaningful to find an optimal stopping time here. (unless one dictates his future selves' behavior).



| INTRODUCTION<br>000000000 | The Set-up<br>00000 | Main Results<br>00000 | Applications<br>000000 |
|---------------------------|---------------------|-----------------------|------------------------|
|                           |                     |                       |                        |
|                           |                     |                       |                        |

# TOWER PROPERTY

- Time consistency of (1) = <u>tower property</u> of conditional expectations.
- ► For (2) and (3),
  - Epstein & Schneider (2003): tower property holds if

the set of priors is *rectanguler* (stable under pasting conditional probabilities).

 $\implies$  Time consistency follows.

- Nutz and van Handel (2013), Bayraktar and Yao (2014), Ekren et al. (2014), Nutz and Zhang (2015)...
- Under the  $\alpha$ -maxmin preference,
  - Schröder (2011), Beissner et al. (2016): Tower property fails, even under "stable under pasting".
  - ► Time inconsistency is a genuine challenge for (4).

| INTRODUCTION | The Set-up<br>00000 | MAIN RESULTS<br>00000 | Applications<br>000000 |
|--------------|---------------------|-----------------------|------------------------|
|              |                     |                       |                        |
|              |                     |                       |                        |

#### How to resolve time inconsistency?

Consistent Planning [Strotz (1955-56)]

► Take into account future selves' behavior.

Find an *equilibrium* strategy that <u>once being enforced over time,</u> no future self would want to deviate from.

► How to precisely define and find equilibrium strategies?

| INTRODUCTION<br>○○○○OOO●O | The Set-up<br>00000 | Main Results<br>00000 | Applications<br>000000 |
|---------------------------|---------------------|-----------------------|------------------------|
|                           |                     |                       |                        |
|                           |                     |                       |                        |

# ITERATIVE APPROACH

#### Huang & Nguyen-Huu (2018):

*Iterative approach* for time-inconsistent stopping problems

• Equilibrium strategies = fixed points of an operator

► find equilibria easily via fixed-point iterations.

### ► Applications:

- non-exponential discounting;
- probability distortion.

Huang & Nguyen-Huu (2018), Huang & Zhou (2017, 2019), Huang, Nguyen-Huu, and Zhou (2019)

| INTRODUCTION | The Set-up | Main Results | Applications |
|--------------|------------|--------------|--------------|
|              | 00000      | 00000        | 000000       |
|              |            |              |              |

#### This talk:

- ► Model ambiguity + *ambiguity attitude*
- A time-inconsistent stopping problem under the  $\alpha$ -maxmin preference
- ► Iterative approach

| Introduction<br>000000000 | The Set-up<br>●0000 | Main Results<br>00000 | Applications<br>000000 |
|---------------------------|---------------------|-----------------------|------------------------|
|                           |                     |                       |                        |
|                           |                     |                       |                        |

# The Model

$$\begin{split} \bullet \ \Omega := C([0,\infty); R^d). \\ \bullet \ \Omega^x := \{\omega \in \Omega : \omega_0 = x\}, \forall x \in \mathbb{R}^d. \end{split}$$

- ► *B*: canonical process.
- $\mathfrak{P}(\Omega)$ : the set of probability measures on  $\Omega$ .
- For any  $x \in \mathbb{R}^d$ , let

 $\mathcal{P}(x) \subseteq \{\mathbb{P} \in \mathfrak{P}(\Omega) : \mathbb{P}(\Omega^x) = 1, B \text{ is strong Markov under } \mathbb{P}\}\$ 

denote the set of *priors* of an agent at  $x \in \mathbb{R}^d$ .

•  $\mathcal{U}(\mathbb{R}^d)$ : the set of *universally measurable* subsets of  $\mathbb{R}^d$ .

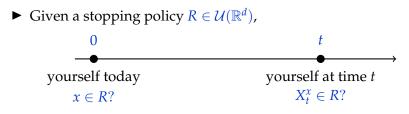
| Introduction | The Set-up | Main Results | Applications |
|--------------|------------|--------------|--------------|
| 000000000    | ○●○○○      | 00000        | 000000       |
|              |            |              |              |

### GAME-THEORETIC APPROACH

• Focus on *hitting times* to regions in  $\mathbb{R}^d$ , i.e.,

 $au_R := \inf\{t \ge 0 : B_t \in R\}, \quad R \in \mathcal{U}(\mathbb{R}^d).$ 

► For convenience, we call  $R \in U(\mathbb{R}^d)$  a *stopping policy*.



 Game-theoretic thinking at time 0: Given that every future self will follow *R*,
 What is the best stopping strategy at time 0?

| <br>ITRODUCTION | The Set-up | Main Results | Applications |
|-----------------|------------|--------------|--------------|
| 00000000        | oo●oo      | 00000        | 000000       |
|                 |            |              |              |

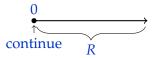
BEST STOPPING STRATEGY

The agent at  $x \in \mathbb{R}^d$  can either stop or continue.

• If she <u>stops</u>, gets g(x) right away.

► If she <u>continues</u>, she will eventually stop at the moment

 $\rho_R := \inf \{t > 0 : B_t \in R\}.$ 



 $\implies \text{Her } \alpha \text{-maxmin expected payoff is then} \\ J(x,R) := \boxed{\alpha \inf_{\mathbb{P} \in \mathcal{P}(x)} \mathbb{E}^{\mathbb{P}}[e^{-r\rho_R}g(B_{\rho_R})] + (1-\alpha) \sup_{\mathbb{P} \in \mathcal{P}(x)} \mathbb{E}^{\mathbb{P}}[e^{-r\rho_R}g(B_{\rho_R})]}_{\mathbb{P} \in \mathcal{P}(x)} }.$ 

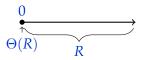
| Introduction | The Set-up | Main Results | Applications |
|--------------|------------|--------------|--------------|
| 000000000    | 000●0      | 00000        | 000000       |
|              |            |              |              |

► *The Best stopping policy* at time 0 is

$$\Theta(R):=S_R\cup(I_R\cap R),$$

where

$$\begin{split} S_R &:= \{ x : g(x) > J(x,R) \}, \\ I_R &:= \{ x : g(x) = J(x,R) \}, \\ C_R &:= \{ x : g(x) < J(x,R) \}. \end{split}$$



• In general, 
$$\Theta(R) \neq R$$
.

• Player 0 wants to follow  $\Theta(R)$ , instead of *R*.

| Introduction<br>000000000 | The Set-up<br>○○○○● | Main Results<br>00000 | Applications<br>000000 |
|---------------------------|---------------------|-----------------------|------------------------|
|                           |                     |                       |                        |
|                           |                     |                       |                        |

### Equilibrium

#### Definition

 $R \in \mathcal{U}(\mathbb{R}^d)$  is called an **equilibrium** if  $\Theta(R) = R$ .

▶ **Trivial Equilibrium:** Consider  $R := \mathbb{R}^d$ . Then  $I_R = \mathbb{R}^d$ , so  $\Theta(R) = S_R \cup (I_R \cap R) = R$ .

▶ **In general**, given any  $R \in \mathcal{B}(\mathbb{R}^d)$ , carry out iteration:

$$R \longrightarrow \Theta(R) \longrightarrow \Theta^2(R) \longrightarrow \cdots \longrightarrow$$
 "equilibrium"??

#### ► To show:

(i)  $R_* := \lim_{n \to \infty} \Theta^n(R)$  converges (ii)  $\Theta(R_*) = R_*$ .

| The Set-up<br>00000 | MAIN RESULTS<br>•0000 | Applications<br>000000 |
|---------------------|-----------------------|------------------------|
|                     |                       |                        |
|                     | 1                     | 1                      |

### STRONG FORMULATION

- d = 1 and  $\mathbb{P}_0$ : the Wiener measure.
- ▶  $I = (\ell, r)$ , for some given  $-\infty \le \ell < r \le \infty$ . Consider

$$X_t^{x,b,\sigma} = x + \int_0^t b(X_s^{x,b,\sigma}) ds + \int_0^t \sigma(X_s^{x,b,\sigma}) dB_s, \quad \mathbb{P}_0\text{-a.s.}$$
(5)

- $\mathfrak{L}$ : the set of all  $b, \sigma : I \to \mathbb{R}$  that are
  - (i) Lipschitz, grows linearly; (ii)  $\sigma^2 > 0$  on *I*.
- $\mathcal{A}$ : the set of all *set-valued* maps  $\Pi : I \to 2^{\mathfrak{L}}$ .
- $\mathcal{A}^{\infty}$ : the set of all *set-valued* maps  $\Pi : I \to 2^{\mathfrak{L}}$  satisfying: for any  $x \in I$ ,  $\exists K > 0$  such that for  $\underline{any}(b, \sigma) \in \Pi(x)$ ,

$$\begin{aligned} |b(u) - b(v)| + |\sigma(u) - \sigma(v)| &\leq \mathbf{K} |u - v| \\ |b(u)| + |\sigma(u)| &\leq \mathbf{K} (1 + |u|), \quad \forall u, v \in I. \end{aligned}$$

| Introduction | The Set-up | MAIN RESULTS | Applications |
|--------------|------------|--------------|--------------|
| 00000000     | 00000      | 00000        | 000000       |
|              |            |              |              |

# STRONG FORMULATION

For each 
$$x \in I$$
 and  $(b, \sigma) \in \mathfrak{L}$ , define

$$\mathbb{P}^{x}_{b,\sigma} := \mathbb{P}_{0} \circ (X^{x,b,\sigma})^{-1} \in \mathfrak{P}(\Omega).$$
(6)

#### • Given $\Pi \in \mathcal{A}$ , we introduce

$$\mathcal{P}(x) := \{ \mathbb{P}^x_{b,\sigma} : (b,\sigma) \in \Pi(x) \}, \quad \forall x \in I.$$
(7)

| DUCTION The<br>000000 000                | Set-up<br>000                           | Main Res<br>00●00   | ULTS               | Applications<br>000000 |
|------------------------------------------|-----------------------------------------|---------------------|--------------------|------------------------|
|                                          |                                         |                     |                    |                        |
| Lemma                                    |                                         |                     |                    |                        |
| <i>Given</i> $x \in I$ and $(b, \sigma)$ | $\in \mathfrak{L}, X^{x,b,\sigma}$ is a | a <u>regular</u> da | iffusion, i.e.,    |                        |
| for any $x \in$                          | $\in I,  \mathbb{P}_0(T_y^x < $         | $\infty)>0,$        | $\forall y \in I.$ |                        |

This implies

$$T_{(\ell,x)}^x = T_{(x,r)}^x = 0 \quad \mathbb{P}_0\text{-a.s.}$$
$$\implies \quad \rho_{(\ell,x)} = \rho_{(x,r)} = 0 \quad \mathbb{P}_{b,\sigma}^x\text{-a.s.}$$

#### Proposition

For any  $R \in \mathcal{U}(I)$ ,  $\overline{R \subseteq \Theta(R)}$ . Then,  $R_* := \lim_{n \to \infty} \Theta^n(R) = \bigcup_{n \in \mathbb{N}} \Theta^n(R).$ 

| Introduction | The Set-up | MAIN RESULTS | Applications |
|--------------|------------|--------------|--------------|
| 000000000    | 00000      | 00000        | 000000       |
|              |            |              |              |

### CONVERGENCE IN CAPACITY

 $Standard\ SDE\ estimate + proof\ of\ Kolmogorov's\ criterion:$ 

#### Lemma

*For any*  $\Pi \in \mathcal{A}^{\infty}$ *,*  $\mathcal{P}(x)$  *is relatively compact for all*  $x \in I$ *.* 

Introduce  $R_n := \Theta^n(R), \ \rho^n := \rho_{R_n}, \ \rho^* := \rho_{R_*}.$ 

#### Lemma

*For any*  $\Pi \in \mathcal{A}^{\infty}$  *and*  $\varepsilon > 0$ *,* 

$$\lim_{n \to \infty} \sup_{\mathbb{P} \in \mathcal{P}(\mathbf{y})} \mathbb{P}\left( |\rho^n - \rho^*| \ge \varepsilon \right) = 0, \tag{8}$$

$$\lim_{n \to \infty} \sup_{\mathbb{P} \in \mathcal{P}(x)} \mathbb{P}\left( |B_{\rho^n} - B_{\rho^*}| \, \mathbb{1}_{\{\rho^n < \infty\}} \ge \varepsilon \right) = 0.$$
(9)

Relies crucially on relative compactness of  $\mathcal{P}(x)$ .

| Introduction<br>00000000 | The Set-up<br>00000 | MAIN RESULTS | Applications<br>000000 |
|--------------------------|---------------------|--------------|------------------------|
|                          |                     |              |                        |
|                          |                     |              |                        |

### THE MAIN RESULT

#### Theorem

*Fix*  $\Pi \in \mathcal{A}^{\infty}$ *. Let*  $g : \overline{I} \to \mathbb{R}$  *be continuous and* 

 $\lim_{t\to\infty} e^{-rt}g(X_t^{x,b,\sigma}) = 0 \quad \mathbb{P}_0\text{-}a.s., \quad \forall x\in I, \ (b,\sigma)\in\Pi(x).$ 

*Then, for any*  $R \in U(I)$ *,*  $R_*$  *is an equilibrium, i.e.* 

 $\Theta(R_*)=R_*.$ 

Consequently,

$$\mathcal{E} = \left\{ \lim_{n \to \infty} \Theta^n(R) : R \in \mathcal{U}(I) 
ight\}.$$

| The Set-up<br>00000 | Main Results<br>00000 | Applications<br>•00000 |
|---------------------|-----------------------|------------------------|
|                     |                       | f                      |
|                     |                       | 1                      |

# **REAL OPTIONS VALUATION**

- Applies financial option pricing techniques to corporate investment decision making.
  - Use risk-neutral pricing to evaluate the right, but not the obligation, to undertake a business plan.
- Suffers *model ambiguity* more severely than pricing a financial option...
  - ... as the underlying can be neither tradable nor fully observable.
- This leads to
  - a set of *plausible* risk-neutral measures
     an interval of *plausible* values of a real option.
  - How to deal with these multiple values? Unclear in the literature....

| Introduction<br>000000000 | The Set-up<br>00000 | MAIN RESULTS<br>00000 | Applications<br>00000 |
|---------------------------|---------------------|-----------------------|-----------------------|
|                           |                     |                       |                       |
|                           |                     |                       |                       |

### EXAMPLE

- $g(x) = (K x)^+$  for a given K > 0.
- ► The underlying is a GBM:

$$X_t^{x,b,\sigma} = x + \int_0^t b X_s^{x,b,\sigma} ds + \int_0^t \sigma X_s^{x,b,\sigma} dB_s, \quad \mathbb{P}_0\text{-a.s.},$$

for some *unknown*  $b \in \mathbb{R}$  and  $\sigma > 0$ .

- Riskfree rate r > 0 is known.
- $\sigma \in [\underline{\sigma}, \overline{\sigma}]$ , for given  $0 < \underline{\sigma} < \overline{\sigma}$  (uncertain volatility model)
- $\implies$  The  $\alpha$ -maxmin objective:

$$\begin{split} I(x,R) &= \alpha \inf_{\sigma \in [\underline{\sigma},\overline{\sigma}]} \mathbb{E}^{\mathbb{P}_0} \left[ e^{-rT_R} (K - X_{T_R}^{x,r,\sigma})^+ \right] \\ &+ (1-\alpha) \sup_{\sigma \in [\underline{\sigma},\overline{\sigma}]} \mathbb{E}^{\mathbb{P}_0} \left[ e^{-rT_R} (K - X_{T_R}^{x,r,\sigma})^+ \right]. \end{split}$$

| INTRODUCTION<br>000000000 | The Set-up<br>00000 | Main Results<br>00000 | Applications<br>00000 |
|---------------------------|---------------------|-----------------------|-----------------------|
|                           |                     |                       |                       |
|                           |                     |                       |                       |

Define

$$m_1 := \frac{2r}{\sigma^2}, \quad m_2 := \frac{2r}{\overline{\sigma}^2}.$$

$$a^* := \frac{m_1 \alpha + m_2 (1 - \alpha)}{1 + m_1 \alpha + m_2 (1 - \alpha)} K \in (0, K).$$

#### Proposition

- $\blacktriangleright \mathcal{E} = \{(0,a] : a^* \le a \le K\}.$
- $(0, a^*]$  is optimal among  $\mathcal{E}$ .

"Optimal" in the sense that for any  $a^* \le a \le K$ ,

$$J(x, (0, a^*]) \ge J(x, (0, a]) \quad \forall x \in (0, \infty).$$

▶ *Optimal equilibrium* in Huang & Zhou (2019, 2017).

| Introduction<br>00000000 | The Set-up<br>00000 | MAIN RESULTS<br>00000 | Applications<br>000000 |
|--------------------------|---------------------|-----------------------|------------------------|
|                          |                     |                       |                        |
|                          |                     |                       |                        |

### **OBSERVATIONS**

•  $a^*$  is increasing in  $\alpha \in [0, 1]$ .

- The *larger*  $\alpha$ , the *larger* the optimal equilibrium  $(0, a^*]$ .
- The more risk-averse, the more eager to stop—to exit the uncertain environment.
- When  $\underline{\sigma} = \overline{\sigma} = \sigma$  (no ambiguity),

$$a^* = \frac{2r/\sigma^2}{1+2r/\sigma^2}K.$$

This is exactly the optimal stopping threshold for

$$\sup_{\tau \in \mathcal{T}} \mathbb{E}^{\mathbb{P}_0}[e^{-r\tau}(K - X^{x,r,\sigma}_{\tau})^+]$$

(Theorem 2.7.2 in Karatzas and Shreve (1998)).

| INTRODUCTION | The Set-up | Main Results | Applications |
|--------------|------------|--------------|--------------|
| 000000000    | 00000      | 00000        | 0000●0       |
|              |            |              |              |

# SUMMARY

- Resolves the time-inconsistent stopping problem under the α-maxmin preference
  - ► Allow us to go beyond worst-case (best-case) analysis.
- Focuses on ambiguity aversion, a *cause of time inconsistency* only slightly discussed in the literature.
  - ▶ relative to *non-exponential discounting*, *probability distortion*,...
- Provides a new approach for real options valuation
   *α*-maxmin preference + equilibrium approach
- A new measurable projection theorem.
  - *does not* require specific Borel structure.

| Introduction | The Set-up | Main Results | Applications |
|--------------|------------|--------------|--------------|
| 00000000     | 00000      | 00000        | 00000●       |
|              |            |              |              |

# THANK YOU!!

 "Optimal Stopping under Model Ambiguity: a Time-Consistent Equilibrium Approach" (H. and X. Yu), Available @ arXiv:1906.01232.