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Abstract—This paper analyzes the carrier-to-interference ratio
of the so-called shotgun cellular system (SCS). In the SCS, base-
stations are placed randomly according to a two-dimensional
Poisson point process. Such a system can model a dense cellular
or wireless data network deployment, where the base station
locations end up being close to random due to constraints other
than optimal coverage. The SCS is a simple cellular system where
we can introduce several variations and design scenarios such
as shadow fading, power control features, and multiple channel
reuse groups, and assess their impact on the performance. We
first derive an analytical expression for the characteristic function
of the inverse of the carrier-to-interference ratio. Using this result,
we show that the carrier-to-interference ratio is independent of
the base station density and further, we derive a semi-analytical
expression for the tail-probability. These results enable a complete
characterization of the cellular performance of the SCS. Next, we
incorporate shadow fading into the SCS and demonstrate that
it merely scales the base station density by a constant. Hence,
the cellular performance of the SCS is independent of shadow
fading. These results are further used to analyze dense cellular
scenarios.

Index Terms—Cellular Radio, Co-channel Interference, Fading
channels.

I. INTRODUCTION

A shotgun cellular system (SCS) [1], [2] models minimally
planned cellular systems by considering random placement of
base-stations (BS) in the given region. In this model, the BSs
are placed randomly over the entire plane according to a two-
dimensional (2-D) Poisson point process with a parameter λ,
which is the average BS density for the SCS. The density λ is
assumed to be large enough that the BSs can provide wireless
coverage for a mobile-station (MS) anywhere in the cellular
system. This enables us to focus on the interference-limited
cellular systems, and hence, we analyze the performance of
the SCS by taking the carrier-to-interference ratio, C

I , as the
performance metric. Further, we focus on the downlink (BS
to MS) C

I performance.
The SCS can represent many types of practical deployments.

Dense cellular deployments mix cells of different sizes and
end up with non-hexagonal cells. Uncoordinated deployments,
such as wireless LANs as well as femtocells [3] which are
cellsites placed by MS users in their homes, can appear
random. Random radio placement has been considered in
other wireless network analysis [4], [5]. Here we focus on
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analyzing SCS because they may provide a direct model for
such practical deployments. Another motivation to study SCS
arises from the fact that under shadow fading, the difference
between ideal hexagonal system and the SCS has been shown
to be small [2].

The SCS was analyzed in [2]. It was shown that the
tail probability for the C

I performance metric is given by
Prob

({
C
I > y

∣∣ y ≥ 1, ε
})

= Kεy− 2
ε , where the constant

Kε = Prob
({

C
I > 1

∣∣ ε
})

, and ε is the path loss exponent.
Note that Kε was determined via simulations and the behavior
of the tail probability of C

I in the region 0 ≤ y < 1 was
not characterized. In Section III of this paper, an analytical
expression for the characteristic function of

(
C
I

)−1
is derived.

It is shown that the characteristic function of
(

C
I

)−1
is

independent of λ, and hence, the distribution of C
I is also

independent of λ. A semi-analytical expression for the tail
probability, Prob

({
C
I > y

∣∣ ε
})

∀ y ∈ R, and hence, Kε

is obtained. Thus, the cellular performance of the SCS is
characterized completely. In [2], it was conjectured, based
on Monte-Carlo simulations, that the introduction of shadow
fading to the SCS has no effect on the C

I -performance. In
Section IV of this paper, it is shown analytically that when
shadow fading is introduced to the SCS, the resulting system
is equivalent to another SCS, with a different average BS
density, λ̄ = kλ, where k is a constant which depends on
the distribution of shadow fading. Since the shadow fading
only scales the average BS density λ of the SCS, and the
performance of the SCS is independent of λ, it is shown that
the SCS is invariant to the shadow fading effects. This result
is then extended in Section V to analyze power control in the
SCS. Section VI incorporates multiple channel reuse groups
(CG), Section VII briefly describes the simulation methods,
and the conclusions can be found in Section VIII. Together
these results strengthen the earlier results of [2] and provide
additional insights to the SCS. The next section introduces the
system model.

II. SYSTEM MODEL

This section describes the various elements used to model
the SCS (for more details, see [2], [6]). The BS layout, the
radio environment and the performance metric constitute the
elements of the SCS.
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A. BS Layout

In the SCS, BSs are placed according to a 2-D Poisson point
process. A 2-D Poisson process is described by an average
density parameter, λ. In such a setting, the probability that a
BS exists in an infinitesimal area, dA, is given by λdA. It is
assumed that λ is large enough that the BSs can provide cover-
age throughout the 2-D plane. It can be shown that, if R1 is a
random variable denoting the separation between the MS and
the closest BS, then the probability density function (p.d.f.)
of R1 is given by fR1 (r1) = λ2πr1e−λπr2

1 , where r1 ≥ 0.
Also, the conditional p.d.f. of the ith closest BS condi-
tioned on the (i − 1)th closest BS, can be shown to be
fRi|Ri−1 (ri|ri−1) = λ2πrie−λπ(r2

i −r2
i−1), where ri ≥ ri−1.

Such a model has previously been used to analyze ad-hoc
packet radio networks [4], [5].

B. Radio Environment

In the SCS, all BSs are identical in terms of their trans-
mission powers and antenna gains. Also, the BS and the MS
antennas are assumed to be omni-directional. The signal from
the BS to the MS undergoes path loss. The path loss follows
an inverse power law, and is proportional to R−ε, where ε is
the path loss exponent, and R is the separation between the
BS and the MS. It is assumed that ε > 2. Shadow fading
captures the variations in the received signal power due to
terrain, buildings and other obstructions that may lie between
the BS and the MS. Overall, the received signal power at
the MS in a cellular system, accounting for both the path-
loss and the shadow fading, is given by P = KΨ

Rε , where K
captures the transmission power of the BS and the antenna
gains corresponding to the BS-MS pair, Ψ is the random
shadow fading factor, and R is the separation between the BS
and the MS. The shadow fading is often modeled by taking Ψ
as a random number with a log-normal distribution [6], [7].

The SCS is considered to be an interference-limited cellular
system, where the background noise and the thermal noise are
negligible. As will be shown later, shadow fading effectively
increases the density of a cellular system and further supports
an intereference limited model of the system. In a cellular
system with multiple CGs, adjacent CGs are assumed to be
perfectly orthogonal to each other, and hence, the interference
is only due to the co-channel interfering BSs.

C. Performance Metric

The performance measure that we are concerned about is
the signal quality at the MS. The signal quality is defined as
the ratio of the received signal power to the total interference
power, and is denoted by C

I . For a given CG, the MS listens to
the BS with the strongest received signal power PS , where the
subscript S stands for the signal-carrying BS. The interference
is the sum of the received power from all the other co-channel
BSs and is denoted by PI . Without the shadow fading, the
received signal power may be modeled as P = KR−ε. In
such systems, the BS closest to the MS is chosen as the
signal-carrying BS in order to maximize C

I , and all other BSs
are interfering BSs. When the shadow fading is introduced

to such a system, the signal-carrying BS is not necessarily
the BS closest to the MS. For a typical cellular system, the
C
I at the MS is given by C

I = KSΨSR−ε
S∑

i KiΨiR
−ε
i

, where KS and
{Ki} capture the transmission power and antenna gains of
the signal-carrying BS and the interfering BSs respectively;
ΨS and {Ψi} are the shadow fading factors corresponding to
the signal-carrying BS and the interfering BSs respectively;
RS and {Ri} are the separations between the corresponding
BS-MS pairs.
For the SCS with no shadow fading or power control:

C

I
=

R−ε
1∑

i>1 R−ε
i

, (1)

since all the BSs in the system are identical, and the BS closest
to the MS is the signal carrying BS. This case is analyzed in
Section III. When shadow fading is introduced,

C

I
=

ΨSR−ε
S∑

i ΨiR
−ε
i

, (2)

where the subscript S is used to refer to the signal carrying
BS, the subscript i is used to index the interfering BSs in the
resulting system. This case is analyzed in Section IV. When
power control features are introduced to the SCS,

C

I
=

KSR−ε
S∑

i KiR
−ε
i

, (3)

where, as before, the subscript S refers to the signal carrying
BS, subscript i is used to index the interfering BSs. In
the resulting system, each BS has a different transmission
gain; KS captures the transmission gain corresponding to
the signal-carrying BS and {Ki}’s are the transmission gains
corresponding to the interfering BSs. This system is analyzed
in Section V.

III. CARRIER TO INTERFERENCE RATIO OF SCS

In this section, Theorem 1 is presented, where an analytical
expression for the characteristic function of

(
C
I

)−1
is derived.

Based on this theorem, a semi-analytical expression for the
tail probability of C

I is obtained. Using the tail probability,
an expression for the constant Kε (defined in Section I), is
obtained.

Theorem 1: The characteristic function of
(

C
I

)−1
for the

SCS is given by Φ(C
I )−1 (ω) = 1

1F1(− 2
ε ;1− 2

ε ;iω) , where

1F1 (·; ·; ·) is the Confluent hypergeometric function. For the
SCS with an average BS density λ, the distribution of C

I is
independent of λ.

Proof: In this proof, without loss of generality, the MS is
assumed to be at the origin, and the system extends over the
entire plane. First, the characteristic function of PI (defined in
Section II-C) is obtained for a given realization of R1 (defined
in Section II-A). Let r1 denote one particular realization of R1.
The entire 2-D plane is divided into 2 regions; the first region
being a circular area of radius r1 centered at origin, and the
second region is a ring from r1 to rB , where rB will be taken
to infinity later. The second region is further partitioned into
N − 1 concentric non-overlapping rings defined by the outer
radius rj = r1 + (j − 1)∆r, for j = 2, 3, · · · , N . Each ring
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has an incremental thickness ∆r = rB−r1
N−1 , and an incremental

area 2πrj∆r. In each of these rings, a Bernoulli test is
conducted to check whether there exists a BS or not, which,
by the definition of the Poisson point process, happens with
the probabilities λ2πrj∆r+o (∆r) and 1−λ2πrj∆r+o (∆r)
respectively (the probability that there exists more than one BS
in each ring is negligible since ∆r is taken to be very small).
The consequence of the Bernoulli test is mapped to a Bernoulli
random variable Xj , which takes on values Kr−ε

j and 0
respectively, to indicate the contribution to the interference
at the MS from the jth ring. Here, K is the quantity defined
in Section II-B and is constant for all BSs in the SCS. By
construction, {Xj} is a set of independent random variables
conditioned on a realization of R1 (i.e. r1). This is summarized
as

Prob
({

Xj = Kr−ε
j

})
= λ2πrj∆r + o (∆r)

Prob ({Xj = 0}) = 1 − λ2πrj∆r + o (∆r) , (4)

where rj > r1, and PI =
∑N

j=2 Xj . Now, the characteristic
function of Xj conditioned on R1 can be written as

ΦXj |R1(ω | r1)

= 1 + λ2πrj∆r

( ∞∑

k=1

(
iωKr−ε

j

)k

k!

)
(5)

= exp

(
λ2πrj∆r

( ∞∑

k=1

(
iωKr−ε

j

)k

k!

))
+ o (∆r) ,(6)

where the higher order powers of ∆r are included, to obtain
(6) from (5). Using (6), the characteristic function of PI

conditioned on R1 is given by

ΦPI |R1(ω|r1)

(a)
= lim

rB→∞
lim

N→∞

N∏

j=2

ΦXj |R1 (ω|r1)

(b)
= lim

rB→∞
lim

N→∞
exp




N∑

j=2

λ2πrj∆r

( ∞∑

k=1

(
iωKr−ε

j

)k

k!

)



+o (∆r)

(c)
= exp




∞∫

r=r1

λ2πr

( ∞∑

k=1

(iωKr−ε)k

k!

)
dr





(d)
= exp




∞∑

k=1



 (iωK)k λ2π
k!

∞∫

r=r1

r1−kεdr









(e)
= exp

(
−λπr2

1

(
−1 +

∞∑

k=0

(
iωKr−ε

1

)k ×
(
− 2

ε

)
k

k! × (1 − 2
ε )k

))

(f)
= exp

(
λπr2

1

(
1 −1 F1

(
−2
ε
; 1 − 2

ε
; iωKr−ε

1

)))
, (7)

where (a) follows from the definition on PI ; (b) follows from
the fact that PI is the sum of {Xj} which are independent
random variables, (c) transforms the infinitesimal summation
to an integration over the entire range, (d) exchanges the
orders of summation and integration (justified by the con-
vergence of the integral due to the fact that ε > 2), (e) is

obtained by rewriting the result of the integration in terms of
Pochammer symbol (a)k, defined as (a)k = a(a + 1) · · · (a +
k − 1), (a)0 = 1, a '= 0, and finally (f) is obtained by
relating the summation in (g) to a Confluent hypergeometric
function. A Confluent hypergeometric function is defined by

1F1 (a; b;x) =
∑∞

k=0
xk(a)k
k!(b)k

.
Now, taking the expectation with respect to R1 on

Φ(
PI
PS

)
|R1

(ω|r1) gives the unconditioned characteristic func-

tion of
(

C
I

)−1 = PI
PS

. Note that PS = KR−ε
1 (see Section

II-C) conditioned on R1 is just a constant. Thus, the charac-
teristic function of

(
C
I

)−1
is

Φ(C
I )−1 (ω)

(a)
= ER1

(
Φ(

PI
PS

)
|R1

(ω|r1)
)

(b)
=

∞∫

r1=0

λ2πr1e
−λπr2

1e(λπr2
1(1−1F1(− 2

ε ;1− 2
ε ;iω)))dr1

(c)
=

1
1F1

(
− 2

ε ; 1 − 2
ε ; iω

) , (8)

where (a) follows from the definition of expectation, (b) is
obtained by finding Φ PI

PS
|R1

(ω|r1) in terms of ΦPI |R1 (ω|r1)
and expanding the expectation in the integral form, and (c)
follows directly from the integration. From (8), it follows that
the characteristic function of

(
C
I

)−1
is not a function of the

BS density. Hence, the distribution of C
I is also independent

of λ.
Figure 1 shows the plot of the moments of

(
C
I

)−1
obtained

from the characteristic function compared with those obtained
by Monte-Carlo simulations (for details, see Section VII). It is
clear that the simulation result approaches the true moment as
the number of iterations are increased. Still, there is some
gap even for iterations as high as 150000. Thus, having
an analytical expression actually helps as enhanced accuracy
is gained in addition to the fact that the need to perform
simulations in order to derive information about the SCS
performance is obviated.

Using the above characteristic function, an expression for
Prob

({
C
I > y|ε

})
, and thus, Kε can be obtained.

Prob
({

C

I
> y

})

(a)
=

y−1∫

x=0

∞∫

ω=−∞

Φ(C
I )−1 (ω) e−jωx dω

2π
dx

(b)
=

∞∫

ω=−∞

Φ(C
I )−1 (ω)




y−1∫

x=0

e−jωxdx




dω

2π
(9)

(c)
=





1, if y ≤ 0

∫∞
ω=−∞Φ(C

I )−1 (ω)
(

1−e−jωy−1

jω

)
dω
2π , if y > 0,

where (a) is obtained by writing the p.d.f. of
(

C
I

)−1

in terms of its characteristic function, (b) is obtained by
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Figure 1. Comparison of mth moments of
(

C
I

)−1
obtained analytically

with those obtained through simulations.

interchanging the order of integrations, and (c) summarizes
Prob

({
C
I > y

})
for all values of y. Note that, in the expres-

sion for the tail probability of C
I shown in (9), only the last

step requires a numerical integration. From (9),

Kε =
∞∫

ω=−∞

Φ(C
I )−1 (ω)

(
1 − e−jω

jω

)
dω

2π
. (10)

Figure 2 shows the plot of Kε vs ε comparing the semi-
analytical expression with the Monte-Carlo simulations. This
shows that this work is consistent with the previous attempts
(cf. Fig. 4 of [2]) and precludes the need for a purely numerical
approach. The performance of the SCS without shadow fading
is now completely characterized.

IV. SCS PERFORMANCE WITH SHADOW FADING

In this section, the SCS is analyzed when the shadow
fading is introduced. For such a system, the expression for
C
I is given in (2). This is because the MS chooses the BS
corresponding to the strongest received power as the signal-
carrying BS, and the signal-carrying BS need not necessarily
be the closest BS. Theorem 2 analytically shows that the effect
of the introduction of shadow fading to the SCS is completely
captured in the average BS density. Also, it establishes the
invariance of the performance, i.e. the C

I metric, of the SCS
to the shadow fading.

Theorem 2: When shadow fading in the form of indepen-
dent and identically distributed (i.i.d) non-negative random
factors, {Ψi}, is introduced to the SCS with an average BS
density λ, in such a way that the Ψi’s are independent of
the random BS placement in the SCS, the resulting system
is equivalent to another SCS with a different constant BS
density λ̄, where λ̄ = λEΨ

[
Ψ 2

ε

]
, EΨ [·] is the expectation

operator w.r.t the random variable Ψ, and where fΨ(·) is
the p.d.f. of Ψ. Such an equivalence is valid as long as∫∞
ψ=0 ψ

2
ε fΨ (ψ) dψ < ∞.

Proof: The expression for C
I may equivalently be written

as C
I = R̄−ε

1∑
i>1 R̄−ε

i

, where R̄1 = RSΨ
− 1

ε
S and R̄i ≡ RiΨ

− 1
ε

i .
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Figure 2. Comparison of the Kε = Prob
({

C
I > 1

∣∣∣ ε
})

obtained
through Monte-Carlo simulations with that obtained from the semi-analytical
expression for various path loss exponent values.

Recall that the subscript ‘S’ is used to refer to the signal-
carrying BS, the subscript ‘1’ is used to refer to the BS closest
to the MS, and the subscript ‘i’ is used to index the interfering
BSs. This expression is similar to the C

I expression for the SCS
(see Equation (1)), with the R̄’s replacing the R’s. For the rest
of the proof, let R be the the random variable representing the
radial distance from the MS to a base station. Then, recall from
the Poisson point process, that the probability that there is one
BS in R ∈ (r, r + ∆r) is given by λ2πr∆r+o (∆r). Let this
probability measure be denoted by P (1; r, r + ∆r). Similarly,
P (0; r, r + ∆r) = 1 − λ2πr∆r + o (∆r). For the SCS, this
is the probability that there is a BS in the ring of radius r and
thickness ∆r. Note that there can be either one or no BSs in
this ring and the probability that there exists more than one BS
is negligible. Such a construction has already been described
in the proof of Theorem 1. Now, let R̄ = RΨ− 1

ε , where R is
as defined before, Ψ is the shadow fading factor corresponding
to the BS in the ring, and R̄ is the corresponding equivalent
radial distance. Here, it is shown that R̄ follows the same type
of distribution as R, and hence, R̄ can be viewed as a radial
distance corresponding to some point in a new SCS with a
new average BS density. The probability P̄ (1;x, x+∆x) that
there is a base station such that R̄ ∈ (x, x + ∆x) is

P̄ (1;x, x + ∆x)
(a)
= Prob

({
1 BS in R̄ = RΨ− 1

ε ∈ (x, x + ∆x)
})

(b)
= EΨ

[
Prob

({
1 BS in R ∈

(
xΨ

1
ε , (x + ∆x)Ψ

1
ε

)})]

(c)
= EΨ

[
λ2πx∆xΨ

2
ε + o

(
∆xΨ

1
ε

)]

(d)
= λ2πEΨ

[
Ψ

2
ε

]
∆x + o (∆x) , (11)

where (a) follows from the definition, (b) is obtained
by rewriting the event in terms of every realization of
Ψ, (c) follows from the definition of R, (d) follows
as long as EΨ

[
Ψ 1

ε λ
(
xΨ 1

ε

)]
< ∞ and the condition
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lim
∆x→0

EΨ

[
o
(
∆xΨ

1
ε

)

∆x

]
= EΨ

[
lim

∆x→0

o
(
∆xΨ

1
ε

)

∆x

]
holds. In a

similar fashion, it can be shown that P̄ (0;x, x + ∆x) =
1−λ2πEΨ

[
Ψ 2

ε

]
∆x+ o (∆x) , under the same conditions as

mentioned above. It can also be shown that the random vari-
ables representing the number of BSs in two non-overlapping
intervals are independent of each other. Hence, R̄ follows a
2-D Poisson point process with an average BS density λ̄.

It is clear that the equivalent system is a SCS with an
average BS density λ̄. Remarkably, the effective density λ̄ is a
constant dependent on the shadow fading distribution, as long
as

∫∞
u=0 u

2
ε fΨ(u)du converges. Note that this result holds true

for a large class of distributions for the shadow fading factor
Ψ, which satisfy the convergence formula shown above.
Now, a specific distribution for the shadow fading is consid-
ered to demonstrate the use of Theorem 2. Recall that the
shadow fading is well modeled by a log-normal distribution.
So, consider {Ψi} to be a sequence of i.i.d Log − N(0,σ2)
random variables. Using Theorem 2, the equivalent system is
a SCS with an average BS density λ̄ = λ exp

(
2σ2

ε2

)
. Since

the exponential function is always greater than one, it follows
that the effective average BS density in the equivalent SCS
is at least as high as the average BS density of the SCS to
which log-normal shadow fading is introduced, i.e., the BSs
in the equivalent SCS are closer to each other compared to
the original system.

As a result of Theorem 2, any system resulting from the
introduction of shadow fading to the SCS may be viewed as
another SCS with a different average BS density. Theorem 1
gives an expression for the tail probability of C

I metric and
also shows that the metric is independent of the average BS
density. Combining these two results, it is inferred that the
distribution of C

I is invariant to shadow fading effects. Thus,
the performance of the SCS remains the same even in the
presence of shadow fading.

V. SCS WITH POWER CONTROL AND RANDOM ANTENNAS

In this section, some variants of the power control features
generally incorporated in practical cellular systems are con-
sidered and their effect on the performance of the SCS is
analyzed. In the SCS, all BSs are assumed to be identical
in terms of transmission powers, antenna gains, etc. In prac-
tical cellular systems, the signal-carrying BS generally has a
transmission power different from the interfering BSs. This
difference follows from two factors. First, the interfering BSs
are communicating with MSs in their vicinity and controlling
the transmitted power based on the relative locations of
these MSs. Second, in schemes such as CDMA the signal-
carrying BS transmits a desired signal and orthogonal to other
signals. The interfering BSs are sending the so-called pseudo
orthogonal signals. The result is that the signal and interfering
BS powers differ by a systematic factor.

Let the systematic factor be a parameter α. Hence, the
received signal power at the MS is PS = αKR−ε

S and the
interference is PI =

∑
i KR−ε

i , where {Ri} is the set of
distances between the MS and the interfering BSs. Thus,

the performance metric of the SCS with such a variation is
given in (3). For this system, the tail probability is equal
to Prob

({
C
I > y

α

}∣∣ ε
)

of the SCS. Note that when shadow
fading is introduced to this system, the tail probability is still
the same. This inference is made based on Theorem 2 and
relies on the fact that the distribution of the shadow fading
factor satisfies the constraint mentioned in the theorem.

Further, in case of a CDMA cellular system with perfect
power control, the systematic factor, α, is not just a constant
(as in the previous case), but is a function of the C

I . A perfect
power control feature ensures constant C

I performance at the
MS, at all times. Using the SCS, such a situation is modeled by
making α = y

(
C
I

)−1
, where y is the constant performance

seen by the MS. The result in Theorem 1 can be used to
characterize α completely, when the α’s of all the BSs are
modeled as independent random factors.

Now, consider a second variation where the BS powers
and the antenna gains vary as a random process. Let the
transmission powers and the antenna gains between BSs be
uncorrelated. This can be captured by making the factor K of
each of the BS random. Consider such a power control feature
along with the shadow fading is introduced to the SCS with an
average BS density, λ. Then, the received power at the MS is
given by P = Ψ̄

Rε , where Ψ̄ = KΨ is a random variable.
Here, Theorem 2 directly applies, and one can conclude
that the distribution of C

I of such a system is invariant to
the distribution of Ψ̄, as long as

∫∞
u=0 u

2
ε fΨ̄ (u) du < ∞

where fΨ̄(·) is the p.d.f of Ψ̄. For example, when {Ki} and
{Ψi} are i.i.d log-normal random variables with mean 0 and
variances σ2

K and σ2
Ψ respectively and independent of each

other, then
{
Ψ̄
}

is a sequence of i.i.d Log-N
(
0,σ2

K + σ2
Ψ

)

random variables, and therefore, from Theorem 2, such a
system is equivalent to the SCS with an average BS density

λ̄ = λexp
(

2(σ2
K+σ2

Ψ)
ε2

)
. From Section III, the performance

of such a system is also completely characterized.
Consider instead the case when an ideal sectorized antenna

is used with gain G and beamwidth θ. Let this antenna be
randomly oriented so that a BS faces the MS with probability
θ
2π in which case K = G. Otherwise K = 0. In this case,
from Theorem 2, λ = λG

2
ε

θ
2π .

Note that, with the results obtained for the SCS in Section
III and Section IV, it has been possible to completely charac-
terize the performance of more and more complex systems as
shown above.

VI. SCS WITH MULTIPLE CGS

Wirelees LAN BSs (also known as access points) based
on the IEEE802.11 standard are often assigned one of three
channels. Cellular systems often use more than one chan-
nel. The impact of introducing multiple CGs to the SCS is
presented here. Let N denote the number of CGs indexed
k = 1, 2, · · · ,N . Also, let the BSs be assigned a CG ran-
domly, where pk is the probability that the kth CG is assigned
to the BS. A SCS having an average BS density λ, with such
a random CG assignment strategy is equivalent to N indepen-
dent SCSs with average BS densities p1λ, p2λ, · · · , pNλ
respectively [2]. Hence,
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Figure 3. Comparison of C
I performance of SCS with N CGs.

Prob
({

C

I
> y

∣∣∣∣ ε, N
})

= 1 −
[
Prob

({
C

I
≤ y

∣∣∣∣ ε
})]N

.

In [2], an analytical expression for the above tail probability
was shown for a simple case where the SCS has only two BSs.
Using the results in Theorem 1, this tail probability may be
obtained for any point in the support of C

I . Figure 3 shows
the plot of this tail probability and illustrates the performance
improvement that can be acheived by having additional CGs.
Hence, the performance of the SCS with multiple CGs is
also completely characterized. By combining Theorem 1 and
Theorem 2, the impact on the performance of the SCS to
which shadow fading is introduced along with the multiple
CGs is also completely characterized. An SCS with multiple
CGs models the cellular systems based on FDMA and TDMA-
FDD access methods. The performance of such systems are
also completely characterized using the results presented here.

VII. SIMULATION METHODS

In this section, the details of simulating the SCS, as used for
Figures 1 and 2, are presented. A single trial (or an iteration)
in the experiment involves generating the SCS layout having
M BSs centered at the origin, placing the MS, computing
the received powers for each BS using the path loss exponent
ε, and finally, computing the C

I for the MS. Note that the
distribution of C

I is obtained by repeating the trial T times,
where each trial is independent of the other. Without loss
of generality, the MS is placed at the origin. For the SCS
layout, the distances of the first M nearest BSs are generated
using the p.d.f.’s mentioned in Section II-A. Then, the recieved
powers and the C

I can be computed. The introduction of
shadow fading to the SCS may be incorporated by multiplying
each of the received powers with a random number generated
according to Log − N(0,σ2

Ψ). The introduction of random
transmission gains to the SCS is also incorporated into the
simulation in a similar way as it is done for the shadow

fading case. When multiple CGs (say N CGs) are introduced,
this situation is implemented by choosing one of the N CGs
for each BS uniform randomly. In general, M = 20000, and
T = 20000 is for all the simulations in this paper unless
specified otherwise.

.

VIII. CONCLUSIONS

In summary, the performance of an interference-limited SCS
is investigated based on the C

I metric. The analytical results
shown here prove the previous conjectures made about the
SCS, and help completely characterize the performance of
the SCS in practical scenarios more accurately. It is also
demonstrated that the performance of the SCS is independent
of the shadow fading effects, for a large class of shadow fading
distributions. This surprising result, was originally conjectured
in [2]. The results in this paper allow the consideration of
many other sources of heterogeneities into the SCS, making
the system more complicated, and still characterize their
performances accurately. For example, the distribution of the
C
I of the system, which is formed by introducing random
shadow fading, random transmission gains of the BSs and
multiple CGs all at once, into the SCS is obtainable using
the results in this paper. This motivates us to introduce more
constraints and variations that are typical of practical systems,
into the SCS and check what the impact of such variations on
the SCS say about the practical cellular systems.

In practical cellular systems, the BS density is generally
larger in densely populated areas. The approximation of con-
stant BS density is valid as long as the path loss exponent is
large enough that the larger scale variations in BS density
can be ignored. The effect of variable BS densities, and
more quantitative conditions on the range of validity of a
constant BS density aproximation, will be explored in the
future. Further application of our results to particular systems
such as wireless campus LANs and distributed femtocell BSs
with closed subscriber sets will be pursued later, however, the
system considered here models the simple femtocell scenarios
when the MS is close to the home femtocell.
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