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This is taken from Chapter 9.1 “Sequences and series of numbers” by Patrick Fitzpatrick in Advanced
Calculus (2nd edition). This is the text used by the undergrad analysis class at CU. You are responsible for
knowing this on the analysis prelim. Note that other basic analysis and advanced calculus topics that you
are responsible for include:

• Integration of functions of several variables: line and volume integrals in 2D, line, surface, and volume
integrals in 3D.

• Differentiation: gradient, curl, divergence, Jacobian. Connection between rotation-free vector fields
and potential fields. Partial integration, Green’s theorems, Stokes’ theorem, Gauss’ theorem. The
consequences of these theorems for vector fields that are divergence or rotation free.

Basics
All numbers are taken to be real numbers. There are two basic principles behind convergent sequences: the
Cauchy criterion (completeness), and the monotone convergence theorem (compactness).

1. Monotone convergence theorem aka MCT. A monotone sequence of numbers converges iff it is
bounded

2. Proposition: Every convergent sequence is Cauchy

3. Lemma: Every Cauchy sequence is bounded

4. Theorem: a sequence converges iff it is Cauchy

Convergence tests for series
We write

∑
to mean

∑∞
n=1 or

∑∞
k=1.

1. Proposition: Suppose the series
∑
an converges. Then limn→∞ an = 0

2. Proposition: If |r| < 1 then
∑
rk = (1− r)−1.

3. Theorem: if (ak) is non-negative, then the series
∑
ak converges iff the sequence of partial sums is

bounded. Trivial proof by MCT.

4. Corollary: The comparison test. Suppose (ak) and (bk) are sequences such that 0 ≤ ak ≤ bk for all
k. Then

∑
ak converges if

∑
bk converges, and

∑
bk diverges if

∑
ak diverges.

5. Corollary: The integral test. Let (ak) be a sequence of non-negative numbers, and suppose the
function f : [1,∞) → R is continuous and monotonically decreasing and f(k) = ak. Then the series∑
ak converges iff the sequence of integrals (ik) is bounded, for ik =

∫ k

1 f(x) dx.
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6. Example: the series
∑

1/((k + 1) log(k + 1)) diverges. We show this by integrating the function from
1 to n, which gives log(log(n+ 1))− log(log(2)), which is not bounded.

7. Corollary: The p-test. For a positive number p, the series
∑
k−p converges iff p > 1. Prove via the

integral test with x−p.

8. Example: the series
∑
k/ek converges. Proof: by Taylor series, for any b > 0 we have eb > b3/6.

Hence, for any k, k/ek < 6/k2, and the series
∑

1/k2 converges.

9. Theorem: Alternating series test. Suppose (ak) is monotonically decreasing and converges to 0,
then the series

∑
(−1)k+1ak converges. Proof sketch: let sn be the partial sums. The subsequence (s2n)

is monotonically decreasing (hence bounded) and non-negative, so it converges. But s2n+1 approaches
s2n as n→∞, so it also converges.

10. Example:
∑

(−1)k+1/k converges (in fact, it converges to log(2)).

A few more convergence tests. These are based on the Cauchy criterion instead of the MCT:

1. The series
∑
ak converges iff for every ε > 0 there is N such that |an+1 + . . . + an+k| < ε for all

n ≥ N and all k ∈ N. Proof: definition of convergence and Cauchy sequence, plus Cauchy criterion
(i.e., completeness of the reals).

2. Definition: the series
∑
ak is said to converge absolutely if

∑
|ak| converges. If the series converges

but not absolutely, we say it converges conditionally.

3. Corollary: The absolute convergence tests. An absolutely convergent sequence converges.

4. Example:
∑

sin(k)/k2 converges (since it converges absolutely).

5. Example:
∑

(−1)k+1/k converges conditionally.

6. Theorem: (linear/geometric convergence) suppose there is r ∈ [0, 1) such that |an+1| ≤ r|an| for all n
sufficiently large. Then

∑
ak is absolutely convergent. Proof:

∑
r−n ≤ (1− r)−1.

7. Corollary: The ratio test for series. If limn→∞ |an+1|/|an| = `, then if ` < 1 the series converges
absolutely, and if ` > 1 the series diverges (for ` = 1, the test does not give any information).

We also have (from chapter 2 of Fitzpatrick) some basic criteria for sequences to converge. Suppose (an)
and (bn) converge to a and b respectively, then (an + bn) converges to a+ b. Similarly for multiplication of
sequences, as well as scalar multiplication. There are similar results for division.
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