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The effect of self-consistency on Hamiltonian systems with a large number of degrees of freedom is investigated 
for the beam-plasma instability using the single-wave model of O’Neil, Winfrey, and Malmberg. The single-wave 
model is reviewed and then rederived within the Hamiltonian context, which leads naturally to canonical action-angle 
variables. Simulations are performed with a large (1 04) number of beam particles interacting with the single wave. It 
is observed that the system relaxes into a time asymptotic periodic state where only a few collective degrees are active; 
namely, a clump of trapped particles oscillating in a modulated wave, within a uniform chaotic sea with oscillating 
phase space boundaries. Thus self-consistency is seen to effectively reduce the number of degrees of freedom. A simple 
low degree-of-freedom model is derived that treats the clump as a single macroparticle, interacting with the wave 
and chaotic sea. The uniform chaotic sea is modeled by a fluid waterbag, where the waterbag boundaries correspond 
approximately to invariant tori. This low degree-of-freedom model is seen to compare well with the simulation. 

1. Introduction 

Chaotic motion in Hamiltonian systems is 
common whenever there is more than one de- 
gree of freedom [ 11. Often, the systems studied 
are low dimensional approximations of many 
degree-of-freedom systems. In some cases, such 
as planetary dynamics, highly accurate descrip- 
tions can be given with only a few degrees of 
freedom. However, there are many situations, 
such as galactic dynamics, where the number 
of degrees of freedom is essentially infinite. 
Generally, one expects such systems to exhibit 
greater chaos when the dimension increases; 

1 Posthumous. Prepared by J.D.M. and P.J.M. 

furthermore, some effects such as “Amol’d dif- 
fusion” are possible only with a larger number 
of degrees of freedom. Even in high dimensional 
cases it is often of interest to study a low dimen- 
sional approximation, for example to study the 
motion of a single star in a given galactic grav- 
itational potential-this was the motivation for 
the classic study of H&on and Heiles (see ref- 
erences in [ I] ). Such an approximation is not 
self-consistent. Other well studied examples of 
this type include the motion of charged particles 
in electromagnetic fields, where the fields pro- 
duced by the particles are ignored; the motion 
of tracer particles in a fluid, where the influence 
of these particles on the fluid velocity field is 
ignored (the passive advection problem); ‘and 
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the so-called “kinematic” dynamo, where a ve- 
locity field can intensify a magnetic field, but 
the back-reaction of the field is ignored. 

There has been little work on the effect of self- 
consistency. In this paper we show how it is pos- 
sible in a system with a large number of degrees 
of freedom for the inclusion of self-consistency 
to result in dynamics with “effectively” few de- 
grees of freedom. 

The model considered here treats self- 
consistency in the simplest possible way. A 
large number of noninteracting particles are in- 
fluenced by a time dependent potential. The 
Hamiltonian for each particle has one and a 
half degrees of freedom, and so the motion 
can be chaotic. However, each of the parti- 
cles is charged and therefore contributes to the 
potential-this is the self-consistent effect. In 
the model, we assume that the field has a single 
degree of freedom; i.e., the spatial dependence 
of the field is given. Thus each particle experi- 
ences forces due to the others, but only to the 
extent that the other particles contribute to the 
single mode of the field. This is in contrast to 
the fully self-consistent n-body dynamics, where 
each particle interacts directly with every other 
particle. This latter case is considerably more 
difficult. 

Models similar to the one described above 
may be appropriate for many physical situations; 
for example, a galaxy with a predominantly axi- 
symmetric gravitational potential that is per- 
turbed by a small number of modes, say those 
corresponding to spiral density waves. Each 
star contributes to these modes, and also has a 
possibly chaotic motion in the corresponding 
field. Similar effects occur for planetary rings, 
beam-beam interactions in accelerators, tearing 
mode-plasma interactions in tokamaks, etc. 

The specific problem we consider is the beam- 
plasma instability. The formulation is due to 
O’Neil, Winfrey and Malmberg (hereafter re- 
ferred to as OWM) [2], see also [ 31. Here a 
beam of charged particles moves in a back- 
ground neutral plasma. The system is unstable 

to the formation of electrostatic plasma waves. 
Following [2] we suppose that the most unsta- 
ble of these waves predominates, and neglect the 
remainder of the modes-this is easily justified 
during the linear part of the evolution. OWM 
showed that the wave grows in amplitude un- 
til it traps the beam particles. It then saturates 
and begins to oscillate in amplitude as the beam 
particles slosh in the wave potential. At this 
point in the general case, modes with wavenum- 
bers nearby that of the initial wave (“sideband” 
modes) begin to grow and eventually attain am- 
plitudes comparable to the original wave [4]. 
We neglect these modes; this is justified, for 
example, if the system has a finite length, and 
the sideband wavenumbers are forbidden by 
periodic boundary conditions. 

The oscillations of the single wave after satura- 
tion were studied by Mynick and Kaufman [ 5 1. 

In their model, the beam was represented by 
a rigid bar in phase space. When the beam is 
trapped in the wave, the rigid bar begins to ro- 
tate. Mynick and Kaufman computed the fre- 
quency shift and amplitude oscillations of the 
wave as it interacts with this rigid bar. Smith 
and Pereira [6] noted that since the amplitude 
of the plasma wave oscillates, the beam parti- 
cles can experience chaotic motion. They stud- 
ied the motion of a test particle in a model of 
this oscillating field and showed that much of the 
test particle phase space is indeed chaotic. How- 
ever, there is an island in the phase space where 
the motion is regular; they noted that some frac- 
tion of the beam particles in the numerical ex- 
periments of OWM should find themselves in 
the correct region of phase space to be trapped 
in this oscillating island. Later Adam, Lava1 and 
Mendonca [ 7 ] studied a model in which a single 
bunch of particles, which we will call a macropar- 
tide, interacts with the plasma wave. As we will 
show below using the Hamiltonian formulation, 
this two degree-of-freedom system is integrable 
due to the existence of a phase symmetry. In [ 71 
it was shown that the macroparticle system has 
solutions which correspond to periodic oscilla- 
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tions of the bunch in the wave. 
Related self-consistent problems include 

the interaction of a single particle with many 
waves [ 81 and the interaction of one wave with 
many other waves [ 9 1. The more complicated 
problem is the fully self-consistent interaction 
of many particles with many waves [lo], i.e. 
wave-particle turbulence, and it is not clear if 
the analysis of this paper can give any insight 
into this case. 

In Section 2 we review the derivation of the 
OWM model, obtaining the Hamiltonian formu- 
lation of [ 5 ] directly from the Vlasov-Poisson 
equations. Section 3 discusses numerical solu- 
tions of the OWM equations with up to 1 O5 beam 
particles. As was observed in [ 31, the simula- 
tions show that the linear instability saturates 
and oscillates about a finite amplitude. We ob- 
served at least 100 periods of these oscillations; 
as far as we can determine, the oscillations per- 
sist and the system becomes asymptotically pe- 
riodic. We study the motion of a single test par- 
ticle in this periodic potential, showing that a 
substantial portion of the original beam is in- 
deed trapped in a stable island in the test par- 
ticle phase space. However more than half the 
beam finds itself in the chaotic region of phase 
space, and spreads more or less uniformly over 
this region. The upper and lower boundaries of 
this “chaotic sea” are formed from invariant tori 
of the test particle system. 

In Section 4 we construct a four degree-of- 
freedom model. One degree of freedom is the 
wave, the second corresponds to the trapped 
bunch of beam particles-the macroparticle, 
and the last two describe the chaotic sea. These 
two degrees of freedom describe the oscilla- 
tions of the boundary of the chaotic sea and are 
derived from the “waterbag” approximation. 
A waterbag consists of a constant phase space 
density between two moving boundaries. In our 
case the simulations show that the phase space 
density of the chaotic particles is indeed nearly 
constant and the boundaries of the chaotic zone 
are formed from invariant surfaces well out- 

side the oscillating separatrix of the wave. We 
model these boundaries with sinusoidal curves, 
an assumption consistent with that of the single 
mode in the potential. Finally, the frequency 
shift of the trapped particle oscillations due to 
the chaotic sea is computed analytically from 
this model. 

2. Single wave model 

O’Neil, Winfrey, and Malmberg (OWM) [2] 
introduced the single wave model to describe the 
growth and saturation of the weak beam-plasma 
instability. In this section we briefly review the 
approximations made in their derivation, red- 
erive the model within the Hamiltonian context 
and obtain the Hamiltonian form previously pre- 
sented by Mynick and Kaufman [ 51, discuss lin- 
ear instability, and finally consider a special case 
where only a single beam particle is included. 

2.1. Derivation 

To obtain the single wave model, the response 
of the plasma and beam to the fields are treated 
separately. We consider only the one dimen- 
sional, collisionless, nonrelativistic, electrostatic 
case. The total electron density 

n(&t)=nr(&t) + nbkt) 

=n,(x,t) + e6(x-xj(I)) (1) 
j=l 

is a sum of contributions from the plasma and 
from a set of N beam particles at positions Xj (t ). 
Beam particles evolve according to the fully non- 
linear force equation 

i?Zij = -eE(Xj, t) , (2) 

where the electron charge is -e. 
A basic assumption of the model is that the 

phase velocity of the resulting instability is much 
larger than the velocities of particles in the back- 
ground plasma: the plasma responds nonreso- 
nantly, and trapping effects of plasma particles 
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in the wave can be neglected. This implies that 
the plasma responds approximately linearly to 
the wave so that we can define a linear hermitian 
dielectric operator ? such that 

4xen,(x,t) = (1 - T)$‘(X, t) , (3) 

where Q, is the electrostatic potential, E = -$. 
Substituting this into Poisson’s equation for a, 
yields 

TV = 47renb(x, t) . (4) 

For a homogeneous plasma, E^ is a convolution 
operator in both x and t, and Poisson’s equa- 
tion is most easily treated by Fourier transform. 
In this representation the dielectric operator be- 
comes a real function, E (k, w ) . For a weak beam, 
the right hand side of Eq. (4) is “small” implying 
that the electrostatic response is dominated by 
the zeros, E (k, we (k ) ) = 0, of the dielectric. It 
is a reasonable approximation to expand E about 
one such zero retaining only the first derivative 
of e with respect to o: 

=e’(o--coo). (5) 

For example, for a cold plasma E = 1 - wi/02, 
and de/boloZoO = E’ = 2/o,. Transforming 
back to the time domain and using Eq. (4) then 
gives 

41ce N I& + iocEk = - c 
kLc’ j=l 

e-i/CXj (1) 

’ 

(6) 

where we have used the Fourier transform of the 
beam density of Eq. ( 1) : 

L 

n,(k,t)=; 
J 

dx edikx nb (x, t) 

0 

(7) 

with L defining the periodicity length of the sys- 
tem. 

At this point we assume that the electrostatic 
field has only one spatial Fourier component, 
i.e., that there is a single wave. It is expected 
that the single wave approximation is appropri- 
ate when the width of the unstable spectrum in 
k-space is relatively narrow in units of 2x/L. 
In this case, if k represents the most unstable 
mode, the amplitude of all other Fourier com- 
ponents will be exponentially smaller than the 
single wave during the linear growth stage. Of 
course, some time after nonlinear saturation of 
the instability, the other modes will become im- 
portant. As is well known, the width of the un- 
stable spectrum depends on the small parameter 
(?zb/?rp ) ‘i3, so that the single wave model will be 
most appropriate in the weak beam case. 

Under the single wave assumption Eq. (2) 
yields 

ij =Pj/?Tl, 

I;i = -e (,Q eikxj +E_k e-ikxi) . (8) 

Equation (8) together with Eq. (6) are the closed 
dynamical system that governs the interaction of 
a single wave with the beam particles. 

2.2. Hamiltonian structure and derivation 

Now consider the derivation of the equations 
of motion, Eqs. (6 ) and (8 ) , within the Hamil- 
tonian context. The derivation proceeds by first 
considering the kinematics, i.e. the dynamical 
variables used to describe the state of the system, 
and then the dynamics, obtained by finding the 
appropriate Hamiltonian. 

We begin the first part by supposing that 
the electrons are described by specifying their 
phase space coordinates (Xj, pj ), where j = 
1,2,..., M. The first N( < M) of these parti- 
cles are singled out to represent the beam dy- 
namics, while the remaining M - iV particles 
represent the background plasma. The phase 
space density, i.e. distribution function, can be 
represented as follows: 
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f&p, t) = fb(-%P), t) + fp(x,P, t) 
N 

= c fJ(X_Xj(t))6(P_Pj(t)) 
j=l 

M 

+ c 6(x- xj(t))6(P_Pj(t))- (9) 
j=N+l 

The Poisson bracket in terms of (Xi, pi ) , where 
j = 1,2,..., M, has the standard canonical form 

= k,hlb + khl,, (10) 

where g and h are functions defined on phase 
space. 

It is desired to describe the state of system 
in terms of the above phase space coordinates 
for the beam particles. However, for the back- 
ground plasma, the phase space coordinates of 
these particles will be replaced by a Vlasov type 
distribution function, & This can be achieved 
by mapping the Poisson bracket of Eq. ( 10) to 
these variables; but fp, unlike (xj,pj), is not a 
canonically conjugate set of coordinates, i.e. fp 
is a noncanonical variable, therefore the re- 
sulting Poisson bracket possesses noncanonical 
form [ 111. In order to effect this transformation 
the chain rule [ 12,131 for functional derivatives 
is required. Suppose 

g(xj,Pji) = G[fpl> (11) 

where j = N+l,N+2 ,..., M.HereG[f,]is 
a jimctional of fp; the relationship between the 
phase space function g and the functional G is 
obtained by inserting the representation defined 
by Eq. (9) into the functional G. The chain rule 
is obtained by varying both sides of this equa- 
tion: 

6g= 
j=s+l a% CC *6Xj + g 6Pj j > 

=6G 

(12) 

The operators Sf,/SXj and Jfp/&pj are obtained 
by variation of Eq. (9) with respect to the plasma 
particles, and t denotes the formal adjoint. The 
result is finally 

Insertion of Eq. ( 13) into the second term of 
Eq. ( 10) yields the bracket 

tG,Hl = Jii { $,g} hdp 

(14) 

(15) 

Here the quantities G and H are functionals of 
fp, but according to Eq. (9) they can be thought 
of as ordinary functions of the beam particle co- 
ordinates (Xj,pj ) where j = 1,2, . . . , IV. Note 
that discreteness has now disappeared from fp. 

The Hamiltonian for a hybrid system com- 
posed of the beam electrons coupled to the back- 
ground Vlasov plasma electrons is obtained by 
inserting 

f (x,p,t) = fpkP,f) 

+ ~6(x_Xj(t))6(P_Pj(t)) 
j=l 

(16) 
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into the following energy expression: 

This results in 

ffLf&Xj,Pjl 

= & p2fpd-h- ; J J fpv’ph 

- eVp(Xj) - $VbCXj) 
> 

, (18) 

where v)r (Xj ) and Q)b (Xj ) are the contributions 
to the electrostatic potential of the plasma and 
beam charge, respectively. The Hamiltonian of 
Eq. ( 18) together with the bracket of Eq. ( 14) 
yields the hybrid system. 

Now we can turn to the task of obtaining, from 
the hybrid system, the approximate system of 
Section 2.1. First, the background plasma is as- 
sumed to be described by an equilibrium distri- 
bution function of compact support in velocity, 
plus the single linear wave, whose phase velocity 
is outside the equilibrium support. In this way 
wave-particle effects are eliminated in the back- 
ground plasma. Upon inserting the wave pertur- 
bation of the distribution function, the analysis 
of [ 141 and [ 15 ] implies that the linearization of 
the plasma energy becomes identically the well- 
known expression for the dielectric energy of a 
plasma wave. Second, the self-interaction poten- 
tial of the beam, V)b, is neglected in comparison 
to that of the plasma, q,, a justifiable assumption 
in light of smallness of nb/np. Thus, Eq. (18) 
becomes 

+ 5 (2 _ !_f~~ $4 + !_-f~_~ e-&xj) . 
i=l 

(19) 

It remains to find the appropriate Poisson 
bracket in terms of Ek and E-k instead of fp. 
Since the plasma is in essence being modeled 
as a fluid, an easy way to obtain this is to map 

the first term of Eq. (14) to fluid variables, a 
transformation that is easily effected by incor- 
porating techniques similar to those used in ob- 
taining Eq. ( 14), and then transforming to the 
variables Ek and E-k [ 161. This results in 

(20) 

The bracket of Eq. (20) with Eq. ( 19) produces 
Eqs. (6) and (8) in the form 

&k = [Ek,H] , ij = [Xj,H] 

r;i = [Pj,Hl. (21) 

The bracket of Eq. (20) is not quite canonical; 
however, with the substitution 

~112 e-iB 

~-l/2 eiB 
, (22) 

the electric field is expressed in terms of conven- 
tional action-angle variables, and the bracket as- 
sumes the canonical form 

dg ah bh dg -- 
+ Lmv-atYa~ ’ > (23) 

while the Hamiltonian of Eq. ( 19) becomes 

H(fl,J,xj,Pj) = ~03 

+$ [g-g (g)1'2J1i2COS(kXjw19)] . = 
(24) 

To complete the derivation, it is convenient to 
introduce scaled, dimensionless variables based 
on the fundamental frequency, 

0; = 4x e2N 
mLct (25) 

Here e+, is a harmonic mean of the beam’s 
plasma frequency and l/r’, which is of order 
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the background plasma frequency. Note that the 
small parameter (~.,/n,)‘/~ is represented by 
the ratio %/as. By a sequence of time depen- 
dent canonical transformations and scalings, the 
Hamiltonian of Eq. (24) becomes 

N 

= CL j=l 

$p~-2($)"2COS(~j-e8)] 9 

(26) 

where the dimensionless variables are defined by 

7 = @bt, <j(Z) = kxj-wet, 

J = &3, e 39-~ot. (27) 

Thus in terms of the new canonically conjugate 
pair, (6, J), the fast frequency, 00, has been 
eliminated. The new position variable, <j, which 
is canonically conjugate to pi, is defined in a 
frame moving at the phase velocity coo/k. This 
Hamiltonian was (in essence) previously discov- 
ered (but not derived) by Mynick and Kauf- 
man [5]. 

It is often convenient to use a noncanonical 
wave amplitude variable instead of action-angle 
variables. This is easily done if we use as inde- 
pendent variables the amplitude @ and its com- 
plex conjugate CD* defined by 

(28) 

In these coordinates the Poisson bracket be- 
comes 

[@*,@I = i/N (29) 

and the Hamiltonian takes the form 
N 

(30) 
j=l 

This is a natural form for the Hamiltonian since 
the first term is the particle kinetic energy and 
the last two represent the electrostatic potential 
energy. The equations of motion are obtained 
from the Poisson bracket, 

da 
- = [@,Hl = [O,@*]-f$ dr (31) 

which together with the canonical bracket for 
(Cjy Pi) produces 

d@ i N e_Cj - =- 
c dr N.. ’ 
J=l 

(32) 

Note that these equations hold for arbitrary 
choices of the physical parameters, such as e/m 
and the beam density; it is only the relation- 
ship between scaled variables and physical vari- 
ables which changes. (Of course, the single wave 
model is appropriate only when the beam is suf- 
ficiently weak, and such a parameter free formu- 
lation is possible only in the single wave case.) 

The Hamiltonian, Eq. (26), has one obvious 
symmetry (we don’t know of any nonobvious 
symmetries) which is the translation, &j 3 cj + 
(Y, 8 -+ 8 + CL This implies that the total mo- 
mentum 

N 

P E Cpj + J (33) 
j=l 

is conserved. To take advantage of this, define 
the canonical transformation generated by F’ = 
PC3 + Cps (<j-e) which gives the new momenta, 
(p(i = pi, P), and angles, (v/j = <j - f3,0). The 
new Hamiltonian is 

H(Pj, Cvj) 

= 

(34) 

which has effectively N degrees of freedom since 
19 is an ignorable coordinate. 

2.3. Linear instability 

To establish the fact that the Hamiltonian of 
Eq. (30) properly describes at least the linear 
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stage of the weak beam-plasma instability, con- 
sider an initial condition consisting of a cold- 
beam: c$’ = 27rj/N, pj = 0, and no field, @O = 
0. Linearizing the Hamiltonian about this equi- 
librium, one obtains the quadratic form 

j=l 

(35) 

The resulting linear equations of motion can 
be straightforwardly diagonalized to obtain the 
characteristic polynomial a2jvV4 (w6 - 1) = 0, 
where the solutions have been assumed to vary as 
e-‘O’. This has the solutions o3 = f 1, which in- 
clude the standard beam-plasma instability fre- 
quencies together with their conjugate roots as 
required because of the Hamiltonian nature of 
the flow (recall that if o is an eigenvalue then 
m*, -m and --o* must also be eigenvalues). In 
dimensional units, using Eq. (27 ), we have 

&jj = ob eijn/s, j = O,l)...) 5, (36) 

which includes the unstable beam-plasma mode 
(the case j = 2). We can physically identify 
the eigenmodes by considering the equations of 
motion. Differentiating the equation for @ twice 
and substituting fort gives 

-%f Sij = id@, (37) 

upon noting that C e-2%? = 0. This shows 
that the nonzero frequencies are associated with 
nonzero @. The eigenmodes for the conjugate 
roots, o*, --o and -w*, are the same as that 
for w except for varying choices of signs. The 
remaining roots of the characteristic equation 
(w = 0 of multiplicity 2N- 4) have eigenmodes 
with 6@ = 6@* = 0 and positions given by the 
N - 2 independent solutions of C e-‘c’i” St, = 0. 
The double multiplicity of each of these roots 
arises from allowing the momenta to be nonzero, 
6pj 0; St, so the mode is rigidly translating. 

As will be seen in the next section, the linear 
beam-plasma instability saturates by trapping 
the particles in the electrostatic well of the wave. 

2.4. Single particle case 

The only exactly solvable case of the Hamilto- 
nian Eq. (26 ) appears to be that of a single par- 
ticle. Use of the conservation of total momen- 
tum, Eq. (33)) reduces this case to one effec- 
tive degree of freedom, and it can be integrated 
by quadrature. When N is larger than unity we 
expect to lose integrability. It will be of interest 
later to consider the case of Nm particles clumped 
together, and we temporarily ignore the remain- 
ing particles. We call the clumped particles a 
macroparticle. In this case, Eq. (26) becomes 

H ” = --2N&)1’2cos(4-e), 
2N, 

(38) 

where p = Nmpl = Nmp2 . . . . is the macropar- 
title momentum. The Hamiltonian H can be re- 
duced to one degree of freedom by defining the 
total momentum P = p + J as before to obtain 

H p2 = --2N,($9 112 

2% 
cos v/ . (39) 

The equations for this case were studied in 
detail by Adam, Lava1 and Mendonca [ 71, who 
did not use the Hamiltonian approach. 

The Hamiltonian Eq. (39) has in general three 
nondegenerate fixed points. These occur at the 
points defined by 

p; -p;P + N,,,3+ =O, v/o = Oorx. (40) 

The fixed point with (PO < 0, ~0 = 0) is stable 
and corresponds to the macroparticle sitting in 
the bottom of the potential well. The two fmed 
points with (PO > 0, t,v = R) are less intuitive. 
These exist only if P > 3N, (N,/4N)‘13. They 
correspond to a particle perched on the top of the 
potential well. The lower momentum particle is 
unstable, while the larger momentum particle is 
actually stable. This can be seen in Fig. 1 which 
shows contours of constant H in the (p, y ) phase 
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-1 

P 

-2 

1 

0 

P 

-2 

-n Ovr K 

Fig. 1. Contours of H, Eq. (39), in the single particle phase 
space (p, v). Units of p (and P) are Nm (N,,JN)“‘. In 
the upper figure P = 0 and there is one fmed point; in the 
lower figure P = 2 and there are three fixed points. 

space. Small oscillations about the stable fixed 
point are such that as the particle starts to fall 
off the potential hill, the wave phase shifts so as 
to catch the particle. 

The final “fured point” is the degenerate case 
(P = p, w = arbitrary) for which the wave am- 
plitude is zero. This corresponds to the unstable 
equilibrium from which the beam plasma insta- 
bility results, as discussed in the previous sec- 
tion. 

Small oscillations about these fixed points, 
with (Jo = P -pO are governed by the linearized 
Hamiltonian 

Me G N,,, 2JQ 
~Jo-PO’ 

(41) 

Here Me is the effective mass due to the self- 
consistent coupling. Note that since po < 0, the 
effective mass is smaller than that of a particle 
in a fned potential well. This gives a bounce 
frequency of 

0; = 2 ($!)“‘(l- &) . (42) 

The first factor is just the bounce frequency of 
a particle in a fured well, normalized in accord 
with Eq. (27). The latter term provides an in- 
crease in the frequency, as also discussed in [ 5 1. 

To compare these with the simulations in the 
next section, we set the total momentum, P, 
to zero, corresponding to the initial conditions 
J(0) = P(O) = 0. In this case J(r) = -p(z) 

and there is only one fixed point 

$2 3 $!L = - (f,“’ ) y = 0. 

m 
(43) 

From the simulations we will find Nm N 0.4N, 
and thus that 

Q= -0.74, I@[ = 0.29, 0s = 0.94. (44) 

3. Simulations 

Simulations of the model of Eqs. (32) were 
carried out for several initial conditions and a 
number of different integration algorithms. The 
results shown below were obtained with a sym- 
plectic, leap frog method. 

3.1. 0 WM model 

In the simulations the particles are initial- 
ized as a cold beam with uniform spacing 0 = 
2wjlN, j = 0,. . . , N, and zero momentum 

Pi = 0. The initial wave amplitude is set to 
be very small. In Fig. 2, the wave amplitude 
is shown as a function of time for Eq. (32) 
with N = 104. For small r the wave ampli- 
tude grows exponentially in time at the rate 



10 J.L. Tennyson et al. I Self-consistent chaos in the beam-plasma instability 

1.0 

IIN 

0.5 I 
Fig. 2. Plot of )@ (7)1, the normalized wave amplitude, for 
N= 10000 particles initialized as a cold beam. 

predicted by Eq. (36) with the phase velocity 
ud = R( e2ni/3) = -0.5. As the wave grows, the 
beam experiences a growing sinusodal perturba- 
tion, and as can be seen in the density plot of 
Fig. 3, the beam density also varies sinusoidaly. 
Near 7 = 16 the beam curls over as the particles 
begin to oscillate in the wave. Consequently the 
amplitude of the wave reaches a maximum. 

At this stage the beam density, & (r, 7), de- 
velops cusps at the positions where the beam 
curls over, see Fig. 3. Note that though there 
are many spatial harmonics in the beam density, 
the single-wave model does not allow the devel- 
opment of similar harmonics in the potential. 
These would lead to the growth of other waves 

2 

a 

lo4 

1 4 

and undoubtedly greatly change the subsequent 
behavior of the system. 

None-the-less, the subsequent development of 
the OWM dynamics is quite interesting. As the 
beam particles begin to oscillate in the wave, 
their oscillation frequencies depend upon their 
energy, just as for a single particle in a fixed po- 
tential. Thus as the beam begins to rotate about 
the potential minimum, those particles closer 
to the center have larger oscillation frequencies 
than those near the “separatrix”. 

If the wave amplitude were fixed, one would 
see phase mixing of the particles (visualized 
as an ever tighter spiral in the particle phase 
space), and the oscillations in the particle total 
energy would damp away-this is the mecha- 
nism of Landau damping in a large amplitude 
wave discussed by O’Neil [ 171. 

However since 214 = -0.5 and the beam is ini- 
tialized at v = 0, when the beam particles oscil- 
late in the wave, their net momentum also oscil- 
lates. Hence, because of the conservation of to- 
tal momentum, Eq. (33)) the wave momentum, 
J, must also oscillate as well. Therefore the wave 
amplitude is not fixed and each beam particle 
experiences an oscillating potential. As is well 
known, the phase space for a single beam par- 

t 
-R O 5 

-R O 5 
R 

Fig. 3. Plot of the beam density as a function of position. The sinusoidal distortion of the density due to the growing wave 
is shown in (a) at 7 = 12.6. By 7 = 69.3, in (b), about 10 bounces have occurred and the macroparticle has formed, 
represented here by the sharp peak around t; = 0. The remaining, chaotic sea particles have a sinusoidal density variation. 
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Fig. 4. Plot of the beam particle phase space at 7 = 641 
showing a well defined macroparticle and chaotic sea. 

title in a given oscillating potential has chaotic 
zones, especially for the regions near the oscillat- 
ing separatrix. In the beam particle phase space, 
Fig. 4, we show the phase space positions of each 
of the beam particles at a futed time. Note the 
two distinct regions: one chaotic in appearance 
with a nearly uniform density, and the other a 
more coherent cluster of particles. In the cluster 
one still sees evidence of the initial beam, though 
it has wrapped around a number of times. 

In the simulations, which were carried out up 
to 7 * 650, the oscillations in the potential per- 
sisted, and indeed, as can be seen in Fig. 2 the 
oscillations become increasingly periodic with 
time. Furthermore as we varied N up to lo5 and 
improved the integration accuracy, we noticed 
that these oscillations became more periodic and 
constant in amplitude as the number of particles 
increased and as the accuracy improved. Thus 
we believe that the asymptotic state is a periodic 
one. 

Meanwhile, the particle phase space exhibits 
quite complicated behavior. About 60% of the 
particles-those with relatively large energies 
in the wave frame-experience chaotic motion, 
and spread out roughly uniformly in a region of 
phase space whose average width is AIX = 4.7. 
We called the chaotic particles the “stochastic 
sea* in 1983-a more modern terminology is the 

“chaotic sea”. The remaining 40% of the parti- 
cles are clustered tightly together in a clump with 
width of order w/2 and a density about 6 times 
larger than the background, recall Fig. 3. These 
particles continue to oscillate coherently in the 
wave, as seen in the sequence of phase space 
pictures, Fig. 5. Also shown in the figures is the 
instantaneous separatrix of the wave-that is 
the separatrix that a single beam particle would 
see in a fixed potential at the current amplitude. 
Note that wave amplitude and the momentum 
of the cluster oscillate 180” out of phase. This 
clump of particles is treated as a single particle, 
the macroparticle, in the model of Section 4. 

In addition to the uniform cold beam, several 
different initial conditions have been partially 
studied. For example we started particles on a 
circular ring, t* + p* = r*, and also considered 
a bunched beam with particles placed uniformly 
in a limited range, - 1 < r < 1 with p # 0. In 
these cases some subset of the particles remained 
coherently bunched as a macroparticle, and the 
system did not appear to settle into an equilib- 
rium. Cold beams with nonzero momenta also 
lead to oscillations as was shown in [3], though 
the amplitude of the oscillation depends upon 
the momentum.We have not investigated this in 
any generality and do not know the extent of the 
initial conditions that will give rise to a periodic 
final state. 

3.2. Test particle 

To investigate further dynamics of the beam 
particles, consider the “test particle” motion of 
a single particle in a given oscillating potential. 
This is obtained from the nonself-consistent, one 
and one half degree-of-freedom Hamiltonian 

Ht (P, t, 7) = 
J(7) ip2-2 7 ( > 

112 
cos (r-e(7)), 

(45) 

where J and 8 are considered to be given peri- 
odic functions of 7. This system has been studied 
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4. (a) - (b) - 

4. Cc> - (4 - 

Fig. 5. !kquence of beam phase space plots over one bounce period. Note that the macroparticle.bounces coherently in the 
wave, and the wave amplitude and chaotic sea boundaries also oscillate periodically. 

in the same context by Smith and Pereira [ 61, 
who used a simple model for J (7) and 8 (r). 

Here we determine J and 8 numerically, from 
the simulations of Section 3.1, building these 
functions from an average over a number of pe- 
riods of the oscillations. 

A stroboscopic plot of the test particle dynam- 
ics is shown in Fig. 6 for several different val- 
ues of 8. The dots represent the trajectories of 
a number of different test particles. As was also 
noted in [ 6 1, there is a prominent stable island 
in the test particle phase space which oscillates 
exactly out of phase with the potential; much of 
the rest of the phase space is chaotic. Also shown 

in Fig. 6 are the corresponding plots of the beam 
particle phase space-here of course each point 
in the plots represents the position of one of the 
10 000 beam particles. Note that the macropar- 
title clump sits, as near as can be ascertained, 
at the position of the test particle island. This 
verifies an assertion in [ 6 1, where it was merely 
noted that some fraction of the beam particles 
initially stretched across the position of the test 
particle island. 
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-4.16 

BEAM-PARTICLE TEST-PARTICLE 

Fig. 6. Phase space plots comparing the full simulation of Section 3 with the dynamics of a test particle in a given 
time-dependent potential @ (7) as determined by the simulation. Shown are several test particle initial conditions at three 
different times during a cycle. 

4. Chaotic sea model 

As we have seen from the simulations, the 
asymptotic state of the cold beam initial con- 
dition, evolved under the OWM Hamiltonian, 
appears to be almost exactly periodic. Approx- 
imately 40% of the initial beam forms a clump 
of particles that oscillates in the potential well 
formed by the wave. The remaining particles 
spread out approximately uniformly in phase 
space between two oscillating boundaries, which 
are approximately invariant surfaces of the test 
particle Hamiltonian Ht. 

In this section we use these ideas to obtain a 
reduced Hamiltonian model of four degrees of 

freedom, which approximately describes the full 
10 00 1 degree-of-freedom system. In the model, 
as noted above, we assume that the clump of 
regularly oscillating particles is localized enough 
so that all these particles can be treated as one 
located at (c,p ). This macroparticle contains 
N,,, particles and hence a mass mN,,, and charge 
-eN,. The approximation that the Nm particles 
can be treated as a single particle ignores any in- 
ternal degrees of freedom of the cluster (of which 
there are Nm - 1). It is clear that a correction 
to the model would include, at the least, some 
sort of rotational degree of freedom; this would 
be similar to the analysis of Mynick and Kauf- 
man [ 5 ] who assumed that the cluster of parti- 
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cles formed a “bar” in phase space (an assump- 
tion that is reasonable only for the first few trap- 
ping oscillations). In our case the particles in the 
macroparticle could be thought of as rotating on 
the invariant surfaces of the test particle Hamil- 
tonian, Eq. (45), about the central periodic or- 
bit. This behavior could be modelled by the ad- 
dition of an oscillator degree of freedom to the 
system; however, we neglect this motion here. 

Much more interesting is the treatment of the 
chaotic particles. As noted in the Section 3.1, the 
phase space density of these particles appears to 
be nearly constant up to fairly sharp boundaries 
in velocity space. We assume that these particles 
can be treated as a continuum with a constant 
phase space density fC, between the boundaries 
V+ (x, t) and 21_ (x, t); thus, 

v+ 

n,(x,t) = J fcdw = fc(w+ -v_) 
V- 

(46) 

is the density of the chaotic sea. The total num- 
ber of such particles in the length L will be de- 
noted by NC = N - Nm. Particles in the chaotic 
sea evolve according to Eq. (2)) and hence fC 
evolves according to the Vlasov equation. As is 
well known, and easy to see, the Vlasov equa- 
tion in this situation can be exactly reduced to 
two equations for the evolution of the bound- 
aries [ 181. These equations are called the wa- 
terbag equations: 

av+ au+ at + v+K=-eE, 

au_ au- 
at + v- - =-eE. 

ax 
(47) 

Following the philosophy of the derivation of 
the OWM model, where only a single wavenum- 
ber in Q, is kept, we retain only one wavenumber 
in w&(x): 

V* = V: + G* eikx +G e-ikx - 

The equations of motion then become 

( 
+ ikv$) C* = -eEk , 

(48) 

(49) 

where VP are the mean velocities (which do not 
change in time according to Eq. (47 ) ) . Note that 
this implies that the boundary of the chaotic sea, 
an invariant surface of Ht, is sinusoidal in shape. 
We see from Fig. 5 that this is reasonable since 
the boundary deviation is small and it is not too 
close to the “separatrix” of the wave. 

The evolution of the field is obtained from 
Poisson’s equation, as previously, except that the 
density of the chaotic sea, as given by Eq. (46 ), 
must be included. Thus Eq. (6 ) becomes 

& + iOa& = 

g (f,(V+ -G_) + 9 evikxm). (50) 

These equations are nondimensionalized, us- 
ing Eq. (27 ) , and in addition defining 

In terms of these variables the equations of mo- 
tion become 

4 =i &(V+-V_) +i%eeiC, 

(52) 

where Ao = w + - o_ is the average, nondimen- 
sional width of the chaotic sea. 

This set of equations is also a Hamiltonian 
system, with the wave action-amplitude vari- 
ables defined in Eq. (28), and the new action- 
amplitude variables for the chaotic sea defined 
by 

V+ = (h!$!)1’2 e-ie+, 

I/_ = ( JT) ‘I2 e+ie- , (53) 

which results in the Poisson bracket relations 

[V;, V*] = l i$ . 

C 

The Hamiltonian takes the form 

(54) 
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P= NC@+ 
H=% + ~lv+l= - +q” 

- 1 -$@‘(V+ - IL) 

+ Nm@* emy +c.c. . 1 
(55) 

In terms of canonical variables this becomes 

P2 
H=2N, 

- + o+J+ -w-J_ 

-2a[mcos(e-8,) 

- JXcos (6 + e_)] 

- 2/30cos (8 - e> . (56) 

where the coefficients are given by 

NC ‘I= 
o = NAo ( > (57) 

The first three terms in the Hamiltonian repre- 
sent the total particle kinetic energy as a sum 
of macroparticle energy and harmonic terms for 
the oscillations of the chaotic sea boundary. The 
last three terms give the electrostatic interaction 
energy. 

Thus we have reduced the 10 00 1 degree-of- 
freedom Hamiltonian to one of four degrees of 
freedom, which describes well the motion in the 
periodic fmal state of the simulations, provided 
the three parameters o+, CL and Nm are given. 

4.1. Symmetry, equilibrium, and stability 

The chaotic-sea Hamiltonian conserves the to- 
tal momentum, given by 

P = J + p + J+ -J_ + $Nc(o+ + w-) (58) 

Here the first two terms represent the momen- 
tum in the wave and macroparticle, and the last 
three are the contributions of the chaotic sea. 
These latter terms include the momentum in the 
oscillations of the waterbag boundary, J+ - J_, 
and the mean momentum in the chaotic sea rep 
resented by the last term in Eq. (58). This equa- 

tion can also be derived from Eq. (33 ) by split- 
ting off the contribution of the particle momen- 
tum for the NC particles in the chaotic sea, treat- 
ing them as a Vlasov fluid in the waterbag. 

As far as we know, there are no other con- 
served quantities besides the energy. Thus the 
system has three effective degrees of freedom, 
and should exhibit the full complexity of such 
systems, including chaotic motion and Amol’d 
diffusion. 

The stable equilibrium of Eq. (56) corre- 
sponding to the macroparticle sitting in the 
potential minimum is given by the equations 

sz=a= p-‘w ( 1 B - -- 
+ > 51-o_ fi’ 

(59) 

From the simulation results of Fig. 5, we found 
Nm k: 0.4N, o+ = 1.9, and CL x -2.8. This 
gives (Y = 0.36, B = 40, and A@ = 4.7. For 
these parameters we can solve Eq. (59) to obtain 

D = -0.66, 101 = 0.73, 

IV+] ZO.29, IV-1 = 0.35. (60) 

On the other hand, using Fig. 5 to determine 
the average phase velocity of the wave in the 
simulations we obtain D = -0.67. The average 
value of ]@I from Fig. 2 is 0.75. Both of these 
values certainly agree with Eq. (60) more closely 
than they do with the single particle equilibrium 
Eq. (44). In fact, if we take the measured value of 
51 as given, then Eq. (59) gives the macroparticle 
fraction as 42% and 101 becomes 0.74, both of 
which are consistent with our estimates from the 
numerics. 

To compute the frequency of small oscillations 
about the equilibrium, we first eliminate the ac- 
tion J using the conservation law (58), defting 
phases dv = e-&and y& = 19* 7 8, conjugate 
to the momenta p and J* respectively. Upon lin- 
earization the Hamiltonian becomes 
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S2H = $p.M- ‘-6~ + &~-Kdyt, (61) 

where Sp = (Sp, 6J+,6J_) and Sy = (Sy, 
6 v+ ,6 y_ ) are the deviations from equilibrium. 
The matrix M, the effective mass matrix, is pos- 
itive definite. The matrix K, the effective spring 
constant matrix, turns out to be diagonal. In or- 
der that the three terms in K be positive, we must 
assume that y = v/+ = 0, while y_ = 7~. This 
is consistent with the fact that the lower bound- 
ary of the chaotic sea is observed to have a 180” 
phase lag with respect to the upper boundary. 

The frequencies of small oscillation are given 
by the square roots of eigenvalues of the matrix 
KM-‘. For the parameters of the simulation, the 
mass matrix is diagonal to a good approxima- 
tion. The element M;;’ turns out to be identical 
to 1 /Me of Eq. (41); neglecting terms of order 
J*/ J, the other diagonal elements are 

j&i =_LQ-w+, M,,l= ?-eJ- 
2 J+ 2 J_ * 

(62) 

The matrix K is 

K = diag(280, 2aa, 2aa). (63) 

Using the values obtained before for the equi- 
librium, we determined the eigenvalues numer- 
ically from the full matrix. The three oscillation 
frequencies are 

on = (1.33, 2.61, 2.11). (64) 

The first of these corresponds to the large oscil- 
lations observed in the simulations. The eigen- 
vector of this mode corresponds primarily to the 
6p degree of freedom that describes oscillation 
of the macroparticle. From Fig. 2 we measure 
the frequency of oscillations of the asymptotic 
state, obtaining @a = 1 LB-again a good agree- 
ment with the calculated value. We have no evi- 
dence for the excitation of the other two normal 
modes; however, it might be possible to deter- 
mine these through careful simulation. 

Thus we conclude that the chaotic sea model 
agrees with the simulations extremely well, and 

much better than the single particle calculation, 
Eq. (44). 

5. Conclusions 

We have studied the long time dynamics of the 
electrostatic interaction of many particles with a 
plasma wave. The wave arises from an instabil- 
ity (the beam-plasma instability) of the initial 
state corresponding to a cold beam of particles. 
In the simulations, the asymptotic state corre- 
sponds to a periodically oscillating wave ampli- 
tude together with a trapped clump of particles. 
About 42Oh of the particles are trapped by an 
approximate invariant surface within the oscil- 
lating wave, while the remaining particles move 
chaotically-becoming successively trapped and 
detrapped. 

We modelled this motion by a four degree-of- 
freedom Hamiltonian system, where one degree- 
of-freedom corresponds to the clump, two to the 
chaotic sea, and one to the wave. This model 
quantitatively captures the asymptotic state of 
the effectively infinite degree-of-freedom sys- 
tem. 

One would like to speculate that there are 
other physical systems for which the effect of 
self-consistency would be similar. For exam- 
ple in the case of galactic dynamics, the self- 
consistent propagation of a density wave would 
lead to chaotic dynamics for many stars, but 
there could be a set of stars which are coherently 
interacting with the wave. 

As usual, a number of open questions remain: 
- The periodic asymptotic state appears to arise 
for a number of different initial conditions in 
the OWhI model. What is the “basin” of initial 
conditions which lead to such a state? One could, 
for example, consider a warm beam initial state, 
or widely different initial states such as those 
discussed at the end of Section 3.1. 
- Is there a way of self-consistently calculating 
the quantities iVm, and ~c)f, which we took from 
the simulations, for the chaotic sea model? 
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- For the single particle Hamiltonian, there is a 
second stable equilibrium corresponding to the 
particle at rest at the maximum of the potential. 
Is there a periodic state of the many particle sys- 
tem near this equilibrium? 
- In the OWM model, only a single Fourier har- 
monic of the electrostatic field is kept. What is 
the effect of adding additional harmonics? 
- The chaotic sea Hamiltonian should exhibit 
the full array of possible Hamiltonian motions. 
For example there should be fixed points, pe- 
riodic orbits with various frequency vectors, 
quasiperiodic orbits (invariant tori), unstable 
manifolds leading to homoclinic phenomena, 
Arnol’d diffusion, ect. Are there many particle 
states that correspond to these motions? 
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