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Symbolic Codes for Rotational Orbits∗
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Abstract. Symbolic codes for rotational orbits and “islands-around-islands” are constructed for the quadratic,
area-preserving Hénon map. The codes are based upon continuation from an anti-integrable limit
or, alternatively, from the horseshoe. Given any sequence of rotation numbers we obtain symbolic
sequences for the corresponding elliptic and hyperbolic rotational orbits. These are shown to be
consistent with numerical evidence. The resulting symbolic partition of the phase space consists of
wedges constructed from images of the symmetry lines of the map.
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1. Introduction. Symbolic dynamics has been profitably used in the study of many dy-
namical systems since its invention by Hadamard in 1898 and naming by Morse and Hedlund
in 1938 [1, 2, 3]. Among its many uses, symbolic dynamics can provide useful information
about topological invariants such as the enumeration of periodic orbits and the entropy. It
can also lead to numerical methods for finding periodic, homoclinic, and chaotic orbits and fa-
cilitate the characterization of transport. Symbolic dynamics applies most directly to systems
that are hyperbolic; indeed, it was invented to describe geodesics on surfaces with negative
curvature and famously applies to hyperbolic toral automorphisms and the Smale horseshoe.

In this paper we continue the study, began in [4], of the coding of orbits of Hénon’s
quadratic, area-preserving mapping [5]. Previously we used the concept of an anti-integrable
(AI) limit [6] to define codes by continuation (see section 2) and studied the bifurcations of
homoclinic orbits that destroy the horseshoe of this map. In the current paper we study the
codes of orbits that are born in rotational bifurcations of the elliptic fixed point. The rule
that we obtain identifies the subset of orbits in the horseshoe that become rotational orbits,
encircling the elliptic fixed point of the Hénon map.

The extension of symbolic dynamics to systems with stable orbits has proved difficult,
except for the case of one-dimensional maps where classical results apply [7, 8]. The dissipative
Hénon mapping [9] is a natural system with which to attempt the generalization of these
results to multidimensional, nonhyperbolic systems, especially as it reduces (when b = 0)
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to the one-dimensional logistic map. Just as the symbols for the logistic map are based on
the itinerary of an orbit relative to the critical point, Grassberger and Kantz [10] proposed
that the symbols for the Hénon map could be determined by partitioning the plane using
the stable and unstable foliation and their “primary homoclinic tangencies,” that is, points
at which the local curvature of the unstable manifold diverges. This led to the concept of
a “primary pruning front” in the symbol plane as determining the allowed sequences for a
particular map [11]. Symbol sequences defined in this way can exhibit monodromy, that is,
morph into new sequences on paths that encircle codimension-two bifurcations, such as a
cusp [12]; along these paths, the primary tangencies may exhibit discontinuities [13]. As far
as we know, this method has not been applied to the area-preserving case (b = ±1), though it
has been applied to other dissipative systems, such as the cubic, generalized Hénon map [14].

Several other methods have also been proposed to obtain symbolic codes for orbits of
the Hénon map. Biham and Wenzel defined the codes as the signature of a pseudogradient
method for finding periodic orbits [15]. Sterling and Meiss proved that this technique works
sufficiently close to an AI limit [16]. Unfortunately, it does not always converge to fixed points
and sometimes gives two codes for the same orbit [17]. Hansen and Cvitanovic defined codes
by approximating the two-dimensional map near b = 0 by a sequence of one-dimensional
unimodal maps [18]. The code defining an orbit can change if it crosses the critical point of
one of the approximating maps.

Primary homoclinic tangencies have also been used to construct codes for the area-
preserving standard map. For parameter values where elliptic periodic orbits and their asso-
ciated islands are small (large k), Christiansen and Politi have shown that a primary set of
homoclinic tangencies can be identified by their proximity to the dominant fold lines in the
map [19]. Gaps between these points can be connected with symmetry lines associated with
the reversibility of the map to form a curve that creates a symbol partition [20]. The symbol
boundary can be modified to include elliptic islands [21, 20] by choosing appropriate images
of the symmetry lines. This method does not explain why symmetry lines are important, nor
does it give a recipe for selecting the proper lines.

In section 3 we give a rule for constructing the symbolic codes for orbits of the Hénon map
with any given rotation number. These codes are consistent with those obtained by numerical
continuation from the AI limit. We also show that these codes have definite symmetry prop-
erties and that the symbolic partition in an elliptic island has the form of a wedge with apex
at the elliptic fixed point and whose boundaries are constructed from specific symmetry lines.
These wedges are similar to those found by Christiansen and Politi for the standard map.

Our rotational codes are closely related to those for maps with a natural angle variable—
for example, for circle maps [22, 23] as well as for cat maps [24]. We review these ideas in the
appendices.

We also develop a systematic rule for obtaining the symbolic codes of rotational orbits with
“higher class” [25], that is, for “islands-around-islands,” in sections 4 and 5. These correspond,
for example, to orbits that rotate around orbits that rotate around the elliptic fixed point;
thus they are defined by a sequence of rotation numbers. Our construction provides codes
for the elliptic and hyperbolic orbits for each sequence of rotation numbers. Again the codes
are shown to be consistent with the numerical evidence. The resulting symbolic partition is
constructed from a sequence of wedges defined by symmetry lines.
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A different method for constructing symbolic codes for islands-around-islands was given
previously [26, 27]; however, in these cases the entire set of orbits in an island was assigned
the same sequence and the motivation was to study the transport implications for chaotic
orbits outside the islands [25, 28].

2. Symbolic codes for the Hénon map by continuation. The area and orientation-
preserving Hénon diffeomorphism can be written as1

(x, x′) �→ f(x, x′) = (x′,−x− k + x′2).(2.1)

An orbit of this map is written as a bi-infinite sequence O = (. . . x−1, x0, x1 . . .) with (xt+1, xt+2)
= f(xt, xt+1). The dynamics of this map exhibit the full range of behavior of typical area-
preserving maps, including infinite cascades of period-doubling bifurcations, invariant circles,
cantori, transport, twistless bifurcations, etc. [29, 30, 31]. As k increases, the dynamics be-
comes increasingly chaotic, and beyond a critical value, k = kH , the set of bounded orbits
forms a Smale horseshoe (this set has measure zero—almost all orbits escape to infinity).
It was proved by Devaney and Nitecki that there is indeed a hyperbolic horseshoe when
k > 5 + 2

√
5 > kH [32, 16]. Our numerical studies indicate that [16, 4]

kH ≈ 5.699310786700.(2.2)

The dynamics of the bounded orbits in the hyperbolic horseshoe is conjugate to the full
shift on two symbols. A simple way of constructing these symbols for the Hénon map is to
define

st = sgnxt(2.3)

because the bounded invariant set is divided by the coordinate axes; see Figure 1.

An alternative method for obtaining these codes is to view the Hénon map as arising by
continuation from an AI limit [6, 33]; for (2.1) we define

z = εx, with ε ≡ 1√
k + 1

,(2.4)

to rescale the map as

ε(zt+1 + zt−1 − ε) = z2
t − 1.

To define ε, we assumed that k > −1, but this is not much of a restriction since there are no
bounded orbits for the Hénon map when k < −1. The case ε → 0 is the AI limit [16, 4]. In
this limit orbits reduce to sequences zt = ±1, where the choice of sign is arbitrary—the map
is equivalent to the full shift on the symbols ±. Every such sequence continues away from
the limit to an orbit of the Hénon map. Conversely, when there is a horseshoe these symbols

1We do not use Hénon’s original form, (ξ, η) → (1 − aξ2 + η, bξ), since it becomes linear at a = 0 and is
orientation-reversing for b > 0. Our form can be obtained by setting b = −1 and defining k = a, x = kη, and
x′ = −kξ.
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Figure 1. Stable (blue) and unstable (red) manifolds of the hyperbolic fixed point for the Hénon map when
k = 6. The closure of the intersection of these manifolds is the horseshoe of bounded orbits.

agree with (2.3), and every bounded orbit of the Hénon horseshoe continues to an orbit at the
AI limit.

Each point in the horseshoe is represented by a bi-infinite sequence of signs, together with
the binary point representing the current position:

(xt, xt+1) ∼= s ≡ (. . . st−2 st−1.st st+1 . . .).

We denote the right shift by σ so that

σs = (. . . st−1 st.st+1 . . .).(2.5)

When there is a hyperbolic horseshoe for k > kH , the Hénon map f , restricted to the set of
bounded orbits, is conjugate to the shift map σ acting on the sequence s that is the code for x.

We use continuation away from the AI limit to find orbits with a given code as k varies [16].
Such a “global coding” is complete provided every smooth, one-parameter family of orbits in
the extended space R

2 ×R (phase space times parameter) connects to the AI limit; i.e., there
are no “bubbles”—orbits created and destroyed in parameter intervals disconnected from the
AI limit. Because of twistless bifurcations, curves of orbits are not necessarily monotone in k,
so it is not enough to simply take the map parameter k as a family parameter [31, 4]. We do
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not know any counterexample to this “smooth no-bubble conjecture,” and we adopt it as our
working hypothesis.

We use the signs + and − to denote the symbols st. For example, the hyperbolic fixed
point, at xt = 1+

√
1 + k, has code st = +; we denote the bi-infinite sequence for this orbit by

s = (+)∞. In general a period-n orbit is given by the bi-infinite concatenation of a sequence
of n symbols; we represent this with a superscript ∞: (s0 s1 . . . sn−1)

∞. We often denote
repeated symbols with a superscript; thus (−+7)∞ is a period-eight orbit. The parity of a
finite symbol sequence is defined to be the product of its symbols:

π(s0s1 . . . sn−1) =

n−1∏
t=0

st.(2.6)

Equivalently the parity is even or odd if the number of minus signs is as well. A parity can
be assigned to any periodic orbit by computing the parity of its fundamental sequence; for
example, π((−+++)∞) = −1.

Using the continuation method, we can follow orbits from the AI limit to visualize the
relation between the symbolic codes and the positions of the corresponding points in phase
space. If we distinguish points solely by a single symbol, s0, this gives a partition of the phase
space into regions corresponding to the + and the − codes. Using the conjugacy between the
shift σ and the Hénon map on these orbits, we could reconstruct the full symbol sequence for
each orbit by following the sequence of visits to the two elements of the partition.

-1
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1

z

0 1z-1

-1

0

1

z

-1 0 z 1

Figure 2. Points on the 99 periodic orbits of the Hénon map with periods up to 10 for two different
parameter values. In the left panel k = 24 (ε = 0.2), and in the right k = 5.5 (ε ≈ 0.392). The blue (red) curves
are the initial lobes of the stable (unstable) manifolds for the hyperbolic fixed point, (+)∞, located in the upper
right corner.

In Figure 2, a point is colored cyan if s0 = − and magenta if s0 = +. We use the scaled
coordinates (z, z′) defined in (2.4) for the plots, so that as k → ∞ all bounded orbits converge
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to the four AI states (z, z′) = (±1,±1). As k decreases, the trajectories move away from these
points, as shown in the left frame of Figure 2. For this value, k = 24, it can be proven that all
of the trajectories reside within the union of four small squares with sides M∞ ≈ 0.568 that
are centered on the four AI states [16]—actually we observe that they are contained in smaller
rectangles bounded by segments of the stable and unstable manifolds of the hyperbolic fixed
point. These segments intersect at points on the “type-one” homoclinic orbits with symbol
sequences +∞.−(−)−+∞ and +∞.−(+)−+∞ [4]. As k decreases, the bounded orbits move
further from the AI states, and the stable and unstable manifolds of (+)∞ approach their first
tangency. Just below k = kH (right panel of Figure 2) the two type-one homoclinic orbits have
been destroyed in a homoclinic bifurcation and only a subset of symbol sequences are now
allowed. Nevertheless, the symbol boundary is still very simple (at least up to this period)
and is delineated by the near tangency between the first lobes of the stable and unstable
manifolds.

One phenomenon special to area-preserving maps is the existence of elliptic periodic orbits.
For example, the second fixed point, (−)∞ (at xt = 1 −

√
1 + k), becomes elliptic at k = 3.

More generally, this orbit has positive residue for any k > −1. Recall that Greene’s residue,
r, is a convenient encoding for the linear stability of an orbit of an area-preserving map: given
a point (x, x′) on a period-n orbit of f , then

r ≡ 1

4
(2 − Tr(Dfn(x, x′))).(2.7)

Orbits are elliptic when 0 < r < 1, hyperbolic when r < 0, and reflection hyperbolic when
r > 1. For example, the fixed point (−)∞ is elliptic for −1 < k < 3 and at k = 3 undergoes
a period-doubling bifurcation, becoming hyperbolic with reflection. More generally [4], for a
period-n orbit, as k → ∞,

r ∼ −π(s)
1

4
(4k)n/2.(2.8)

Thus the parity of a symbol sequence determines the character of the orbit for large k. We
will often refer to orbits that are born with positive residue as “elliptic” even though they
typically undergo bifurcations that destroy their stability and may even smoothly continue to
orbits with negative residue.

Our goal for this paper is to investigate the structure of the symbol partition when there
are elliptic periodic orbits and their associated rotational orbits. For example, Figure 3 shows
that the symbol boundary near an elliptic orbit exhibits a structure radically different from
the horseshoe shown in Figure 2. In the following sections, we will explain the wedge-shaped
symbol boundary that emanates from the elliptic fixed point in Figure 3. To do this, we must
construct the codes for rotational orbits.

3. Rotational (class-one) orbits. One special class of orbits for the Hénon map are the
rotational orbits—those that are created by a rotational bifurcation of the elliptic fixed point,
(−)∞. Generally, a rotational bifurcation occurs when the rotation number of an elliptic fixed
point passes through a given rotation number 0 ≤ ω ≤ 1

2 , i.e., when

r =
1

4
(2 − e2πiω − e−2πiω) = sin2(πω).(3.1)
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Figure 3. Periodic orbits of the Hénon map for k = 2.0. Plotted are points on all periodic orbits up to
period 10 that still exist, as well as all rotational (class-one) orbits with periods up to 31 that exist at this
parameter value. Points with s0 = + (−) are colored magenta (cyan). It is apparent that the first few lobes
of the stable and unstable manifolds no longer delineate the symbol boundary in the vicinity of the elliptic fixed
point.

Since the residue of the elliptic fixed point is r((−)∞) = 1
2

√
1 + k, we can solve (3.1) for k or ω

to obtain

k(ω) = cos(2πω)(cos(2πω) − 2),(3.2)

ω(k) =
1

π
arcsin

(
(1 + k)1/4√

2

)
.

Since the residue of a period-n orbits grows like kn/2 as k → ∞, it is more convenient for
numerical work to use the scaled residue

ρ ≡ 1√
k + 1

sgn(r) [4|r|]1/n .(3.3)

Notice that ρ = 0 ⇔ r = 0, and as k → ∞, (2.8) implies that ρ → −2π(s).
When ω(k) is rational, a rotational bifurcation typically2 creates a pair of orbits, one ellip-

tic and one hyperbolic, and we call these class-one rotational orbits following Meiss [25] (the

2When the period is larger than four—the tripling and quadrupling bifurcations are special; see, e.g., [34].
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two fixed points are therefore class-zero orbits). A theorem of Franks implies that there are
class-one period-q orbits for each rational rotation number p/q whenever 0 < p/q < ω(k) [35].
Each elliptic class-one periodic orbit is typically encircled by rotational orbits of class two,
giving rise to “island chains.” We will discuss these higher class orbits in section 4. When
ω(k) is irrational and Diophantine and the twist is nonzero, Moser’s twist theorem implies
that a rotational bifurcation gives birth to an invariant circle [36]. If ω(k) is not sufficiently
irrational, we expect that a cantorus is born (as indicated by Aubry–Mather theory, though
we know of no proof of this for the Hénon map).

We begin this section with some observations from our numerical experiments. We then
construct a rule that generalizes these observations and appears to be consistent with all class-
one orbits. This construction has a natural geometric interpretation in terms of circle maps.
The code that we obtain is related to that for rotational orbits in other systems—for example,
the codes obtained for minimizing rotational orbits in twist maps by Aubry and Le Daeron [37],
for cat maps by Percival and Vivaldi [24], for billiards by Bäcker and Dullin [38], and for circle
maps by Lin [3]. We discuss some of these relationships in the appendices.

3.1. Preliminary numerical observations. It was not obvious to us which of the possible
period-n orbits at the AI limit should be identified as the class-one rotational orbits. Thus we
began by searching for periodic codes that continue to orbits that collide with (−)∞ at k(ω)
defined by (3.2). A brute force way to systematically search for rotational orbits, would be
to choose a period and continue all periodic codes of that length from the AI limit until the
corresponding orbits bifurcate. For example, at period four there are three distinct periodic
codes: (−−−+)∞, (−−++)∞, and (−+++)∞. Upon continuation, we discovered that the
orbits corresponding to (−−++)∞ and (−+++)∞ collide when k = k(1

4) = 0 at the position
of the elliptic fixed point. These two orbits have negative and positive residues, respectively (in
agreement with (2.8)), during their entire lifetimes, and thus they represent the hyperbolic and
elliptic 1

4 orbits. In our previous numerical experiments, we followed each of the 1.47 million
orbits of the Hénon map with periods up to 24 in order to obtain a numerical estimate of the
value kH , (2.2).

We can considerably reduce the number of sequences that need to be checked by computing
the rotation number of the symbol sequence using the “self-rotation number” [39]. The self-
rotation number of symbol sequence is the same as that of the orbit and is unchanged as k
varies. As shown in Table 2 of [39] the self-rotation number of (−−−+)∞ is 1

2 ; thus it cannot
be one of the rotational period-four orbits—indeed it arises in a period-doubling bifurcation
of the period-two orbit, (−+)∞.

Proceeding in this way we identified all of the class-one rotational orbits with periods less
than 20 [40]. There are 118 such orbits; the first few of these are shown in Table 1. In the
table we chose a canonical permutation to order these sequences (we will discuss the canonical
ordering in section 3.2).

Our numerical observations indicate that all of the class-one rotational orbits smoothly
continue to the AI limit; we know of no proof of this observation. We observed that the codes
for the negative and positive residue orbits differ only in one symbol, the second; indeed, this
symbol is simply the sign of the residue, indicated by an ∗ in the symbol sequence.

At this point the pattern for the rotational codes that we will describe in the next section
became clear.



ROTATIONAL CODES 523

Table 1
Codes for class-one rotational orbits. The ∗ represents ± for positive and negative residue orbits, re-

spectively. The third column gives the value k(ω) from (3.2) at which the orbits collide with (−)∞ in a rota-
tional bifurcation. The column “PD” gives the value of k for which the positive residue orbits undergo period-
doubling. The elliptic 1

3
and 3

10
orbits actually are created earlier in saddle-center bifurcations at k = 1.0 and

k = 0.7063926, respectively.

ω Code k(ω) PD
0
1

(∗)∞ −1 3
1
2

(−+)∞ 3 4
1
3

(−∗+)∞ 5
4

5
4

1
4

(−∗++)∞ 0 0.2174036214†

1
5

(−∗+++)∞ 7−5
√

5
8

−0.2404626622‡

2
5

(−∗−−+)∞ 7+5
√

5
8

2.822983929‡

1
6

(−∗+4)∞ − 3
4

−0.4766507416
1
7

(−∗+5)∞ −0.8582400707 −0.6124008240
2
7

(−∗+−−++)∞ 0.4945574340 0.7226142786
3
7

(−∗−4+)∞ 2.613682637 3.099045238
1
8

(−∗+6)∞ 1
2
−

√
2 −0.6974167690

3
8

(−∗−−+−−+)∞ 1
2

+
√

2 2.4246586398
1
9

(−∗+7)∞ −0.9452647974 −0.7546238304
2
9

(−∗++−−+++)∞ −0.3171426657 −0.0739574299
4
9

(−∗−6+)∞ 2.762407463 3.187557989
1
10

(−∗+8)∞ −1−3
√

5
8

−0.7954212145
3
10

(−∗+−−+−−++)∞ −1+3
√

5
8

0.8673114431
1
11

(−∗+9)∞ −0.9747995591 −0.8258655309
2
11

(−∗+++−−+4)∞ −0.6582603930 −0.4217831728
3
11

(−∗+−−++−−++)∞ 0.3048831897 0.5506136016
4
11

(−∗−−+−−+−−+)∞ 1.738564049 2.225483132
5
11

(−∗−8+)∞ 2.839612714 3.215096092
1
12

(−∗+10)∞ 3
4
−

√
3 −0.8493921692

5
12

(−∗−4+−4+)∞ 3
4

+
√

3 2.908515654
† The smaller real root of 16k4 − 64k3 − 8k2 + 1.
‡ The two real roots of 4096k6 − 13312k5 + 512k4 + 17344k3 − 7520k2 − 16276k − 3251.

3.2. Rotational codes. Since the dynamics on a smooth invariant circle with irrational
rotation number ω is conjugate to a rigid rotation with this rotation number, it is natural to
construct a symbolic code for rotational orbits based on this conjugacy. Letting θ denote a
point on the circle with unit circumference, the rigid rotation is

θ �→ θ + ω mod 1 ⇒ θt = {ωt + α},(3.4)

where α is the initial phase. Here {x} ≡ x − x� denotes the fractional part of x, and
x� ≡ maxp∈Z{p : p ≤ x} is the floor function. To agree with our sign choice in (2.1), we will
depict this as a clockwise rotation; see Figure 4.
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ω

W– θ0 = 0

θ3

θ6

θ8θ9

θ1 = ω

θ5

θ2 = 2ω
θ7

θ4
−ωW+

Figure 4. Construction of the rotational code for ω = γ−2 (where γ is the golden mean) using the wedges
W±(ω). The orbit shown corresponds to the elliptic code with α = 0.

To obtain the codes for the circle map, divide the circle into two wedges,

W−(ω) = (−ω, ω),

W+(ω) = [ω, 1 − ω];
(3.5)

see Figure 4. Note that W−(ω) is open and W+(ω) is closed and that these wedges divide the
circle into two parts for any 0 < ω ≤ 1

2 .
Definition 1 (rotational (class-one) code). A point θ ∈ Ws(ω) is defined to have symbol s.

The code for the rotational orbit θt = ωt + α is st when

θt ∈ Wst(ω).(3.6)

There are two distinct types of codes that we distinguish by the value of the initial phase α.
When α = 0, the first two symbols of the code are always −+, while if α ∈ (−ω, 0), then they
are −−. Indeed, if α �= {jω} for any integer j, then the symbol − always appears doubled in
the code.3 To distinguish these two cases, we call the case that α �= {jω} for some j ∈ Z a
hyperbolic code, and the alternative case an elliptic code.

Note that whenever ω �= 1
2 there are at least two distinct codes. For example, if we set

ω = 1
3 , then the three possible elliptic codes are −++, +−+, and ++−, all of which represent

the same periodic orbit with code, (−++)∞. Similarly all the hyperbolic codes are cyclic
permutations of (−−+)∞. In the exceptional case, ω = 1

2 , there is only one period-two code,
the elliptic code, (−+)∞.4

It is easy to see that a hyperbolic code consists of blocks of the form −−+m−2 and

−−+m−1, where m = ω−1�. For example, denoting the golden mean by γ ≡ 1+
√

5
2 , then

3For hyperbolic codes with rational ω this is Lemma 6.11 in [40].
4This agrees with the fact that the Hénon map has only one period-two orbit.
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ω = γ−2 ≈ 0.381966011. Therefore, γ−2 ∈ (1
3 ,

1
2) and m = 2 so that the code is built from the

blocks −− and −−+. For example, if we choose α = −.1, we obtain

(. . .−−−−+.−−−−+−−+−−−−+−−−−+−−+−−−−+−−+− . . .).

For irrational ω there are infinitely many hyperbolic codes, depending upon the choice of α.
By contrast, there is only one elliptic code, up to cyclic permutations, because any choice
α = jω generates the same sequence of symbols. When α = 0 the elliptic code for ω = γ−2 is

(. . .+−−+.−+−−+−−−−+−−+−−−−+−−−−+−−+−−−−+. . .),

which is in agreement with the first few points shown in Figure 4. As previously asserted the
“first” two symbols in this code are −+, but all other blocks have an even number of −’s.

When ω is rational, Definition 1 gives rise to exactly two distinct codes (up to cyclic
permutation). As we will see, these correspond to the two class-one orbits with this rotation
number.

Lemma 1. For any rational rotation number in (0, 1
2), there are exactly two codes (the

elliptic and hyperbolic codes) up to cyclic permutations.
Proof. Set ω = p

q , where p, q ∈ Z are relatively prime. The periodic orbit consists of
q evenly spaced points on the circle, and sequential points are obtained by shifting p points
around the circle. Partition the circle into q half-open sectors

Sj =

(
j

q
,
j + 1

q

]
, j = 0, 1, . . . , q − 1.(3.7)

Each Sj contains exactly one point of the orbit. Note that W− consists of the interior of the
union of 2p of the Sj

W− = Int

p−1⋃
j=−p

Sj

(where the indices are taken mod q), and the interior of W+ is the union of the remaining
ones

IntW+ = Int

q−p−1⋃
j=p

Sj .

It is immediately clear that each orbit with α ∈ IntS0 has the same (hyperbolic) code, since
the points fall in the interiors of exactly the same sequence of Sj , and therefore in the same
sequence of Wi. Similarly, for any j, the codes for orbits that have α ∈ IntSj are all identical.
Finally since an orbit that starts in the interior of S0 reaches Sj after some number, t, steps,
then the codes of orbits that start in these two sectors are the same up to cyclic permutation.

For the elliptic case we set α = j/q for integer 0 ≤ j < q. Each of these orbits corresponds
to the same set of points on the circle (the boundary points of the Sj), differing only by cyclic
permutation. Thus their codes also differ only by cyclic permutation.
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Finally, the elliptic code has only 2p− 1 points in W−(ω), while the hyperbolic code has
2p points. Thus these two codes are distinct.

We choose a canonical ordering by selecting α = 0 for the elliptic case and α = − 1
2q for

the hyperbolic case (this mimics the interleaving of the two orbits of an island chain). Thus
the elliptic code always starts with −+ and the hyperbolic with −−. From the third symbol
onward the two codes are identical.

Lemma 2 (properties of rotational codes). The canonically ordered elliptic and hyperbolic
codes for periodic orbits differ only in their second symbol: s1 = − for hyperbolic and s1 = +
for elliptic codes. Elliptic codes have odd parity and hyperbolic codes have even parity.

Proof. This follows immediately from the fact that both orbits initially lie in the sector
Sq−1 defined in the previous lemma. Thus they visit exactly the same sectors in the same order.
The only symbolic difference occurs at t = 1, where the elliptic point lies at θ1 = ω ∈ W+,
while the hyperbolic point is in the interior of Sp−1, which is in W−. The elliptic code has
odd parity since it has exactly 2p− 1 points in W−.

A convenient representation for rotational codes is the Farey tree; see Figure 5. The tree
shows that the canonical hyperbolic code of a Farey daughter is simply the concatenation of
the codes of its hyperbolic parents (putting the code from the larger rotation number on the
left). This fact is proved in Appendix A.3.

1/3
(--+)

1/2  (--)

1/4
(--++)

1/5
(--+++)

2/5
(----+)

2/7
(--+--++)

3/8
(----+--+)

3/7
(------+)

0/1 (+)

(--++++) (--++--+++) (--+--++--++) (--+--+--++) (----+--+--+) (----+----+--+) (------+----+) (--------+)
1/6 3/112/9 3/10 4/11 5/13 5/12 4/9

Figure 5. Farey tree for the base 0
1

and 1
2

up to level three, and the corresponding codes for the hyperbolic
rotational orbits. The code for 1

2
does not correspond to a real orbit, as there is no “hyperbolic” period-two

orbit. The codes for the elliptic rotational orbits are obtained by flipping the second symbol.

As we will see in section 3.5, the wedge-shaped symbol boundaries in Figure 4 translate
into a similar wedge for the symbol boundary in the phase space of the Hénon map. However,
before examining this, we present additional numerical evidence in support of Definition 1.

3.3. Numerical observations. While there is no proof that the codes for the rotational
orbits of the Hénon map are generated by (3.6), we conjecture that this is the case.

Conjecture 1. Every class-one rotational orbit of the area-preserving Hénon map smoothly
continues to an orbit of the horseshoe with code defined by (3.6).

As noted in section 3.1, our initial observations indicated that this conjecture is true up
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to period 20. In this section we show in addition that (3.6) generates the correct codes for all
rotational orbits up to period 99, i.e., that these orbits are born in a rotational bifurcation
of an elliptic fixed point at the value k(ω) given by (3.2). To test this we must numerically
continue each such orbit to the parameter value at which its residue vanishes. We observe
that each hyperbolic rotational orbit has a negative residue near the AI limit, and that r
monotonically increases as k decreases until it reaches zero at a rotational or saddle-center
bifurcation. Similarly elliptic rotational orbits have positive residues near the AI limit, and
r monotonically decreases to zero as k decreases. In Figure 6 we show the scaled residue,
(3.3), as a function k for five elliptic and hyperbolic class-one orbits.

0 0.2 0.4 0.6 0.8 1

k – k(ω)

0

1

2

3

ρ

–2

–1

–3

1/12

1/7

3/10

2/9

3/7

3/10

1/12

1/7

3/7

2/9

0.2

0.4

–0.2

0
ρ

–0.4
–8 –6 –4 –2 0

k – k(ω)
2 4

×10–3

Figure 6. Left panel: Scaled residue (3.3) as a function of the deviation k from k(ω) for five class-one
rotational orbits. Right panel: An enlargement of the residue for the ω = 3

10
orbit in the vicinity of the rotational

and twistless bifurcations.

Thus it would appear that a quick method for detecting the rotational bifurcation would
be to find the parameter value k1(ω) for the first zero of r moving away from the AI limit.
In Figure 7 we plot the number of digits of agreement between k1(ω) and k(ω) for the 1501
class-one rotational orbits up to period 99 as a function of rotation number. This shows that
the first zero crossing of r corresponds to the rotational bifurcation for most of the orbits. The
dashed curve in the right-hand pane of the figure shows the cumulative distribution function
for the precision data for the complete set of 1501 orbits. There are two groups of orbits for
which the apparent precision is lower than seven digits.

One of these groups corresponds to orbits with ω ∈ [0.29021, 1
3 ], delimited by the (green)

dash-dot lines in Figure 7. This rotation number interval corresponds to the parameter interval
9
16 < k < 5

4 where the twist of the Hénon map is “anomalous” [31]. By “normal” twist we mean
that the rotation number decreases monotonically moving away from the elliptic fixed point.
In the anomalous interval the rotation number increases near the elliptic point before reaching
a maximum and eventually decreasing. For orbits in this interval, the first zero of the residue
corresponds to a saddle-node bifurcation at k1(ω) < k(ω). For example, in the right panel of
Figure 6 we show an enlargement of the scaled residue plot for the 3

10 orbits. For this case, the
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Figure 7. Left panel: Plot of − log10(k1(ω) − k(ω)) for the 1501 class-one rotational orbits with periods
up to 99. The right panel shows the distribution of digits of precision in the 1501 numerical bifurcation values
(dashed line), 1305 values for orbits with ω > 0.025, and either k(ω) < 9

16
or k(ω) > 5

4
(solid line). The

latter case are the class-one orbits created at parameter values where the Hénon map has twist and the rotation
frequency is large enough to avoid numerical difficulties.

first zero crossing along the curve from the AI limit occurs at k ≈ 0.7063832 for the hyperbolic
orbit and k ≈ 0.7063926 for the elliptic orbit (these points are almost indistinguishable in the
figure). The rotational bifurcation (which is the reference value in Figure 7) corresponds to
the second zero crossing along each curve; this occurs at k(3/10) ≈ 0.7135255. This explains
the apparent loss in accuracy in the interval bounded by the (green) dash-dot lines in Figure 7.

Our continuation method also could not find accurate bifurcation values for orbits with
ω < 1

41 (the interval below the (red) dashed line in Figure 7) to more than four digits.
This is due to the ill-conditioning of the equations as k → −1. In this region the elliptic
and hyperbolic fixed points approach one another and the map is nearly integrable. This is
reflected in the fact that periodic orbits very nearly lie on periodic invariant circles, and so
there is nearly a null direction in the matrices used in the continuation method. Our numerical
method fails when the condition number of the matrices exceeds 1012, and for low frequency
rotational orbits the onset of this ill-conditioning occurs much further from the bifurcation
value than for higher frequency orbits. This causes a premature loss of precision and produces
less accurate estimates of the bifurcation values.

The solid curve in the right hand pane of Figure 7 shows the cumulative precision data
for the subset of orbits with ω ≥ 0.025 and either k(ω) < 9

16 or k(ω) > 5
4 . The continuation

method produced at least seven digits of precision for 70% of the orbits; none of the orbits
had fewer than four digits of precision once we excluded the orbits with anomalous twists and
low frequencies. In every case that we investigated, the precision can be improved by carefully
“hand-tuning” the parameters of the continuation method (particularly the parameters in the
variable step-size routines). Thus we believe that Figure 7 gives compelling evidence in favor
of Conjecture 1.

3.4. Symmetry. As is well known [41], the area-preserving Hénon map is reversible; that
is, it is conjugate to its inverse f ◦ S = S ◦ f−1, where
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S(x, x′) = (x′, x).(3.8)

Note that the reversor S is orientation-reversing, det(DS) = −1, and is an involution, S2 = id.
Whenever a map is reversible in this sense, it can be factored into a pair of orientation-reversing
involutions, f = (fS) ◦ S = R ◦ S. The second reversor for (2.1) is

R(x, x′) = (x,−x′ − k + x2).(3.9)

More generally, any image of a reversor is also a reversor; the full set of involution pairs
{(f jR, f jS), j ∈ Z} forms a family of reversors. Thus, for example,

T (x, x′) ≡ f−1S(x, x′) = Sf(x, x′) = (−x− k + x′2, x′)(3.10)

is also a reversor, and since f−1R = S, we have f = ST . We will sometimes find it convenient
to use this alternative factorization.

An orbit O is symmetric if it is invariant under a reversor, that is, if SO = O. It is easy
to see that every symmetric periodic orbit has two points on the fixed sets of S or R [41]; we
denote these, for example, as S = fix(S) = {(x, y) : S(x, y) = (x, y)}:

S = {(x, x′) : x = x′},
R = {(x, x′) : 2x′ = x2 − k}.(3.11)

The fixed set of T is related to (3.11) because fnR = fix(f2nR), which implies that

f−1R = T = {(x, x′) : 2x = x′2 − k}.

The fixed sets intersect at the elliptic and hyperbolic fixed points. Following [25], we
divide the lines at the elliptic fixed point, labeling the four rays with a subscript i for the
ingoing half of the line (leading to the hyperbolic point) and subscript o for the outgoing half
(leading away to infinity). An example is shown in Figure 8 for k = 2.75, where the hyperbolic
fixed point is off-scale (to the upper right), and the elliptic fixed point is centered. Shown are
a number of class-one invariant circles and periodic orbits that have class-two invariant circles
around them. Each of the class-one periodic orbits is symmetric; for example, the 3

7 elliptic
orbit has points on Ro and Si, while its hyperbolic partner has points on the other two rays.

It was first noted by Greene that for many reversible examples the class-one, elliptic,
rotational periodic orbits tend to lie on one particular symmetry ray called the dominant ray
[29, section 1.2.3]. To our knowledge this has never been proven in general, though it is known
to be true for maps similar to the standard map for large enough k [42]. For the Hénon map
the dominant ray appears to be Ro for large values of k.

However, the identity of the dominant ray depends upon the monotonicity of the twist of
the map. For the Hénon map, there is at least one anomalous domain, 9

16 < k < 5
4 , where the

rotation number is increasing [31]. For orbits in an anomalous twist region, the elliptic and
hyperbolic orbits reverse roles, and the ray Ro contains only hyperbolic orbits. As a result
there is no dominant symmetry line that contains all elliptic orbits when the twist is reversed.

Under the assumption that Ro is dominant, we can easily determine which of the other
symmetry rays contain points on the elliptic orbit, depending upon whether the numerator
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Ro

f 
-1(Ro)

So

f (Ro)

f (So)

f 
-1(So)

Si

Ri

2/5

7/17

5/12
3/7

8/19

2/5

7/17

5/12

8/19

3/7

Figure 8. Phase space of the Hénon map for k = 2.75 with a range (−1.75, 0) for x and x′. Shown are a
number of orbits, including invariant circles around the elliptic fixed point, and five class-one island chains with
rotation numbers 2

5
, 7

17
, 5

12
, 8

19
, 3

7
. Also shown are the four symmetry rays (solid curves), their images (dashed

curves), and their preimages (dash-dot curves).

Table 2
The dominant (Ed, Hd) and subdominant (Es, Hs) symmetry rays. Every elliptic (positive residue) class-

one orbit (except when the twist is anomalous) is observed to have a point on Ed. Each row corresponds to
rotation number p

q
with p and q even or odd as indicated.

ω = p
q

Ed Es Hd Hs

odd/odd Ro Si Ri So

even/odd Ro So Ri Si

odd/even Ro Ri So Si

and/or the denominator of the rotation number are even or odd; see Table 2. The labeling of
these lines is consistent with that in Figure 8.

The time reversal symmetry operators also have a representation for the shift map, σ,
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(2.5). Indeed, the interpretation of S is obvious if we consider its action on a configuration-
space sequence: S(xt−1, xt) = (xt, xt−1). Thus as an operator on symbol sequences, S simply
reflects them about the binary point

S(. . . s−1.s0s1 . . .) = (. . . s1s0.s−1 . . .).

For symbol sequences, it is convenient to use the operator T = Sσ for the second symmetry
(instead of R), because this corresponds to a reflection about the symbol s0:

T (. . . s−1.s0s1 . . .) = (. . . s1.s0s−1 . . .).

Thus the elements of the fixed set of S are sequences symmetric under a reflection about the
binary point, and those of T are sequences symmetric under a reflection about s0. Using
the geometry of the horseshoe (see Appendix C) and its implied ordering relation given in
Lemma 20, we can also find the codes for the symmetry rays. The o rays correspond to codes
whose symbols are “smaller” than those for (−)∞. This means that the parity of sequence
s0s1 . . . sj , where sj is the first symbol that is not −, must be negative; i.e., there must be
an odd block of − symbols after the binary point. Similarly the i rays correspond to codes
that are “larger” than (−)∞, i.e., that have an even block of −’s (or none). More concretely,
define κ(s) to be the number of contiguous − symbols following the binary point:5

κ(s) = min
j≥0

{j : sj = +}.(3.12)

Then we have

So = {s : s−t = st−1, κ(s) odd},
Si = {s : s−t = st−1, κ(s) even},
To = {s : s−t = st, κ(s) odd},
Ti = {s : s−t = st, κ(s) even}.(3.13)

It is easy to see that the rotational codes of section 3 are symmetric. For example,
from Table 1, the code s = (. . .−−+++.−−+++. . .) for the hyperbolic 1

5 orbit has two
points on symmetry lines, its first image σ(s) = (. . .+++−.−+++ . . .) is a point on So and
σ3(s) = (. . .−−+.++−− . . .) is a point on Ti.

To prove this we start with a lemma about the symmetries of the rigid rotation (3.4).
Though the reflection point for the rigid rotation is arbitrary, we choose θ = 0, which conforms
to the symmetry of our W± partitions and to our selection of θ for the canonical elliptic code.

Lemma 3. The rigid rotation F (θ) = θ + ω mod 1 can be factored as F = ST , with
reversors T : θ �→ −θ and S : θ �→ ω − θ. When ω ≤ 1

2 , the fixed sets of these symmetries
divide into the rays

So =
{
θ : θ =

ω

2

}
, Si =

{
θ : θ =

1 + ω

2

}
,

To = {θ : θ = 0}, Ti =

{
θ : θ =

1

2

}
.(3.14)

5κ(s) does not exist for (−)∞, as it should not, since this point is the dividing point for the four rays.
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Points that start on these rays generate codes with symmetries given by (3.13).

Proof. Since the W± partition is symmetric with respect to θ = 0, if we set θ0 = 0,
then the resulting code is symmetric with respect to the binary point. Since θ0 ∈ W− and
θ1 = ω ∈ W+, the sequence begins .−+ . . . so that κ(s) is odd, agreeing with To. Similarly,
codes generated by θ0 = 1

2 are also invariant under T and start .+. . . , so they are on Ti.
If we set θ0 = ω

2 , then the symmetry of the wedges (recall Figure 4) implies s−t = st−1,
so the code is invariant under S. The first symbol is always s0 = −; we will show that κ(s) is
odd. Indeed, when ω ≤ 2

5 , then s1 = +, since θ1 = 3
2ω ≤ 1 − ω. Otherwise, 1 − ω < θ1 < 1

so that s1 = −. But then s2 = −, too, because 0 < θ2 < ω. Indeed, a double − must occur
whenever the orbit enters W− having skipped W+. Thus the line θ = ω

2 corresponds to κ(s)
odd and is therefore So. A similar argument gives the last case.

Another simple lemma gives relations between the symmetry lines that imply the “domi-
nant-subdominant” pairing in Table 2.

Lemma 4. The four symmetry rays can be divided into two pairs (Ed, Es) and (Hd, Hs),
as given in Table 2 (depending on the parity of ω), such that if θ is a point on a dominant

ray, then F 	 q−1
2


θ is a point on its subdominant partner. Moreover, the iterates of lines from
different pairs are disjoint.

Proof. We consider only the case ω = odd/even; the others can be done similarly. First we
prove that the stated pair of rays can be mapped into each other. That Ed is mapped into Es

is the statement F t(To) = Ti for some t. This requires that tω = 1
2 + j for some integer j,

which is equivalent to ω = 2j+1
2t . Thus ω is of the form odd/even, and t = q

2 . For the S pair

we similarly have ω
2 + tω = 1+ω

2 + j, which again occurs when t = q
2 . Since each pair maps to

itself, it is enough to show that To does not map to So; i.e., F t(To) �= So for all t. This implies
tω �= ω

2 mod 1. It is clear that this equation does not have an integer solution for t for the
odd/even case. Since R is the image of T , this verifies the pairing in Table 2.

We find that, for the odd-q case, T is mapped into S after q+1
2 iterations. Since we use

R in Table 2, this decreases the number of iterates by 1.

Finally, we use these results to show that the rotational codes have the symmetries as
given in Table 2.

Theorem 5. The codes for the rotational periodic orbits are symmetric. Moreover, the
canonically ordered elliptic code is on the dominant ray To (its image is on Ro). The other
symmetry lines occur as given in Table 2.

Proof. The canonical code for an elliptic orbit has θt = ωt. Therefore, θ0 = 0, and Lemma 3
implies that this point is on To. Since f(To) = Ro, the first image of the canonical code is
on Ro. Thus all elliptic orbits have points on the dominant symmetry line. By Lemma 4,
they also must have a point on the subdominant line Es.

The canonical code for the hyperbolic p
q orbit has θt = ωt − 1

2q , and the orbit covers the

q evenly spaced points 2j−1
2q , j = 0, 1, . . . , q− 1, on the circle. Whenever p is odd, there exists

a time t′ such that 2j − 1 = p, and then θt′ = p
2q = ω

2 . Thus θt′ ∈ So. If q is odd, then

there exists a t′′ such that 2j − 1 = q so that θt′′ = 1
2 ∈ Ti. This verifies the line Hd. The

subdominant line then follows from Lemma 4.

In particular, this implies that the dominant symmetry line conjecture follows from the
rotational codes conjecture.
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Corollary 6 (dominant symmetry line). If Conjecture 1 is true, then every elliptic, class-one,
one-parameter family of periodic orbits of the Hénon map starting at the AI limit has a point
on Ro until residue zero is encountered.

The caveat in this corollary accounts for the domain of anomalous twist. The elliptic
orbits born in this region in a rotational bifurcation have points on the H symmetry lines in
Table 2 and connect to the normal-twist hyperbolic orbits in saddle-node bifurcations when
they touch the twistless curve. Coming from the AI limit this saddle-node bifurcation is the
first encounter of r = 0, so the backward running branch between k(ω) and k1(ω) is removed,
because there the statement is not true.

3.5. Symbol boundary. According to Theorem 5, the boundaries of the wedges W± cor-
respond to the image and preimage of a dominant symmetry line. Thus we expect that the
symbol partition for class-one orbits will show this same structure. Indeed, this is what we
observe; see Figure 9. The figure shows that the wedge-shaped symbol boundary leaving the
elliptic fixed point (small magenta circle) is delineated by the image and preimage of Ro, the
dominant ray. This boundary also is valid for the nonrotational orbits shown.

Another example is shown in Figure 10, where there is a prominent class-two island around
the 2

5 rotational orbit. Moving from the elliptic fixed point outward, the figure shows class-one
periodic orbits with frequencies 16

39 , 9
22 , 20

49 , 11
27 , 13

32 , 15
37 , and 17

42 .6 Notice that, as expected from
the schematic representation above, the − region is a wedge with opening angle 2ω centered
on the dominant symmetry line. As far as we can tell the symbol boundary for all rotational
class-one orbits is indeed formed from the image and preimage of Ro.

Also shown in Figure 10 are three orbits that encircle the 2
5 elliptic orbit—orbits of class

two. To the resolution of this figure, it appears that the wedges formed from images of Ro also
provide the symbol boundary for these orbits. However, as we will see in the sections below,
this is not the case. We start by constructing the rotational codes for higher class orbits.

4. Class-two orbits. As first observed by Birkhoff, a typical elliptic periodic orbit has
satellite periodic orbits in its neighborhood, i.e., orbits that rotate around the elliptic orbit.
Some of these new orbits will in turn be elliptic and therefore have satellites about them
as well. We use the term class to refer to this hierarchy of islands-around-islands [25]. For
the Hénon map, the elliptic fixed point is defined to be class-zero, the rotational orbits of
section 3 are class-one, and a class-two orbit is one that rotates around a class-one elliptic
periodic orbit; see Figure 8 for examples.

Recall that an elliptic/hyperbolic pair of class-one periodic orbits with rotation number
ω1 = p1

q1
is born at the elliptic fixed point when k = k(ω1), (3.2). After its birth, the elliptic

class-one orbit is the center of a class-two island chain consisting of the invariant circles and
cantori that encircle each point on the class-one orbit. The island extends to the separatrix
formed from stable and unstable manifolds of the class-one hyperbolic orbit, as schematically
shown in Figure 11. The class-two orbits have rotation numbers that are measured relative
to f q1 . When the rotation number of the class-one orbit—as determined by its residue, (2.7)
or (3.1)—passes through the rational frequency p2/q2, an elliptic/hyperbolic pair of class-two

6It is convenient to use the Farey tree to choose periodic orbits. For k = 2.43, the rotation number of the
elliptic point is ω ≈ 0.4123 < 7

17
. Starting with the pair of neighboring rationals 2

5
and 7

17
, we construct the

Farey tree for several levels to obtain our orbits.
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–1(Ro)

Figure 9. Symbol boundary for k = 2.75 appears to coincide with the image and preimage of the dominant
symmetry line Ro. Shown are the same orbits as in Figure 3. Those points with s0 = + are colored magenta
and those with s0 = − are cyan. The solid green line is the dominant symmetry line, Ro, the dashed line is its
image, and the dot-dashed line is its preimage.

orbits is created in a q2-tupling bifurcation of f q1 . We denote the rotation number of these
orbits by ω1 : ω2; they have period Q = q1q2. Three such class-two orbits are shown in
Figure 10 with rotation numbers 2

5 : 1
16 , 2

5 : 1
20 , and 2

5 : 1
22 .

For the case of normal twist, the direction of rotation typically reverses with each increment
of class. This occurs because in any island the rotation number is typically a maximum at
the elliptic orbit forming the island center and monotonically decreases to zero approaching
the separatrix. In particular, this implies that the inner separatrix of an island advances with
respect to the center of the island and the outer one retreats; see Figure 11. Continuity then
implies that if the class-one invariant circles have clockwise dynamics, the class-two circles
have counterclockwise dynamics.

Our numerical observations imply that the code for a class-two p1

q1
: p2

q2
orbit is constructed

essentially by repeating the class-one p1

q1
code q2 times, because most of the class-two points

are deeply buried inside the wedges shown in Figure 4 that determine the class-one symbols.
However, if the class-one sequence were merely repeated q2 times, the orbit would not have
the correct minimal period; consequently some of the symbols must be flipped to obtain the
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f -1(Ro)

–0.8

–0.4

-1.2

–0.4x–0.8-1.2

Figure 10. Class-one symbol boundary for k ≈ 2.43 (ε = 0.54) coincides with the image and preimage of
the dominant symmetry line Ro. Shown are 13 class-one rotational orbits about the elliptic fixed point as well
as three class-two orbits encircling the 2

5
elliptic orbit. Elliptic (positive residue) orbits are shown as dots and

hyperbolic as crosses.

correct code. Indeed, there are two islands7 that intersect the class-one symbol boundary
(recall the 2

5 island in Figure 10). Such islands are termed ambiguous because they straddle
the symbol boundary; the determination of the symbols of points in these special islands
requires more analysis.

4.1. Class-two codes. Schematically, a class-one orbit with rotation number ω1 = p1

q1
can

be represented as q1 equally spaced points on a circle with the dynamics (3.4). In a similar
vein, a class-two orbit with rotation number p1

q1
: p2

q2
schematically corresponds to points on

a set of circles enclosing each point of the class-one orbit. To compute these points choose a
pair of radii, r1, r2, to represent the sizes of the islands and define

x + iy = e−2πiθ1
(
r1 + r2e

2πiθ2
)
.(4.1)

Here r2 is chosen sufficiently smaller than r1 so that none of the class-two islands intersect.
This gives an epicycle view of the orbit. The angles (θ1, θ2), representing the island structure,

7Except for the case ω1 = 1
2
, where there is only one island.
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dE(1)
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H(1)
d

H(1)
s

Figure 11. Schematic class hierarchy: Class-one invariant circles (cyan) and a class-two 1
4

island chain
(red). Since the rotation number of the class-one circles decreases with radius, the image of the horizontal
(green) line shears as shown. Continuity implies the direction of rotation reverses as the class is incremented.
Also sketched are the elliptic (green) and hyperbolic (brown) symmetry rays for class one.

evolve according to the two rotation numbers of the orbit. The schematic dynamics is ex-
pressed by using a mixed basis for time, t = t1 + q1t2, where t1 = t mod q1 so that ti ∈ [0, qi);
this is written in clock-like notation as8

t ≡ t1 : t2.

With this definition, the angles evolve as

θi(ti) = ωiti + αi, i = 1, 2.(4.2)

Iteration of this pair of maps produces a set of Q = q1q2 points on the epicycle.
The signs in the exponentials in (4.1) are reversed to account for the reversal of rotation

direction that occurs when moving between the classes.
Recall that the canonical elliptic class-one code is obtained by setting α1 = 0 and the

hyperbolic code is obtained when α1 = −1/2q1. Since class-two orbits rotate around elliptic
class-one orbits, we set α1 = 0; the phase α2 differentiates between the elliptic and hyperbolic
class-two orbits. The canonical elliptic class-two code has α2 = 0, and the canonical hyperbolic
code has α2 = − 1

2q2
.

The epicycles for ω = 2
7 : 2

9 are shown in Figure 12. The points of the elliptic class-one orbit
are represented by filled circles evenly spaced along the large circle of radius r1. Surrounding

8Mixed base systems like the above are well known for time measurements, e.g., setting ω = 1
10

: 1
60

: 1
60

:
1
24

: 1
7

: 1
52

, corresponding to tenths of seconds, seconds, minutes, hours, weekdays, and weeks, so that in our
notation t = 0 : 1 : 30 : 19 : 4 : 5 is the 4th day in the 5th week, at 19:30 hours plus 1.0 seconds. Instead of 1

24

the American system uses 1
12

: 1
2
, where the 2 is represented as AM or PM. Our lives are simpler because all

numerators are all ones for an actual clock, and hence θj is not needed; they would have been even more simple
if the French revolution had succeeded in promulgating a decimal time system.
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Figure 12. Epicycle view of a class-two orbit for ω = 2
7

: 2
9
. The picture is generated by (4.1) with r1 = 1

and r2 = 0.2. The angle θ1 is measured clockwise and θ2 counterclockwise. The elliptic class-one 2
7

orbit is
denoted by solid circles, and the class-two orbits are denoted by open circles (elliptic) and crosses (hyperbolic).
Points with the symbol − are colored blue and those with + are colored red. The integers next to each elliptic
point denote the time t along the orbit.

each of the q1 points of this orbit is a smaller circle of radius r2 containing q2 points of the
class-two periodic orbit. By convention, we measure θ2 in a corotating coordinate system,
so that points with θ2 = 0 are located on radial rays from the origin. Notice that a q1-fold
iteration maps each small circle to itself, shifting its points counterclockwise by ω2.

To generate the symbol sequence for a class-two orbit, the epicycle picture must be parti-
tioned into regions corresponding to the + and − symbols. Our observations indicate that this
can be done by constructing a pair of “wedges” W±(ω) whose boundaries are piecewise linear.
The boundaries start as rays from the origin at angles θ1 = ±ω1—these same rays formed
the class-one boundary. The rays end in the center of the two ambiguous class-two islands
corresponding to t1 = ±1; it is not immediately clear how to continue the symbol boundary in
these islands. A cursory look at Figure 10 might indicate that the symbol boundary continues
straight through the ambiguous islands. However, our numerical observations show that the
two rays actually bend at the centers of the t1 = ±1 ambiguous islands by angles θ2 = ±ω2,
respectively. This bend is too small to see in Figure 10.

The regions W±(ω1 : ω2) bounded by these rays correspond to the ± symbols. Just as for
the class-one case, the region containing θ1 = 0 corresponds to st = −. The only remaining
point to understand is the symbol for points on the boundary. In contrast to class one, our
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observations show that W− is closed and W+ is open.
It is not difficult to translate the epicycle picture into a simple algorithm that generates

the codes for any class-two orbit.
Definition 2 (class-two code). Given a class-two frequency ω = ω1 : ω2 = p1

q1
: p2

q2
and a

phase α2, the maps (4.1) and (4.2) give a point zt in the plane for each time t = t1 : t2. If
zt ∈ Ws(ω), then the tth symbol of the orbit is s. The region Ws(ω) is bounded by a continuous
piecewise linear system of segments. At the origin two segments of length r1 emerge at angles
corresponding to t1 = ±1. Their endpoints are connected to segments of length r2 with angles
corresponding to t1 : t2 = ±1 : ±1; see, e.g., Figure 12. The region W−(ω) is the one that
contains t = 0 : 0 and is closed, while W+(ω) is its complement.

Continuing the example of Figure 12, the orbits are coded so that the points in the red
region have the symbol + and those in the blue region have the symbol −. The four points
that fall on the symbol boundary (for example, t = 8 = 1 : 1 and t = 62 = 6 : 1 for the elliptic
orbit) have the symbol −. Note that points in the nonambiguous islands, corresponding to
t1 = 0, 2, 3, 4, 5, have the same code as the elliptic class-one 2

7 orbit. Thus many of the symbols
of the class-two orbit simply repeat the class-one code.

To see this more clearly, denote the class-one code by the row vector s1. Since most of the
points on the class-two orbit are determined by this code, we first replicate this code q2 times;
however, instead of viewing this as a vector of length q1q2 we reshape the code as a table
with s1 as its rows. The columns of this table are labeled by t1 and the rows by t2. In this
way each ambiguous island corresponds to a column of the table, i.e., the columns t1 = 1
and t1 = −1 ≡ q1 − 1. The codes in the ambiguous columns must now be replaced by the
appropriate code for ω2 using the class-two wedges.

As an example consider again the symbol sequence for the 2
7 : 2

9 orbit. Table 3 lists the
symbol sequence where the 63 symbols are arranged in nine rows of seven entries each. The
ambiguous islands correspond to the columns t1 = 1 and t1 = 6 = −1 mod 7. The q2(q1 − 2)
symbols in the remaining columns are determined by q2-fold repetition of the elliptic class-one
code for ω1 = 2/7, (−++−−++)∞.

Table 3
Elliptic class-two code for the 2

7
: 2

9
orbit. The ambiguous columns are t1 = 1 and t1 = 6. The hyperbolic

code is the same with the exception of the boxed symbols, at t = 8 = 1 : 1 and t = 50 = 1 : 7, which are flipped.

t1 0 1 2 3 4 5 6 t2

− + + − − + + 0

− − + − − + + 1

− − + − − + + 2

− + + − − + − 3

− + + − − + + 4

− + + − − + + 5

− − + − − + + 6

− + + − − + − 7

− + + − − + − 8

The symbols in the ambiguous columns t1 = ±1 are generated with respect to a wedge
formed by the boundary in the class-two island. The codes for the hyperbolic orbit are
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Figure 13. Four examples of the epicycle view of class-two orbits. Points are labeled by the time t along
the orbit. Symbols in the blue regions are − and those in the red regions are +.

obtained by a shift of α2 = − 1
2q2

(i.e., a clockwise rotation), as shown in Figure 12; this
corresponds to flipping the two boxed symbols in Table 3. As we will see below, when there
are two ambiguous islands, exactly two symbols flip relative to the elliptic case.

Epicyclic pictures for additional class-two orbits are shown in Figure 13. The codes are
easily obtained from the figures by reading off the symbols according to the time t, using the
colors shown. For example, the code for the elliptic 1

9 : 3
7 orbit is the seven-fold repetition

of the 1
9 elliptic code, −+8, modifying only two symbols in the columns t1 = ±1, by setting



540 H. R. DULLIN, J. D. MEISS, AND D. G. STERLING

s10 = s62 = −. The hyperbolic code is obtained from the elliptic one by flipping s10 to + and
s55 to −.

As ω1 approaches 1
2 , the class-one + wedge shrinks to a single point θ1 = 1

2 . Orbits with
ω1 = 1

2 are special because the two boundaries of the class-one wedge coincide so that there
is only one ambiguous island with t1 = +1 ≡ −1. Thus, for example, the code for the 1

2 : 1
8

elliptic orbit shown in the last panel of Figure 13 is (−+−14)∞, while its hyperbolic partner
has code (−+−13+)∞. In this case the ambiguous column of the elliptic orbit contains +−7,
while the unambiguous column simply contains −8.

If ω2 approaches 1
2 , as in the first two panels of Figure 13, the open class-two wedges grow,

encompassing all but θ2 = 1
2 . The extreme case of this, ω2 = 1

2 , has only one s = − point in
the ambiguous islands; for example, the code for the elliptic 1

8 : 1
2 orbit is (−+7−−+5−)∞.

The well-known “doubling” substitution rule

− → −+ and + → −−(4.3)

(see Appendix B) can be used to generate the codes for class-two orbits of the form 1
2 : ω

from those of the class-one orbit with frequency ω. For example, applying this substitution
rule to the 1

8 code, −+7, gives the same code as in Figure 13. That this is true in general
follows because the class-two wedge for s = + is θ2 ∈ (−ω, ω), which is the same as the
class-one wedge for s = −. Hence each symbol flips to create the ambiguous column; the first,
unambiguous column is all −.

4.2. Numerical observations. In this section we present numerical observations that sup-
port the class-two code construction for the area-preserving Hénon map. As for the class-one
case in section 3.3, we checked that the class-two orbits defined by their codes at the AI limit
collide with the appropriate class-one orbit at the parameter value where the class-one orbit
has the expected residue. We restricted our attention to class-two orbits with q1 and q2 ≤ 13.
Figure 14 shows the number of digits of precision in the bifurcation value for the class-two
rotational orbits with normal twist.9 When ω1 = 1/2 there is only a single ambiguous class-
two island. In order to verify the class-two code for this case we compared the numerical
bifurcation parameters for 236 class-two orbits of the form 1

2 : ω2 where q2 < 39 to the exact
value [40]

k

(
1

2
: ω2

)
= 3 + sin(πω2)

2.

Apart from the interval near ω2 = 1/3, where the twist vanishes at class two, the computed
values of the bifurcation parameter were accurate (to at least eight significant digits) when
compared to the exact value.

The results we have obtained give us confidence that the following conjecture is true.

Conjecture 2. The AI code for the class-two orbits of the Hénon map is defined by the
epicyle wedges W±(ω1 : ω2) of Definition 2.

9There are only eight orbits with fewer than four digits of precision: 1
3

: 4
13

, 1
4

: 4
13

, 1
5

: 4
13

, 2
5

: 4
13

, 2
7

: 4
13

,
5
12

: 3
13

, 5
13

: 4
13

, 6
13

: 6
13

. The loss of accuracy for these is due to an anomalous twist near 1
3

or 1
4
.
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Figure 14. Number of correct digits in parameter value for 727 class-two orbits with q1 ≤ 13 and q2 ≤ 13.
We excluded frequencies p2/q2 = 1/3, 3/10 where the class-one twist is anomalous to avoid difficulties near the
twistless bifurcations.

4.3. Parity of class-two codes. We now show that the elliptic and hyperbolic class-two
codes differ by two symbols, but they have the same parity.

Lemma 7 (properties of class-two codes). Assume ω �= 1
2 : 1

2 . Then the elliptic and hyper-
bolic class-two codes differ by flipping two symbols, the symbol at t = 1 : 1 and that at

t = −1 :
q2
2
, q2 even,

t = 1 :
q2(2j + 1) + 1

2p2
, q2 odd,

where j is the smallest nonnegative integer for which an integer solution for t2 is obtained.
The parity of both orbits is equal to the parity of q2.

Proof. We start by considering the ambiguous island, t1 = +1. By definition, the hyper-
bolic and elliptic codes differ only when ω2t2 and ω2t2 − 1

2q2
are in different wedges. Let Sj

be the sectors defined in (3.7) relative to q2 for θ2. When q2 is even, the situation is similar
to class one, because the wedge boundaries in the ambiguous island coincide with boundaries
of one of the sectors Sj . Accordingly only the symbol t = 1 : 1 changes. Alternatively, when
q2 is odd, the other wedge boundary at 1

2 is not part of the elliptic orbit since ω2t2 �≡ 1
2 for

all t2. Instead the hyperbolic orbit hits this boundary when ω2t2 − 1
2q2

= 1
2 + j, flipping the

symbol at this location. This gives the above formula. In order to show that this is the only
other change with t = 1 : t2, the argument of Lemma 1 can be repeated with sectors S̃j of
half the size. As a result, for all α2 ∈ S̃−1 the elliptic code is obtained, while for α2 ∈ S̃−2 the
hyperbolic code is obtained.

Now we consider the ambiguous island with t = −1 : t2. The wedge in this island is a
reflection of that in the previous ambiguous island. However, since the rotation direction is
not reversed, the sectors Sj (or S̃j) are not reflected. This implies that whenever an open
sector end coincides with a closed wedge end for t = +1 : t2, after reflection of the wedge for
t = −1 : t2 both endpoints will be open, and vice versa. Since a symbol flip occurs only when
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different types of endpoints coincide, only one of the symbols at t2 = ±1 flips—never both. In
particular, when q2 is odd both symbol flips occur for t2 = +1, while for even q2 the symbol
halfway around the orbit with ω2t2 = 1

2 + j flips for t2 = −1. This gives the first part of the
lemma.

When q2 is even the parity of the unambiguous symbols (t1 �= ±1) is even, because their
number per island is multiplied by q2. The parity of the ambiguous symbols is even in the
elliptic case, because the symbol sequences are cyclic permutations of each other; starting
with α2 = 0 at t1 = 1 : 1 gives the same symbol sequence as starting with α̃2 = 1

2 − ω2 at
t = −1 : q2

2 (apply a rotation!). But α̃2 is a point on the orbit for even q2; hence the elliptic
ambiguous columns have the same numbers of signs. Therefore, their parity is even, and the
whole sequence has even parity when q2 is even.

When q2 is odd the parity of the unambiguous symbols is odd, because the number per
island is odd and they are repeated an odd number of times. The number per island is
odd because the elliptic class-one orbits have odd parity, and the two deleted symbols in the
ambiguous column are + signs in the elliptic case. The number of signs in the ambiguous
columns is the same because the two are time reversals of each other; upon reflection of the
wedge and the orientation the same sequences are generated. So their parity is even, and the
total parity is odd.

Recall from Lemma 2 that the elliptic/hyperbolic class-one orbits have opposite parities
and this corresponds to their opposite residue signs. One important consequence of the pre-
vious lemma is that at class two the elliptic/hyperbolic partners have the same parity and
therefore, according to (2.8), will have residues with the same sign at the AI limit. Neverthe-
less they are initially born with opposite residues, as this is the normal form of the q2-tupling
bifurcation [34]. According to (2.8), even parity implies a negative residue at the AI limit.
Therefore, when q2 is even the residue of the (initially) elliptic orbit, which is (initially) posi-
tive, must cross r = 0 at least once as k increases from the bifurcation value in the approach
to the AI limit. Similarly, when q2 is odd the residue of the (initially) hyperbolic orbit must
cross r = 0 for some k larger than the bifurcation value.

We call bifurcations related to these additional zeros in the residue function secondary
bifurcations. In particular, when r = 0 for k larger than the parameter value of the rotational
bifurcation, a secondary pitchfork bifurcation occurs (super- or subcritical, depending on
the parity of the code), and when r = 1 a secondary period-doubling bifurcation occurs
(again super- or subcritical, depending on the parity). Between these two parameter values, a
complete sequence of secondary rotational bifurcations must take place. An example of these
bifurcations is shown in Figure 15.

We will not attempt to completely describe the symbol sequences associated with these
secondary bifurcations but only offer an empirical rule based on our numerical observations.

Conjecture 3 (pitchfork class two). The pitchfork children of class-two orbits differ only in
the four symbols at the intersection of the ambiguous columns and rows with t1 and t2 given
in Lemma 7. When q2 is even these four symbols ordered by t are −+−− for the (initially)
elliptic orbit and ++−+ for the (initially) hyperbolic orbit. The secondary bifurcation of the
elliptic orbit generates the ambiguous symbols

−+−− → pf (−+−+,−++−).
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Figure 15. Scaled residue ρ, (3.3), for typical class-two rotational orbits and their pitchfork children with
q2 odd (left panel) and even (right panel). The (initially) stable class-two orbit is rendered in blue, the (initially)
unstable orbit in red, and one of the pitchfork children in green. The dashed curve is the period-doubling curve
r = 1. The secondary pitchfork bifurcation occurs at the rightmost zero crossing of the (initially) stable orbit
when q2 is even and the initially unstable orbit when q2 is odd.

When q2 is odd they are −++− for the elliptic and ++−− for the hyperbolic orbit. The
secondary bifurcation of the hyperbolic orbit is

++−− → pf (+++−,++−+).

It is not hard to show that the four ambiguous symbols in the parent sequence must be
∓ + −− as given in Conjecture 3; these are the symbols corresponding to the points on the
appropriate class-two wedge boundaries.

The rule given in Conjecture 3 generates the symbol sequences of the daughter orbits
created in a secondary pitchfork bifurcation. These are the orbits whose residues are rendered
in green in Figure 15. We examined 105 class-two orbits in the Hénon map with frequencies of
the form 1

j : p
q , where j = 3, 4, 5 and 3 ≤ q ≤ 15. The parameter value (k) where the pitchfork

children predicted by Conjecture 3 were born agreed (to at least eight significant figures10)
with the value where the residue of the class-two parent orbit crossed zero in the “secondary”
bifurcation. These results suggest that the conjecture is probably valid for the Hénon map.

4.4. Symmetries. Numerical observations suggest that the concept of “dominant” sym-
metry line can be extended to class-two orbits (and in fact to class-c with c > 2; see below);
for example, for each ω1, there appears to be a particular symmetry ray that contains all
of the elliptic class-two orbits ω1 : ω2 [25]. Recall from Table 2 that there are two rays,
Ed and Es, whose identity depends upon the parity of the numerator and denominator in ω1,
that contain elliptic class-one orbits. Since each class-two orbit rotates around the points on a
class-one orbit, they should have points on the two E rays. These two rays are divided at the
class-one elliptic points, giving four new rays. As before, we use i and o to denote “inward”

10With the exception of six orbits, 1
3

: 4
13

, 1
4

: 4
11

, 1
4

: 4
13

, 1
4

: 5
13

, 1
4

: 5
14

, 1
5

: 4
13

, for which numerical difficulties
gave less than six digits of precision.
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and “outward” halves of the rays; the subscript i corresponds to the ray that starts at the
elliptic class-c orbit and heads in toward the elliptic class-(c− 1) orbit, while o is the ray that
heads out from the lower class orbit. Thus, for example, Es is divided into Eso and Esi. We

denote the four symmetry rays at class c by E
(c)
d , E

(c)
s , H

(c)
d , and H

(c)
s . The observation in [25]

is that

E
(c)
d = E(c−1)

so ;(4.4)

that is, the outward half of the class-(c− 1) subdominant ray becomes the dominant ray for
class c; see Figure 16. This is consistent with Figure 10, as all of the elliptic, class-two 2

5 : p2

q2

orbits have a point on the outward half of E
(1)
s = So.

E1

d

E1

s

E2

d

Figure 16. Sketch of the dominant symmetry line at class two. Shown are points on a period-five elliptic
class-one orbit (cyan dots) and several class-two orbits (red and gray points). All of the elliptic class-two orbits

line up on the outward half of the subdominant class-one ray E
(1)
so .

In this section we verify the dominant symmetry conjecture for the class-two codes. We
also obtain a recipe to describe the boundary of the class-two wedge in terms of iterates of the

E
(2)
d so that the wedge can be computed in the Hénon map and compared to the prediction

obtained from numerical continuation.
That the class-two elliptic codes are symmetric is a simple consequence of the symmetry

of the wedges W± in the two epicycle picture.
Lemma 8 (symmetries of class-two codes). Let s be the code for the elliptic class-two orbit

with rotation number ω = p1

q1
: p2

q2
. Then s has an image on the dominant symmetry line

E
(2)
d = E

(1)
s . In addition, when q2 is odd, s has an image on the subdominant line E

(2)
s =

E
(1)
d = Ro, and when q2 is even, an image on E

(1)
s . Here E

(1)
d,s are the lines in Table 2.

Proof. Let s denote the canonical elliptic symbol sequence, i.e., starting from the point
θ = (0, 0). Then if t+ = 1 : 1 = 1 + q1, the point σt+s is on the symbol boundary since it cor-
responds to θ = (ω1, ω2). Similarly setting t− = −1 : −1 ≡ (q1 − 1) : (q2 − 1) = q1q2 − 1 ≡ −1,
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then σt−s is also on the symbol boundary and corresponds to θ = (−ω1,−ω2). Since the
class-two wedge W− is closed, these two points have the same first symbols s0 = −, and by
symmetry of the wedges in θ �→ −θ, the two sequences must be the same when reversed;
consequently,

Tσt+s = σt−s.

Repeatedly composing this with σ and noting that σT = Tσ−1, we find that when t+ + t− is
even, σas ∈ T , where a = t++t−

2 = q1
2 . Alternatively, when t+ + t− is odd, since σT = S we

find σbs ∈ S, where b = t++t−+1
2 = q1+1

2 .
To decide which half of the symmetry line these points are on, recall from (3.12) that this is

determined by κ(s), the number of consecutive − symbols starting at s0. Consider first q1 even,
where the symmetric point is σas. Since t = a = q1

2 : 0, then θ = (ω1q1
2 , 0) = (p1

2 , 0) = (1
2 , 0)

because p1 is necessarily odd. Thus the first symbol of this sequence is s0 = +, and so by
(3.14) it is on Ti. When q1 is odd, the symmetric point is σbs, with t = q1+1

2 : 0, and so
θ = (p1

2 + ω1
2 , 0). When p1 is even, this is on the line θ1 = ω1

2 , with s0 = −; following the
argument in Lemma 3 this implies the point belongs to So. Similarly, when p1 is odd, the
point is in Si.

Summarizing, we obtain the following table:

ω1 t1:t2 θ1 θ2 E
(2)
d

odd/odd q1+1
2 :0 1

2 + ω1
2 0 Si

even/odd q1+1
2 :0 ω1

2 0 So

odd/even q1
2 :0 1

2 0 Ti

Since this symmetry is independent of ω2, we are justified in calling it a “dominant” symmetry
line.

The subdominant symmetry line can by found by noting that since s has period Q = q1q2,
we also have

Tσt+s = σt−+Qs.

Iterating this relation, we find that if q1(q2 + 1) is even, then σcs ∈ T when c = t++t−+Q
2 =

q1(q2+1)
2 . Otherwise, σds ∈ S, where d = q1(q2+1)+1

2 .
The choice of ray for the subdominant symmetry depends upon the parity of both ω1

and ω2. When q2 is odd, then the second line is at σcs. Indeed, t = c = 0 : q2+1
2 , and so

θ1 = 0 independently of ω1, and θ2 = p2

2 + ω2
2 . For any p2 we have σcs = .−+ . . . so that this

point is on To.
We now consider q2 even. If q1 is also even, then the symmetry still occurs at t = c =

q1
2 : q2

2 , which gives θ = (p1

2 ,
p2

2 ) = (1
2 ,

1
2) since both p’s are odd. If ω1 < 1

2 , then so = +, and
the symmetry is Ti. A similar argument gives the same result for the frequency 1

2 case. The

final case has q1 odd and q2 even, for which the symmetry corresponds to t = d = q1+1
2 : q2

2 so
that θ = (p1

2 + ω1
2 , p2

2 ). When p1 is even, θ1 = ω1
2 , so s0 = −. This point is on So, as follows

from an argument similar to that in Lemma 3. Finally, if p1 is even, then κ(s) is even, so the
symmetry is Si.
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Summarizing, we obtain the following table for the subdominant line:

ω1 ω2 t1:t2 θ1 θ2 E
(2)
s

any even/odd 0: q2+1
2 0 ω2

2 To
any odd/odd 0: q2+1

2 0 1
2 + ω2

2 To
odd/odd odd/even q1+1

2 : q22
1
2 + ω1

2
1
2 Si

even/odd odd/even q1+1
2 : q22

ω1
2

1
2 So

odd/even odd/even q1
2 : q22

1
2

1
2 Ti

So far we have shown that the class-two codes are consistent with (4.4), but we have not
yet shown how to divide E(1) into halves.

Theorem 9 (class-two dominant symmetry ray). The dominant symmetry ray for class-two

codes is the outward half of the subdominant ray at class one, E
(2)
d = E

(1)
so , thus verifying (4.4)

for class two.
Proof. The division of the symmetry lines for the shift σ into rays at the class-one orbit

uses the ordering relation discussed in Appendix C. As shown in Figure 23, the outer halves
of So and To correspond to codes that are “less” than (under this special ordering) those of
the class-one orbit, while the outer halves of Si and Ti correspond to codes that are “greater”
than those of the class-one orbit. The canonical elliptic class-two code is the same as that
of the class-one orbit up to time t = 1 : 1 = 1 + q1, where it first hits the class-two wedge
boundary. Moreover, according to Lemmas 8 and 4, if s is the canonical elliptic code, then its

 q1+1
2 �th iterate is on E

(1)
s .

Thus the relative ordering of the class-one and class-two codes, following Lemma 20,
depends upon the parity of the symbols of the class-one orbit starting halfway around the
orbit and going up to the first differing symbol sq1+1 = s1, i.e., on the sign of

ρ = π(s� q1+1
2

� . . . sq1−1s0s1).

In particular, we must show that ρ = (−1)p1 . This follows because if p1 is even, E
(1)
s = So,

and so the code for the class-one orbit should be greater than that of the class-two orbit, while
if p1 is odd, then the symmetry lines are either Si or Ri, so the class-one code should be less
than that for class two.

As noted in Lemma 2, the class-one elliptic code has 2p1−1 symbols that are −. Moreover,
the canonical elliptic code has symmetry T , which means it is unchanged under reflection
about s0 = −. This implies that the first half of the orbit s1s2 . . . s� q1−1

2
� is the same as the

second half s� q1+1
2

� . . . sq1−1 written backward. Consequently, they each have p1 − 1 symbols

that are −. Finally, the sequence s� q1+1
2

� . . . sq1−1s0s1 has one additional minus sign, making

p1 in total; therefore, ρ = (−1)p1 .

4.5. Symbol boundary. In order to connect the above findings to the Hénon map, we
now describe the wedge boundaries in terms of iterates of symmetry lines. Inside the class-
one island the wedge boundary is simply given by the forward and backward iterates of the
dominant symmetry ray Ro, as discussed in section 3.5. From the schematic picture it would
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seem as if the higher class wedges are also constructed from iterates of Ro. This would,
however, contradict the observation that the dominant symmetry line is different at the next
class [25]. Moreover, we expect that a symbol boundary should be associated with a line
containing all the elliptic points. Thus, as we saw in Lemma 8, it should be associated with
the subdominant elliptic line.

Therefore, we now show that appropriate iterates of Ro in the schematic picture can in
fact be identified with certain iterates of the subdominant lines as given by (4.4).

Lemma 10 (boundary symmetry lines). The boundaries of the class-two wedge in the am-
biguous islands t1 = ±1 for the class-two orbit ω = p1/q1 : p2/q2 are given by

• the  q1−1
2 � + t1 iterate of the subdominant symmetry ray E

(1)
s and

• the −� q1+1
2 � iterate of symmetry ray E

(1)
do .

Proof. Recall the proof of Lemma 4. The schematic boundary of the class-two wedge has
two parts. The inner part consists of the class-one rays F t1(Ro) with t1 = ±1. The first part

of the lemma is the statement that this ray is an image of E
(1)
s = So. For example, when

ω1 = even/odd, then we require that there exists an integer n such that

ω1 =
even

odd
: F t1(Ro) = Fn(So) ⇒ ω1(t1 + 1) + j =

ω1

2
+ ω1n

for some integer j. Solving for ω1 gives 2j/(2n − 2t1 − 1), which is of the form even/odd.
When t1 = 1 the explicit solution is n = (q1 + 3)/2, and when t1 = −1 it is n = (q1 − 1)/2.
Note that replacing So by Si or Ri leads to a contradiction. Hence So is the unique symmetry
ray that can be mapped to Ro for ω1 = even/odd. In a similar way the other cases lead to

ω1 =
odd

odd
: F t1(Ro) = Fn(Si) ⇒ ω1(t1 + 1) + j =

1 + ω1

2
+ ω1n,

which gives the same values of n as before. Finally,

ω1 =
odd

even
: F t1(Ro) = Fn(Ri) ⇒ ω1(t1 + 1) + j =

1

2
+ ω1(n + 1),

which gives n = q1
2 + t1. Combining these expressions gives the first form.

The second ray of the class-two wedge is formed by taking the o part of the ray just
constructed (i.e., the part that goes beyond radius r1) and turning it by ±ω2 for t = ±1,
respectively. Turning by ±ω2 is achieved by iterating one complete cycle of class one, i.e.,
iterating ±q1 times. For t1 = −1 the number of iterates is thus (q1 − 1)/2 − q1 for odd q1
and q1/2 − 1 − q1 for even q1. Combining both cases gives −�(q1 + 1)/2�, and the result
follows.

As a result of the previous lemma the number of iterates needed to construct the class-two
wedge depends only on q1, the period of the class-one orbit.

It seems pointless to construct the class-two wedge from iterates of the new dominant
symmetry line instead of from iterates of Ro, since the two agree in the schematic picture.
It turns out, however, that the former gives the correct wedges for the Hénon map. In the
schematic pictures the two constructions coincide because the map has no twist. At the
birth of the class-two island (when the rotation number of the class-one orbit is ω2, and the
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rotation number of the class-two orbit is 0) the schematic picture is an accurate description
of the wedge geometry. Away from this bifurcation the symbol boundary differs from that in
the schematic picture, and the wedge needs to be constructed from the dominant lines of class
two.

x

x′

-1.5

-1.0

-0.5

0.0

-1.0 -0.5 0.0

Ro

So

-1.5

f 
4(So)

f 
–3(So)

f(Ro)

f 
–1(Ro)

Figure 17. Class-one (cyan and magenta) and class-two (blue and red) rotational orbits for k = 2.684.
The − symbols correspond to the cyan and blue points and the + to the magenta and red. Also shown are the
t = ±1 iterates of the symmetry line Ro (green) that form the class-one boundary and the iterates t = −1, 4
and t = −3, 2 of So (brown) that form the class-two boundary.

In Figure 17, we show the symbol boundary for k = 2.684, where the 2
5 island is predom-

inant (the same phase space is shown in Figure 18). Here the class-one orbits are shown with
colors cyan and magenta for s = ±, respectively. The boundary between these colors is given
by the image and preimage of Ro as before. Class-two orbits with ω = 2

5 : p2

q2
are shown with

colors blue and red for s = ±. Note that the class-one partition boundary does not work
for these orbits. According to Lemma 4, the boundaries in the t1 = −1 ambiguous island
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are given by segments of f2(So) and f−3(So); these are shown as the dashed (brown) curves
and clearly delineate the symbol boundary in Figure 17 for the class-two orbits. Similarly
segments of f4(So) and f−1(So) form the class-two boundary in the t1 = 1 ambiguous island.

There is apparently a jump in the symbol boundary across the separatrix of the 2
5 orbit. We

are unable to resolve the behavior near the separatrix numerically as the period of the orbits
near the separatrix becomes too large to accurately find the bifurcation values numerically.

The ability to describe the wedge boundary that is obtained by continuation from the AI
limit in terms of iterates of symmetry lines led to Conjecture 2.

5. Class-c codes. Orbits of arbitrarily high classes can also be found in area-preserving
maps. For example, Figure 18 shows successive enlargements of the phase space of the Hénon
map and exhibits orbits up to class four. The enlargements in this figure are not done with
the same scaling factor; indeed, the class hierarchy does not in general exhibit self-similarity
(except for special parameter values [25]). While there are typically islands of every class,
their shape and structure changes with class.

A class-c orbit rotates around a class-(c − 1) elliptic periodic orbit with some definite
rotation number. Generalizing the notation from class two, the rotation number is given by a
colon delimited string:

ω = ω1 : ω2 : . . . : ωc.(5.1)

Each of the numbers ωi = pi
qi

is necessarily rational, except possibly ωc. If the class-c orbit

is periodic, it has period Q =
∏c

i=1 qi. The rotation number ωc+1 about a class-c periodic
orbit is obtained by iterations of fQ and by considering rotations about one point on the
class-c orbit; if an orbit returns to itself after qc+1 iterations of fQ and has undergone pc+1

full rotations, then ωc+1 = pc+1

qc+1
.

Generalizing the epicycle picture in Figure 12, we can construct the symbol sequences for
periodic orbits of arbitrary class. As before, time is written in the mixed qi basis,

t = t1 + q1 (t2 + q2 (t3 + · · · + qc−1tc)) ≡ t1 : t2 : . . . : tc,(5.2)

where the digits ti are taken modulo qi. Associated with each t there is a point θ(t) ∈ T
c

defined by the mapping

t �→ θ(t) = (ω1t1, ω2t2, . . . , ωctc + αc).(5.3)

Here we have set αj = 0 for j = 1, 2, . . . , c − 1; this represents the selection of elliptic orbits
up through class-(c− 1). The phase αc selects an elliptic or hyperbolic class-c orbit. A class-j
island consists of the set of points θ(t) with a fixed choice of t1 : t2 : . . . : tj−1. Incrementing tj
moves the orbit around the island with frequency ωj , while incrementing θj by 1

qj
moves

sequentially through the points in the island.
The epicycle picture is obtained by generalizing (4.1). Define a set of radii, ri, i = 1, . . . , c,

that decrease rapidly enough so that the circles in the set defined by

x + iy = e−2πiθ1
(
r1 + e2πiθ2

(
r2 + · · · + rce

(−1)c2πiθc
))

(5.4)
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Figure 18. Phase space of the Hénon map for k = 2.684. Enlargements show higher class orbits, ultimately
focusing on the 2

5
: 3

13
: 1

18
: 1

17
orbit. The class-one invariant circles (cyan) encircle the elliptic fixed point and

the class-two (red) the 2
5

elliptic orbit. Shown in the enlargements are class-three circles (green), class-four
circles (orange), and finally a class-five chain (mauve). The elliptic class-two 2

5
: 3

13
orbit has a point on the

subdominant elliptic line So for the elliptic 2
5

orbit, as implied by dominant symmetry line conjecture.

do not overlap. As before, the direction of rotation reverses with each class. An example
epicycle picture for class three is shown in Figure 19.

The definition of the class-c code is complete once we specify the boundary between the
“wedges” W± that define the symbols st = ±. As for class two, our numerical observations
indicate that the boundary consists of another wedge. The rays that bound the wedge leave
the origin with angles θ1 = ±ω1. These extend to the center of the two class-two ambiguous
islands at t1 = ±1. The rays turn by angles θ2 = ±ω2 and continue to the center of two
class-three ambiguous islands at t = 1 : 1 and t = −1 : −1, respectively. The rays again turn
by angles θ3 = ±ω3, continuing to the center of class-four ambiguous islands, etc. Note that
since the direction of rotation in (5.4) reverses, the rays turn in an alternating manner.

The specification of the symbol boundary is complete once we define the codes for points
that fall on the boundary. This is especially important for c > 2, as there can be more than two
ambiguous islands. For example, in Figure 19, since q2 = 4 is even, there are four ambiguous
class-two islands, corresponding to t = 4 = 1 : 1, 7 = 1 : 2, 8 = −1 : −2, and 11 = −1 : −1,
and the rays defining the boundary of W− intersect all of these islands. By contrast, when q2
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Figure 19. Epicycle picture for the class-three orbit 1
3

: 1
4

: 1
3
. The boundary of W− (blue) is closed on the

solid rays and open on the dashed rays.

is odd, there are only two ambiguous class-two islands, t = 1 : 1 and −1 : −1.

The openness/closedness state of the boundary of the region W− is most easily described
recursively. Recall that at class one, the boundary of W− is open. Given the boundary at
class (c − 1), the boundary at class c is obtained by reversing the state of the ray at class
c − 1 and appending class-c rays with the same state. Thus, for class two, the previously
open class-one ray becomes closed, and the new class-two ray is also closed. For class three,
as shown in Figure 19, the class-two ray and the new class-three ray are now open. Applying
this rule to the first few classes generates Table 4.

Table 4
The class-c boundary of W− is open (dashed) or closed (solid) along the rays, rj, defining the ambiguous

islands.

Class r1 r2 r3 r4 r5

1 - - -

2 — —

3 — - - - - - -

4 — - - - — —

5 — - - - — - - - - - -

We have checked that this rule works for a number of class-three orbits and a few orbits
of class four. However, the high periods and multiplicity of secondary bifurcations involved
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prohibit systematic studies of high class orbits. In particular, for the class-two orbit 1
3 : 1

4 ,

this rule generates the correct codes for the elliptic and hyperbolic orbits with ω3 = 1
2 , 1

3 , 1
4 ,

1
5 , and 2

5 . We have also checked the case 1
4 : 1

4 : 1
3 and a number of cases with odd q2 including

1
3 : 1

3 : 1
4 . The correct code is also obtained for 1

3 : 1
4 : 1

2 : 1
2 . The class-c codes also work for

the period-doubling case, where it is equivalent to the doubling substitution rule; recall (4.3).
For example, the codes for the period-doubling sequence through class four are

1
2 : 1

2 (−+−−)∞

1
2 : 1

2 : 1
2 (−+−−−+−+)∞

1
2 : 1

2 : 1
2 : 1

2 (−+−−−+−+−+−−−+−−)∞.

(5.5)

A simple rule that also generates this sequence is to double the previous sequence and flip the
last symbol [40].

Though we have not systematically explored beyond class two, these few examples give us
confidence that the class-c rule works in general.

6. Conclusion. We have shown how to systematically generate symbolic codes for rota-
tional orbits and “islands-around-islands” orbits for the area-preserving quadratic map. Our
construction of codes in terms of wedges whose opening angles are determined by the orbit’s
frequency, ω1 : ω2 : . . . : ωc, explains numerical observations of the wedge-shaped symbol
boundaries for elliptic islands. The wedge boundaries are constructed from segments of the
symmetry lines of the mapping.

It is for precisely this case—when there are elliptic orbits—that more traditional symbolic
partitions fail. It is interesting to note that for class-one rotational orbits Christiansen and
Politi constructed symbol boundaries in islands of the standard map that have precisely the
same structure as ours [21]. However, for their case the identification of symmetry lines is
complicated by the fact that the standard map has two distinct sets of reversors.

Open questions that we hope will be investigated in the future include the following:

• How does the symbol boundary evolve from the line x = 0 when there is a horseshoe to
the complex set of epicycle-generated wedges when there are elliptic islands? Note that
when an orbit first becomes stable, it typically does so by an inverse period-doubling,
so its wedge opening angle will be zero.

• Does the epicycle picture for rotational codes also apply to other reversible, area-
preserving maps with anti-integrable limits? Examples include the standard map-
ping [6] and polynomial automorphisms [43].

• How do the wedge boundaries connect across the island separatrices? As was first ob-
served in [21], the symmetry lines seem to naturally connect with the symbol boundary
in the chaotic region of phase space that corresponds to primary tangencies. They re-
mark, “We have no explanation for this nice phenomenon.” Neither do we.

• What are the codes for rotational orbits generated by bifurcations of the elliptic orbits
created in secondary pitchfork and twistless bifurcations?

• How are the symbol boundaries organized in maps that are not reversible? Perhaps
the simplest example corresponds to the quartic polynomial automorphisms [44].
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Appendix A. Codes for twist maps. Our purpose in this appendix is to relate the rota-
tional codes described in this paper to those used in other papers. There are three commonly
used codes for rotational orbits of twist maps—the linear, velocity, and acceleration codes,
which we denote a, b, and c, respectively [24, 45, 46, 47].

Aubry–Mather theory implies that recurrent minimizing orbits for twist maps have a
particularly simple symbolic coding. Orbits that are nondegenerate minima of the action
are hyperbolic. Thus the codes we discuss here will correspond to the hyperbolic codes in
section 3.

An area-preserving map on the cylinder f : S
1 × R,

(x′, y′) = f(x, y),(A.1)

is a monotone twist map if ∂x′

∂y > 0. Note that this hypothesis does not apply to the Hénon

map, even locally about (−)∞, because it has a twistless bifurcation at k = 9
16 leading to a

twist reversal [31]. Nevertheless, we will see that the c-codes for minimizing orbits of twist
maps do correspond to those of the rotational Hénon map with the proper translation.

A.1. Linear code. One way of coding rotational orbits of maps with an angle variable is
to count the number of complete rotations they make. To do this, we lift the angle variable
to the line and define the linear code a = (. . . , at, at + 1, . . . ) by

at = �xt�.

Thus at is the number of complete rotations at time t.11

The linear code of a minimizing orbit of a twist map is determined by its rotation number.

Theorem 11 (Aubry [37]). Suppose F : R
2 → R

2 is a lift of the twist map (A.1) and {xt,
t ∈ Z} is the configuration of a recurrent, minimizing orbit. Then there exist a rotation
number ω and phase α such that the linear code of xt is the same as that for the rigid rotation
on the circle θt = ωt + θ0; i.e.,

at = �ωt + α�.(A.2)

Here we take (A.2) as the definition of the linear code for a rotational orbit and consider
some simple structures that arise.

A.2. Velocity code. An alternative coding for rotational orbits is the “velocity” code,
defined to be the first difference of the a-code:

bt ≡ at+1 − at.(A.3)

Note that knowledge of b gives a up to an initial condition, a0, which corresponds to the
choice of interval for the lifted angle x0.

11The choice of the ceiling function here is arbitrary, as are the choices of forward and backward finite
differences in the next two sections. Ultimately, these affect only the canonical ordering for the codes, but the
ordering is important for concatenation rules.
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While the b-code is well defined for any ω, if we restrict our attention to 0 ≤ ω < 1, then
we can compute it by dividing the circumference-one circle into two sectors

B1(ω) ≡ (−ω, 0],

B0(ω) ≡ (0, 1 − ω].
(A.4)

Then we have

bt = i if {ωt + α} ∈ Bi(ω),(A.5)

as shown in Figure 20.

α

θ0 = α

θ3

θ4

θ6

−ω

b = 1

b = 0

θ7

θ8

θ9

θ1 = ω+α

θ5θ2 = 2ω+α

Figure 20. Construction of the velocity code for ω = γ−2 showing the sectors B0 and B1 (shaded). The
orbit shown has α = −0.1, and its b-code is (. . . 0100.1010010010 . . .).

When ω is irrational, the code changes as α varies. We define the “canonical” ordering as
that obtained by setting α = 0. For example, the canonical b-code for γ−2 is

b = (. . . 0100.10100101001001010010100100101001001010010 . . .).

The fact that there are uncountably many hyperbolic codes is consistent with the fact that
there are uncountably many orbits on a particular invariant circle or cantorus. Note that the
velocity code always consists of blocks of the form (10m) and (10m−1), where m = ω−1�.
As we will see below, it is no accident that these building blocks are the codes for the Farey
parents 1

m+1 and 1
m of each frequency in the interval that they bound.

When ω = p/q is rational the velocity code is independent of choice of initial phase.
Lemma 12. The b-code for a rational rotation number ω = p/q is independent of the choice

of phase α up to cyclic permutations.
Proof. The Sj defined in (3.7) partition the circle into q sectors of width 1

q . Note that

B0 =
⋃q−p−1

j=0 Sj and B1 =
⋃q−1

j=q−p Sj , so the b-code is determined by these sectors. Since for
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any α the points θt = {ωt + α} are spaced uniformly on the circle at a distance 1
q from each

other, there is precisely one θj in each Sj . Thus the number of 0 and 1 symbols is independent
of α. Moreover, if θt ∈ Sj , then θt+1 ∈ Sj+p so that the cyclic order of symbols is independent
of α.

Note, in particular, that all values −1/q < α ≤ 0 give the canonical velocity code. Other
values of α give a cyclic permutation of this “canonical” ordering for the code.

Corollary 13. For ω = p/q the b-code has p 1’s and q − p 0’s.
The velocity codes for various frequencies can be easily constructed using a Farey tree

procedure [23, 3]. A Farey tree is a binary tree that generates all numbers in an interval
between two “neighboring” rationals [48]. The rationals p

q < m
n are neighbors if

mq − pn = 1.

The Farey tree is recursively constructed by beginning with a base defined by a neighboring
pair and recursively applying the Farey sum operation

p

q
⊕ m

n
≡ p + m

q + n

to each neighboring pair. Note that p
q < p

q ⊕ m
n < m

n , and that the daughter is a neighbor to
each of its parents.

For example, the two rationals 0
1 and 1

1 define the base for a Farey tree that includes all
numbers in the unit interval; see Figure 21. The root of the tree, or level zero, is the daughter
rational defined by the Farey sum of the base rationals. In this case the root is 1

2 . Each
subsequent level of the tree consists of the rationals that are the Farey sum of each number
on the previous level with its two neighbors at earlier levels; thus there are 2j rationals at
level j.

Every irrational ω ∈ [0, 1] is uniquely determined by a path defined by an infinite sequence
of left, L, and right, R, transitions beginning at the root of the Farey tree. Every rational
ω ∈ [0, 1] is uniquely determined by a finite path. For example, the path for 5/13 is LRLR.
There are also paths in the Farey tree that do not correspond to real numbers; for example,
LRLLLLLLL . . . limits to 1

3 but is better thought of as 1
3+

. Dynamically this sequence
corresponds to a homoclinic orbit. The paths of the parents of any rational are easy to obtain
by appropriately truncating its path; for example, given a path LRLLL = 5

14 , the direct
parent is obtained by simply removing the last symbol, LRLL = 4

11 . The other parent is
obtained by removing all of the final repeated symbols (L in this case) in the sequence and
one more symbol, yielding the parent L = 1

3 .
Lemma 14. The canonical velocity code for the Farey daughter of neighbors p

q < m
n is the

concatenation of the codes of the parents:

b

(
p

q
⊕ m

n

)
= b

(m
n

)
b

(
p

q

)
.

Proof. Let ω = p+m
q+n denote the daughter, and θt = ωt. Then bt(ω) = i if {θt} ∈ Bi(ω).

We first show that the first n symbols are given by the code for m
n , i.e., that {m

n t} ∈ Bi(
m
n )

implies that {θt} ∈ Bi(ω) for 0 ≤ t < n.
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1/2
(10)

b
1/1

 = (1)

1/3
(100)

1/4
(1000)

2/3
(110)

2/5
(10100)

3/5
(11010)

3/4
(1110)

b
0/1

 = (0)

(10000) (1001000) (10100100) (1010100) (1101010) (11011010) (1110110) (11110)
1/5 3/82/7 3/7 4/7 5/8 5/7 4/5

Figure 21. Farey tree for the base 0
1

and 1
1

for levels zero to three and the corresponding b-codes.

Suppose first that bt(
m
n ) = 1; then there is an integer j such that

j − m

n
<

m

n
t ≤ j.(A.6)

Since ω < m
n , the right inequality implies ωt ≤ j, providing t ≥ 0. This is the first half of

what we desired to show. Since t is an integer, the left inequality in (A.6) implies that

m

n
(t + 1) ≥ j +

1

n
.

Combining this with the relation

ω =
p + m

q + n
=

m

n
− 1

n(q + n)

implies that

ω(t + 1) ≥ j +
1

n
− t + 1

n(q + n)
> j,

providing t < q + n− 1. Thus we have shown bt(
m
n ) = 1 =⇒ bt(ω) = 1 for 0 ≤ t < q + n− 1

(this is more than we needed to prove).
To check that the 0 symbols agree, we must show that when there exists an integer j such

that

j <
m

n
t ≤ j + 1 − m

n
,

then {θt} ∈ B0(ω). A calculation similar to the previous one shows that this is true when
0 ≤ t < q + n.
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So finally we have shown that the symbol sequence b(ω) is given by b(mn ) repeated, except
for the last symbol.

Similar calculations show that all symbols but the first in b(ω) agree with b(pq ), repeated
from the end.

It is easy to see that Lemma 14 is consistent with the codes in the Farey tree in Figure 21.
For example, since b(1/3) = (100) and b(2/5) = (10100), then b(3/8) = b(2/5)b(1/3) =
(10100100), and since 5

13 = 3
8 ⊕ 2

5 , then b(5/13) = b(2/5)b(3/8) = (1010010100100).
Since all numbers can be constructed by Farey paths, Lemma 14 extends for irrational

numbers as well.
Corollary 15. For any ω whose Farey path includes a parent rational m

n > ω, the first
n symbols of b(ω) are those of b(mn ).

Thus, for example, the first 34 symbols in the code for γ−2 are given by those of its upper
Farey neighbor, 13

34 , whose code can be constructed by concatenation:

b(13/34) = b(5/13)b(8/21) = b(5/13)b(5/13)b(3/8)

= b(2/5)b(3/8)b(2/5)b(3/8)b(3/8) = . . .

= (1010010100100101001010010010100100).

A.3. Acceleration codes. The acceleration code is defined to be the magnitude of the
first difference of the velocity code

ct = |bt − bt−1|.(A.7)

This is well defined only for orbits with 0 ≤ ω < 1
2 . It could also be called a “same-different”

or “exclusive-or” code, since ct = 0 if the velocities are the same and 1 if the velocity changes.
The point is that for ω < 1

2 , there is a one-to-one correspondence between allowed b and
acceleration codes because the b-code can never have two or more consecutive 1 symbols; thus
we obtain ct = 0 only for the case of a double 0 in the b code.

The acceleration code can be obtained geometrically by defining the sectors C1(ω) =
(−ω, ω] and C1(ω) = (ω, 1−ω] so that ct = i when {ωt+α} ∈ Ci(ω). This follows because we
obtain ct = 1 whenever bt = 1 or bt−1 = 1. The canonical b-code can be reconstructed from
the canonical acceleration code by using the initial condition b0 = 1.

The geometrical construction shows that the symbol 1 always appears doubled in the
acceleration code. Moreover, if m = ω−1�, then the acceleration code consists of blocks of
the form 110m−2 and 110m−1. The acceleration code inherits properties of the b-code.

Corollary 16. The acceleration code for a rational ω is independent of the phase α.
Corollary 17. The canonical acceleration code for a Farey daughter is the concatenation of

the codes for its parents.
Proof. This follows from Lemma 14 and the fact that the first symbol in the b code is

always 1 and the last is always 0. Thus concatenation does not disturb the calculation of the
acceleration code symbols.

The interiors of the sectors Ci(ω) are identical to the interiors of the wedges Wi(ω) that
define the s-code in section 3. Recall that hyperbolic codes were those in the interior of the Wi.
Thus if we translate 0 and 1 into + and − appropriately, the acceleration and s-codes are
identical for hyperbolic orbits.
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Lemma 18. If we set st = sgn(2ct − 1), then the acceleration code for an orbit of rotation
number ω becomes the hyperbolic s-code.

For example, since the 1
3 hyperbolic orbit has acceleration code (110)∞, the correspond-

ing hyperbolic orbit for the Hénon map has s-code (−−+)∞. The elliptic 1
3 orbit has code

(−++)∞, obtained as usual by flipping the second symbol in the canonically ordered hyper-
bolic code; however, the elliptic codes do not arise directly from the twist map acceleration
code.

Appendix B. Substitution rules. An alternative code for rotational orbits is given by the
Farey substitution rule. This code has been used for monotone circle maps [3] and turns out
to be identical to the b-code.

A substitution rule acts on a symbol sequence s by replacing each symbol with a new
sequence. Supposing that s ∈ {L,R}∞, we define two substitution operators for left and right
transitions:

FL(L) = L, FL(R) = RL,

FR(L) = RL, FR(R) = R.(B.1)

Then the symbol sequence for a number whose Farey path begins at a root with symbol
sequence s is determined by applying the substitution operators in the same sequence. Thus,
since 2/7 has Farey path LLR starting at 1/2 whose symbol sequence is (RL), the b-code
for 2/7 is

FLFLFR(RL) = FLFL(RRL) = FL(RLRLL) = RLLRLLL.

Note that this operation is associative; i.e., the above could also be read as

FLFLFR(RL) = FLFLFR(R)FLFLFR(L) = FLFL(R)FLFL(RL) = FLFL(R)FLFL(R)L = . . . .

Lemma 19. The canonical hyperbolic b-code for a frequency ω is given by applying the
substitution rule for its Farey path with the translation L ≡ 0 and R ≡ 1.

Proof. As shown in Lemma 14, the canonical b-code for a Farey daughter is obtained by
concatenation of the codes its parents. We will show that this concatenation rule is also valid
for the Farey substitution rule. Combining this with the fact that the code for 1

2 is RL = 10
gives the result.

As discussed in Appendix A.2, the Farey paths for the two parents are obtained by trun-
cating the path of the daughter by removing the last symbol and all of the repeated last
symbols plus one more, respectively. Thus there are two possible cases. First, if the path
for the daughter is WRLn for an arbitrary sequence W and n ≥ 1, then we must show the
concatenation rule

WRLn = W ⊕WRLn−1.

Translating this into substitutions applied to the root (RL) and using the associative property,
we obtain

FWFRF
n
L (RL) = FWFRF

n−1
L (RLL) = FWFRF

n−1
L (RL)WFRF

n−1
L (L)

= FWFRF
n−1
L (RL)FW (RL) = (W ⊕WRLn−1),
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which is what we wanted to show because the ⊕ concatenation writes the code of the right
neighbor first. A similar calculation holds in the other case, where the daughter is WLRn,
and we can show

WLRn = WFLRn−1 ⊕W.

There are other substitution rules that apply to period-doubling and, more generally,
n-tupling sequences [3]. For example, the doubling substitution rule is

L → LR and R → LL.

Applying this sequence to the sequence of ω gives the sequence for 1/2 : ω. Applying this
recursively gives the ω bifurcations of any orbit from the period-doubling sequence.

Appendix C. Symmetries and codes of the horseshoe. In this section we give a simple
geometric construction of the relation between the symbol plane and an idealized phase space
for the horseshoe map. This helps to visualize the relation between the symmetry lines and
the symmetries present in the symbolic codes. Instead of the standard smooth horseshoe map,
we will use a discontinuous, area-preserving horseshoe map that is defined everywhere on the
square [−1, 1] except for the y-axis:12

H(x, y) =

{
(−2x− 1,−1

2(1 + y)), x < 0,

(2x− 1, 1
2(1 + y)), x > 0

(see Figure 22). The region x < 0 corresponds to the symbol .−, and x > 0 corresponds
to .+. Thus the fixed points of H are (+)∞ = (1, 1) and (−)∞ = (−1

3 ,−
1
3).

-.-

+.+

-.+

+.-

-+.

++.

+-.

--.

stretch
cu

t & fold

Figure 22. Idealized, discontinuous horseshoe map.

This horseshoe map is reversible, with symmetry S(x, y) = (y, x). As such, it can be
factored as H = RS, where

R = HS =

{
(−2y − 1,−1

2(1 + x)), y < 0,

(2y − 1, 1
2(1 + x)), y > 0.

12We orient this map to agree with our version of the Hénon map, (2.1).
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Thus the fixed set of R is given by R = {y = −1
2(1 + x) : y < 0} ∪ {y = 1

2(1 + x) : y > 0}.
Alternatively, we can factor H = ST as

T = SH =

{
(−1

2(1 + y),−2x− 1), x < 0,

(1
2(1 + y), 2x− 1), x > 0,

with a fixed set T = {y = −2x − 1 : x < 0} ∪ {y = 2x − 1 : x > 0}. As usual, we divide the
symmetry lines into rays at the “elliptic” fixed point (−)∞, with the subscript i denoting the
rays that lead to the hyperbolic point and o those that lead away; see Figure 23.

Si

So

Ti

To

(-.+)∞

(+.-)∞
(-+.+)∞

(+-.+)∞

(++.-)∞

(--.+)∞

(-+.-)∞

(+-.-)∞

(-)∞

(+)∞

Figure 23. Symmetry lines and periodic orbits of the discontinuous horseshoe. The two fixed points are
shown as a circle and x, the period-two points as squares, and the points on the two period-three orbits as
triangles.

We also show in Figure 23 the period-two point (−.+)∞ = (1
5 ,−

3
5) and its image (+.−)∞

= (−3
5 ,

1
5). Note that these points lie on Ti and To, respectively, in accord with Table 2 since

HTo = Ro. Similarly, the elliptic period-three orbit has points (−+.+)∞ = (1
9 ,

1
9) ∈ Si,

(++.−)∞ = (−7
9 ,

5
9) ∈ To, and (+−.+)∞ = (5

9 ,−
7
9). The hyperbolic period-three orbit has

points (−−.+)∞ = (3
7 ,−

1
7) ∈ Ti, (−+.−)∞ = (−1

7 ,
3
7), and (+−.−)∞ = (−5

7 ,−
5
7) ∈ So.

We can divide the symmetry lines into rays at the (−)∞ fixed point. Note that points with
x larger than that for the elliptic fixed point will be on the ray that goes to the hyperbolic
point (labeled i) and those with x smaller will be on the ray o. A standard result gives us the
ordering.

Lemma 20 (ordering (cf. [3, section 2.3.2])). Suppose two symbol sequences s = .s0s1s2 . . .
and s′ agree for their first j symbols but that sj �= s′j. Then the corresponding points x and x′

on the horseshoe are ordered as x < x′ if the parity, (2.6), of s0s1 . . . sj is odd (and hence that
of s0s1 . . . s

′
j is even).
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Thus sequences are ordered the same as their parities. This implies that symbol sequences
for the symmetry rays are distinguished by “odd” or “even” blocks of − symbols after the
binary point; see (3.13).
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[5] M. Hénon, Numerical study of quadratic area-preserving mappings, Quart. Appl. Math., 27 (1969),

pp. 291–312.
[6] S. Aubry and G. Abramovici, Chaotic trajectories in the standard map, the concept of anti-integrability,

Phys. D, 43 (1990), pp. 199–219.
[7] A. N. Sarkovskii, Coexistence of cycles of a continuous map of a line into itself, Ukrain. Mat. Z̆., 16

(1964), pp. 61–71.
[8] N. Metropolis, M. L. Stein, and P. R. Stein, On finite limit sets for transformations on the unit

interval, J. Combinatorial Theory Ser. A, 15 (1973), pp. 25–44.
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