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It is widely appreciated that balanced excitation and inhibition are necessary for proper function
in neural networks. However, in principle, balance could be achieved by many possible configura-
tions of excitatory and inhibitory synaptic strengths and relative numbers of excitatory and inhibitory
neurons. For instance, a given level of excitation could be balanced by either numerous inhibitory
neurons with weak synapses or a few inhibitory neurons with strong synapses. Among the continuum
of different but balanced configurations, why should any particular configuration be favored? Here,
we address this question in the context of the entropy of network dynamics by studying an analyti-
cally tractable network of binary neurons. We find that entropy is highest at the boundary between
excitation-dominant and inhibition-dominant regimes. Entropy also varies along this boundary with a
trade-off between high and robust entropy: weak synapse strengths yield high network entropy which
is fragile to parameter variations, while strong synapse strengths yield a lower, but more robust, net-
work entropy. In the case where inhibitory and excitatory synapses are constrained to have similar
strength, we find that a small, but non-zero fraction of inhibitory neurons, like that seen in mam-
malian cortex, results in robust and relatively high entropy. Published by AIP Publishing. https://doi.
org/10.1063/1.5043429

In many social and biological networks, there exists a
competition between two opposing types of nodes. Excita-
tory nodes tend to activate other nodes, while inhibitory
nodes tend to suppress the activation of other nodes.
The collective behavior of such networks is very sensitive
to whether excitatory or inhibitory nodes are dominant.
One important property of collective network dynamics
is entropy, which quantifies fluctuations and diversity of
activity states. Here, we examine many different configu-
rations of balanced and imbalanced networks, focusing on
neural networks. We find that imbalanced networks have
low entropy compared to balanced networks. For bal-
anced networks, there is a trade-off. When weak inhibition
balances weak excitation, the dynamics have very high
entropy, but this condition is rather fragile to small per-
turbations of system parameters. In contrast, when strong
inhibition balances strong excitation, entropy is lower, but
more robust to perturbations.

I. INTRODUCTION

The network of neurons in cerebral cortex displays rich
and complex dynamics even when not engaged by any partic-
ular sensory or motor interaction with the external world.1,2

From one point of view, such ongoing internal dynamics are
thought to mediate memory consolidation and other internal

a)V. Agrawal and A. B. Cowley contributed equally to this work.
b)Electronic mail: shew@uark.edu

cognitive processes.3–7 On the other hand, ongoing fluctua-
tions in cortical network dynamics have often been considered
a nuisance, imposing noisy fluctuations in neural response to
sensory input.8–10 In both of these contexts, it is important
to understand the mechanisms that govern the fluctuations
of ongoing cortical network dynamics. Here, we investigate
the Shannon entropy of the network spike rate. In the con-
text of internal cognitive processes, high entropy might be
beneficial, corresponding to a larger repertoire of internal
states to mediate internal information transfer.11 When con-
sidered as noise, high entropy can be a hindrance to effective
sensory coding.8–10 Indeed, in principle, encoding of sen-
sory input would be most reliable if the cortex was totally
silent (low entropy) until the stimulus excited it. However,
real cortex does not operate this way; it has many jobs to
do beyond encoding sensory input and is never silent. Pre-
vious studies have shown that ongoing cortical dynamics with
high entropy occurs together with high mutual information
between stimulus and response,11,12 suggesting that a large
repertoire of ongoing dynamical states may be necessary for a
large repertoire of stimulus-evoked states.3,5

A crucial factor for determining the entropy of net-
work dynamics in the cortex is the competition between
two types of neurons: excitatory (E) and inhibitory (I). This
is most apparent in previous experiments that pharmaco-
logically manipulated the E/I balance.11–14 Enhanced inhibi-
tion (GABA agonists) often results in a dynamical regime
characterized by low firing rates and weak population-level
correlations, while decreased inhibition (GABA antagonists)
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tends to result in a regime with higher firing rates and
strong correlations. Two studies in particular have shown
that entropy can be increased by tuning the E/I balance
to the tipping point between these two distinct dynamical
regimes.11,12 However, a more systematic understanding of
how E/I balance impacts entropy is difficult to obtain exper-
imentally because pharmacological manipulations are rather
difficult to precisely control. Moreover, with a few inter-
esting exceptions,15,16 experiments do not vary the numbers
of excitatory or inhibitory neurons. Computational models
offer an alternative approach in which the number of exci-
tatory and inhibitory neurons, as well as strength of excitatory
and inhibitory synapses, can easily be controlled. Previous
computational studies have addressed similar topics but typ-
ically have neglected inhibition12,17 or have not considered
the effects of changing the E/I ratio.18,19 Thus, theoretical
and experimental understanding of the relationship between
the entropy of ongoing dynamics and the balance of excita-
tion and inhibition—mediated by both relative strengths of
excitatory and inhibitory synapses and relative numbers of
excitatory and inhibitory cells—remains unresolved.

Here, we attempt to improve the theoretical understand-
ing of entropy of ongoing dynamics by studying a network
model of binary neurons in detail. We consider how entropy of
the population firing rate depends on the fraction of inhibitory
neurons α and the strengths of E and I interactions, WE and
WI , respectively. We find maximal entropy near the tipping
point between the low and high firing rate dynamical regimes,
as seen in experiments.12 We also find that, for a given choice
of WE and WI , the tipping point can be achieved by adjusting
the value of α. This raises the question: among the different
possible parameter configurations that place the system at the
tipping point, why should one be favored over another? We
find that there is a trade-off between high and robust net-
work entropy: networks with weak synapses can achieve a
high entropy when excitation and inhibition are balanced, but
the entropy degrades significantly upon small deviations from
the balanced state. On the other hand, networks with stronger
synapses have a lower maximum entropy, but they are more
robust to parameter changes. We also find that if E and I
synaptic strengths are proportional to each other, as found in
many experiments,20–22 then robust, high entropy requires a
small fraction of I neurons (α near 0.1). In mammalian cortex,
α has been found to be near 0.2 with remarkable consis-
tency over the lifetime of an organism23 and over different
regions of cortex.24,25 Our results suggest that mammalian
cortex strikes a compromise with intermediate but robust
entropy.

In what follows, we introduce and analyze the binary neu-
ron model which both predicts and provides insight into the
results of model numerical simulations.

II. MODELS AND THEORY

A. Binary neuron model

We explore the effects of excitation and inhibition bal-
ance on entropy using a simple, analytically tractable model.
The model, studied previously in Ref. 26, consists of a net-
work of N stochastic binary neurons, indexed i = 1, 2, . . . , N .

The state of neuron i at time t is denoted by xt
i, which can

take the values xt
i = 0 if the neuron is resting and xt

i = 1 if
the neuron is spiking. Time is assumed to evolve in discrete
steps t = 0, 1, 2, . . .. The evolution of each neuron’s state is
stochastic and depends on the states of other neurons at the
previous time step,

xt+1
i =

{
1 with probability η + (1 − η)σ

(∑N
j=1 εjwijxt

j

)
,

0 otherwise,
(1)

where εj = 1 if neuron j is excitatory and εj = −1 if neuron
j is inhibitory. The strength of the synapse from neuron j to
neuron i is wij > 0 and wij = 0 if neuron j does not connect
to neuron i. The transfer function σ(x) = min[1, max(0, x)]
converts the input to neuron i into a probability. The constant
η = 1/(100N) represents independent spontaneous activation
due to noise or external sources, resulting in one spike per 100
time steps among all neurons, on average. We note that other
choices of η could cause quantitative changes in our results
below, but we expect that our qualitative conclusions are not
sensitive to moderate changes in η. For example, it is well
known that noise tends to smooth out the sharpness of phase
transitions like the one discussed below.27

We consider Erdős-Rényi networks where a directed link
is made independently from neuron j to neuron i with proba-
bility k/(N − 1) for all i �= j. The parameter k is the expected
number of outgoing connections from each neuron. To con-
trol the relative number of excitatory and inhibitory neurons,
we assign each neuron to be inhibitory with probability α

and excitatory otherwise. Finally, we assume for simplic-
ity that wij = wE for excitatory synapses (i.e., if εj = 1) and
wij = wI for inhibitory synapses (i.e., if εj = −1) and define
the effective excitatory weight as WE = kwE and the effective
inhibitory weight as WI = kwI . We interpret our model to rep-
resent a small patch of cortex, 100 μm in scale, like a single
cortical column. At these scales, it is a reasonable approxima-
tion to neglect distance-dependent differences in connectivity
for excitatory and inhibitory neurons.28

The model is characterized by the parameters N , k,
WE, WI , and α. For definiteness, in all simulations, we will
consider, unless otherwise indicated, only the parameters
N = 10 000 and k = 100 and study the population firing
dynamics of the model as a function of (WE, WI , α). As a mea-
sure of collective network dynamics, we study the fraction of
spiking neurons, or network activity, given by

St = 1

N

N∑
i=1

xt
i. (2)

In Ref. 26, it was found that the collective dynamics of the
network is determined by the largest eigenvalue λ of the con-
nection strength matrix A with entries {εjwij}N

i,j=1. Network
activity saturates at a high value for λ > 1 and dies out or
reaches a steady low value for λ < 1. At the tipping point
between these two regimes, defined by λ = 1, excitation and
inhibition are balanced such that network activity is character-
ized by large fluctuations that are effectively ceaseless (their
lifetime scales exponentially with N).26 Figure 1(a) shows an
example of the time series of network activity for these three
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FIG. 1. Network activity and dynamics of binary model. Time series of net-
work activity (a) show diverse fluctuations when excitation and inhibition are
balanced (λ = 1). Similarly, probability distributions (b) of network activity
are broadest when λ = 1. All probability distributions have been normalized
by their peak probability to facilitate comparison of their shapes. Dynamical
parameters: α = 0.11 (Blue), 0.1 (Red), 0.09 (Yellow); WE=WI =1.25.

regimes. For the Erdős-Rényi networks considered here, λ can
be approximated by the expected row sum of A,

λ ≈ kwE(1 − α) − kwIα = WE(1 − α) − WIα. (3)

With this approximation, then, the parameters that give
λ = 1 form a 2-dimensional surface in the (WE, WI , α) param-
eter space.

B. Entropy

We consider the Shannon entropy of the time-series of
network activity, which quantifies the size of the repertoire
of accessible population firing rates. The network activity is
discrete (i.e., 0, 1/N , 2/N . . . , 1). For a given set of network
parameters (WE, WI , α), we consider the steady-state proba-
bility distribution of network activity P(S) and the associated
entropy,

H = −
∑

S

P(S) log2[P(S)], (4)

where the sum runs over the allowed values S = 0, 1/N ,
2/N , . . . , 1. In practice, we estimate P(S) numerically from a
time series of St obtained from model simulations [Fig. 1(b)]
or from our semi-analytical theory, presented below, that
treats the evolution of St as a biased random walk.

C. Simulation-free theory

Here, we present a semi-analytical approach to compute
the entropy for a given set of parameter values in the binary
model. The main idea of our approach is to treat the evolu-
tion of the macroscopic variable St as a biased random walk.
Although in principle the dynamics of the system depends on
the microscopic states {xn}N

n=1, for large homogeneous net-
works, one can describe the evolution of the system in terms
of the macroscopic variable St. To analyze this random vari-
able, one should determine if at any given time it is expected
to decrease or increase. This information is encapsulated in
the branching function introduced in Ref. 26 as the ratio
�(S) = E[St+1|St = S]/S, where the expected value is taken
over realizations of the stochastic dynamics and microscopic
configurations with activity S. In our case, the branching
function can be approximated by

�(S) = 1

S
EP[σ(wEnE − wInI)], (5)

where the random variables nE and nI represent the number
of active E and I inputs to a single neuron, respectively.26

Because we consider random networks, nE and nI are given
by binomial random variables with N trials and probability of
success k(1 − α)S/N and kαS/N , respectively, correspond-
ing to the probability of finding a link (k/N) that is excitatory
(1 − α) or inhibitory (α) and that is active (S). EP[·] is an
expected value over the random variables nE and nI . We have
neglected the η term in Eq. (1), which is only included to pre-
vent activity from dying out. By assuming that the statistics
of the macroscopic dynamics depend only on S, one can then
write a random walk model for St as

St+1 = St�(St) + r(St), (6)

where r represents statistical noise which, by the definition of
�, has mean zero. To obtain a tractable model, we assume
that r(St) is normally distributed and has variance V(St) =
St(1 − St)/N , as estimated in Ref. 26. This approximation is
what one would obtain if each of the N neurons is indepen-
dently assumed to be active with probability S and inactive
with probability 1 − S. In this approximation, the probability
that the system makes a transition from a state with activity S′

to a state with activity S is given by

T(S | S′) = 1√
2πV(S′)

exp

(
− [S′�(S′) − S]2

2V(S′)

)
. (7)

The distribution Pt(S) of S at time t evolves following the
master equation

Pt+1(S) =
∫ 1

0
T(S | S′)Pt(S′)dS′, (8)

and as t → ∞, it converges to a steady-state, which may be
calculated numerically as the Perron-Frobenius eigenvector
(with eigenvalue 1) of the linear operator

L{P}(S) =
∫ 1

0
T(S | S′)P(S′)dS′. (9)

The eigenvector can be calculated numerically by discretiza-
tion of the integral in Eq. (9) or as the limit of repeated
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iterations of Eq. (8). The entropy is then calculated directly
from Eq. (4).

III. RESULTS

Our primary goal is to determine how the entropy of a
network varies with the relative numbers of E and I neurons
and the relative strength of E and I synapses. We first describe
our results from numerical simulations of the binary model
and then describe results from the theory.

First, we show in Fig. 1 that the system network activity
visits the widest variety of states when excitation and inhibi-
tion are balanced at the tipping point between high and low
firing rate regimes. This is visible in time series [Fig. 1(a)] as
well as empirical distributions P(S) of network activity (based
on 104 time steps of simulation). Correspondingly, entropy H
is greatest along the boundary between low and high firing
regimes (Fig. 2). In the three-dimensional (WE, WI , α) param-
eter space, this boundary forms a curved surface, which we
henceforth refer to as the maximum entropy surface.

As discussed in Sec. II A, we expect that the transition
from the low to the high firing regimes occurs at the critical
surface of parameters where λ = 1. While we find this is usu-
ally an excellent approximation to our numerical results, the
maximum entropy and critical surfaces differ slightly for high
values of α, and therefore, we will only use the critical surface
as a qualitative guide to the location of the maximum entropy
surface.

To numerically identify the maximum entropy surface,
for each fixed value of (WE, WI), we compute entropy across
a wide range of values of α, finding the value α∗ that maxi-
mizes H(WE, WI , α). In Fig. 3(a), we show α∗ as a function
of WE and WI . As one might expect, higher values of WE

require a larger number of I neurons (higher α∗) in order
to maintain a balanced network and vice versa. This agrees
qualitatively with the estimate using the critical surface, α∗ ≈
(WE − 1)/(WE + WI) obtained from Eq. (3) with λ = 1.

Having identified the parameters that characterize the
maximum entropy surface, we next ask two questions. First,
where on the surface is entropy highest? Second, where
on the surface is entropy most robust? We consider the
entropy to be robust if it does not drop dramatically when
we make a small perturbation in WE, WI , and α away from
the peak entropy surface. This approach is similar to other
ways to quantify sensitivity to model parameters, such as
Fisher information.29 To quantify how much the entropy
decreases if parameters are perturbed away from the maxi-
mum entropy surface, we define fragility F(WE, WI) as fol-
lows. For a given pair of (WE, WI) values, we first calculate
the entropy at the corresponding point on the maximum
entropy surface, H∗ = H(WE, WI , α∗). Then, we calculate the
entropy at two points at a small distance δ above and below
the surface, Hup = H(WE + 
WE, WI + 
WI , α + 
α) and
Hdown = H(WE − 
WE, WI − 
WI , α − 
α). The perturba-
tions ±(
WE, 
WI , 
α) are defined to be normal to the
maximum entropy surface, which will give the largest drop in
entropy for a given perturbation size. The size of the perturba-
tion was chosen to be small (Euclidean norm δ = 0.01, about
1% variation in parameters) to emphasize that entropy can be
quite sensitive to these parameter changes in certain parts of
(WE, WI) space. Finally, we define fragility F(WE, WI) as the
mean of the entropy difference,

F(WE, WI) = (H∗ − Hup) + (H∗ − Hdown)

2
. (10)

Our main results are in Figs. 3(b) and 3(c). Figure 3(b) shows
the entropy H∗ on the maximum entropy surface as a function
of the effective E and I weights WE and WI . Networks with
weak effective synapse strengths (low values of WE and WI )
can achieve a higher entropy H∗ than networks with strong
effective synapse strengths. However, as shown in Fig. 3(c),
high entropy comes at the cost of high fragility: networks with
weak effective synapse strengths have the highest fragility,

FIG. 2. High entropy at the boundary
between high and low firing regimes.
Each panel shows how entropy (color)
varies across a two-dimensional section
of the three-dimensional WE-WI -α para-
meter space. The relative orientation of
the six different sections is illustrated and
labeled [(i)–(vi)] in the cartoon (left). For
(i) and (ii), α is fixed at 0.1 and 0.2. For
(iii) and (iv), WI is fixed at 1.5 and 2.5.
For (v) and (vi), WE is fixed at 1.5 and
2.5. A curved critical surface in WE-WI -α
space separates the high firing regime (H)
from a low firing regime (L). Entropy is
high along this regime boundary. Note
that as I or E synapse strength increases,
the width of the peak in entropy also
increases, indicating increased robustness
(decreased fragility).
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FIG. 3. Trade-off between high entropy
and robust entropy. (a) For each combi-
nation of WE and WI effective synaptic
weights, we identify the critical fraction
of inhibitory neurons (α*) with the high-
est entropy. (b) Comparing all critical
entropy H∗ across the entire critical sur-
face, entropy was highest for low WE and
WI . (c) Highest fragility was also found
for low WE and WI .

while networks with strong effective synapse strengths are
the most robust. We note that while the variation in entropy
H∗ is relatively moderate across the range studied (approxi-
mately 10%), the fragility ranges from 3 to 6, indicating that
our 1% perturbation of parameters results in a dramatic drop
in entropy of approximately 30% − 60%. One could argue
that what matters are the final values of entropy after pertur-
bation (i.e., Hup and Hdown) rather than how much entropy
drops due to perturbation (i.e., F). From this perspective,
strong synapses are also better; Hup and Hdown are lower for
weak synapses than for strong synapses. This can be seen
by subtracting Figs. 3(c) from 3(b). We conclude that there
is a trade-off between high and robust entropy, with stronger
effective synapse strengths promoting lower but more robust
entropy, and weaker effective synapse strengths promoting a
high but fragile entropy.

Finally, we address the role of the fraction α of I neurons
in promoting entropy robustness. We note that if the choices of
E and I synapse strengths are constrained to be proportional to
each other, as experiments suggest,20–22 then W = WE = bWI

and the estimate α∗ ≈ (WE − 1)/(WE + WI) becomes α∗ =
(1 + 1/b)−1(1 − 1/W). Thus, α∗ is a monotonically increas-
ing function of synapse strength W . Therefore, for such
constrained networks, entropy and fragility decrease with the
fraction of I neurons α. Thus, a small non-zero α, similar to
that found in mammalian cortex, is needed to obtain high and
robust entropy.

In the following, we present an interpretation of our
results based on the branching function formalism presented
above and studied in previous work.26 If one treats the time
series of network activity St as a random walk, its bias, or
expected velocity, is given by St[�(St) − 1]. Therefore, when
�(St) > 1 [�(St) < 1], St tends to increase (decrease). Since
�(0) ≥ 1 and �(1) ≤ 1 [Ref. 26], the long-time distribution

of St will be concentrated around the region where �(St) ≈ 1.
The wider this region is, the wider the distribution of S will be
and the larger its associated entropy. To understand how the
size of this region depends on the weights WE and WI , we note
that, at the tipping point between low and high firing regimes,
the branching function deviates from 1 in an interval [0, S0) on
which it is appreciably larger than 1 and in an interval (S1, 1]
on which it is less than 1 [see Fig. 4(a)]. The branching func-
tion deviates from 1 in these intervals because the distribution
of the random variable wEnE − wInI in Eq. (5) extends below
0 or above 1 when S is too close to 0 or 1, respectively. In these
cases, the nonlinearity in the transfer function σ causes the
expected value in Eq. (5) to be different from 1. The larger the
values of wE and wI , the wider the distribution of wEnE − wInI

and therefore the larger these intervals are. More precisely,
we can estimate the scaling of S0 and S1 as follows. The vari-
ance of the variable wEnE − wInI is V(S) = w2

E(1 − α)kS[1 −
k
N (1 − α)S] + w2

I αkS[1 − k
N αS]. For sparse networks with

k/N � 1, we have V(S) = w2
E(1 − α)kS + w2

I αkS. Estimat-
ing S0 and S1 as the values where S2

0 ∼ V(S0) and (1 −
S1)

2 ∼ V(S1), we obtain S0 ∼ w2
E(1 − α)k + w2

I αk and S1 ∼
1 −

√(
1
2 S0 + 1

)2 − 1 + 1
2 S0. Using the approximation that

in the balanced state α = (kwE − 1)/(kwE + kwI), this gives
closed expressions for the estimates of S0 and S1 as a func-
tion of wE and wI . For low values of wE and wI , S0 � 1
and 1 − S1 � 1, and therefore, the branching function will
be close to 1 over a large region in [0, 1]. This is illustrated
in the left panel of Fig. 4, which shows the branching func-
tion �(S) and associated probability distribution P(S) for the
balanced state (red lines), high-firing (yellow lines), and low-
firing (blue lines) cases. While the wide region over which
the branching function is approximately one results in a rel-
atively large entropy, a perturbation away from the balanced
state displaces the branching function so that it is below or
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FIG. 4. Interpretation of results based
on Branching function formalism.
Branching functions �(S), for (a) low
effective excitatory and inhibitory weight
(WE = WI = 1.25) with S0 ≈ 0.015
and S1 ≈ 0.883 and (b) high effec-
tive excitatory and inhibitory weight
(WE = WI = 3.25) with S0 ≈ 0.105 and
S1 ≈ 0.724. The probability distributions
(c) low effective weights and (d) high
effective weights. All probability distri-
butions have been normalized by their
peak probability to facilitate comparison
of their shapes.

above 1 over this large region and is close to 1 over a much
smaller region. Thus, the entropy decreases substantially. On
the other hand, if the weights wE and wI are larger, both S0

and 1 − S1 will be closer to 1/2. This is illustrated in the right
panel of Fig. 4. While the region over which �(S) is close to 1
is smaller, resulting in a smaller entropy, it does not change
substantially in the low-firing or high-firing cases, resulting in
lower fragility.

IV. DISCUSSION

Here, we have shown that Shannon entropy of neural net-
work dynamics is sensitive to the structure of excitatory and
inhibitory interactions. Generally, high entropy is obtained
by balancing E and I synaptic efficacy such that the sys-
tem operates near the tipping point between two phases of
network dynamics. Entropy is high all along this boundary,
i.e., for a wide range of properly balanced E/I combina-
tions. However, the regions within this boundary with the
highest entropy are not robust; small variations in the synap-
tic strengths WE, WI and in the fraction of inhibitory neu-
rons α could cause entropy to plummet, drastically reducing
the accessible states and disrupting the functioning of the
network. We found that entropy is more robust when the
effective synaptic strengths are larger. Given that WE, WI ,
and α are inevitably somewhat variable during development,
across brain regions, and across individuals,23–25 robustness
to WE, WI , and α variability may be important. For networks

constrained such that WE ∼ WI ,20–22 our findings imply that
a small, nonzero fraction α > 0 of inhibitory neurons would
result in a more robust network entropy. Our results suggest
that a population of organisms with reliable and high entropy
brains requires that small, nonzero fraction of neurons be
inhibitory, which is consistent with what exists in mammalian
cortex.23–25

Different parts of the space of models we explore here
relate to several other models studied previously. The parts
of parameter space with relatively weak WE and WI and with
α = 0.2 are similar to models previously studied in the con-
text of “criticality” in the cortex.26 The parts of parameter
space where WE and WI are stronger may be related to the
widely studied set of models referred to as “chaotic balanced”
networks.30–32 A more detailed comparison of our model
dynamics to previous models could bridge the study of the
criticality hypothesis with that of chaotic balanced networks.

How might one experimentally test the results of our
work? One way would be to measure changes in firing rate
fluctuations in response to acute manipulation of excitatory or
inhibitory synapses. Such manipulations can be made pharma-
cologically, for example.11–14 Our work predicts two testable
phenomena. First, if the cortex is on the high entropy sur-
face discussed here, then any manipulation of excitation or
inhibition will result in a drop in firing rate fluctuations.
Conversely, if either excitatory or inhibitory manipulation
results in an increase in firing rate entropy, this would suggest
that the cortex is not operating on the high entropy surface.
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A second prediction from our work is that size of the drop
in entropy due to a manipulation of inhibition or excitation
will be correlated with the entropy before the manipulation.
This prediction supposes that the cortex is sometimes operat-
ing with a weak-synapse E/I balance where entropy is higher
and the drop in entropy would be greater and at other times is
operating with a strong-synapse E/I balance where entropy is
lower and the drop in entropy would be less.

Although high entropy is likely to be beneficial for cer-
tain functions of cerebral cortex, other functions might be
better served by a low entropy condition. For example, as
discussed in the introduction, lower entropy might improve
sensory signal processing by increasing the signal-to-noise
ratio. In this context, a small shift toward the lower firing side
of the phase transition might be beneficial. Such temporary
shifts can occur due to neuromodulation; for example, atten-
tion is known to shift cortical dynamics toward a regime with
smaller collective fluctuations.33 However, a shift toward the
high firing regime or too large a shift toward the extremely
inhibition-dominant regime would likely be bad for function.
Indeed, extreme deviation from well-balanced excitation and
inhibition is implicated in a variety of brain disorders. For
instance, when inhibition is sufficiently weak relative to exci-
tation, seizures occur, as in epilepsy.34 Too much inhibition
is associated with Down’s syndrome.35 Autism is also asso-
ciated with imbalanced excitation and inhibition,36,37 both
in terms of abnormal numbers of inhibitory neurons and
strengths of synapses.38 Our work suggests that the dysfunc-
tion associated with these disorders may be, in part, due to
abnormal entropy of cortical network dynamics.

If high entropy is a beneficial property for brain circuits,
then the robust maximization of entropy could be a phenotypic
target of evolution in the nervous system. Our results sug-
gest that hitting this target requires neural circuits that include
some inhibitory neurons and operate near the tipping point of
a phase transition.
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