APPM 4/5560 Markov Chains

Fall 2019, Some Review Problems for the Final

1. Consider a two-server ququeing process where customers arrive according to a Poisson process with rate λ , and go to either one of two servers if they are available. If both servers are busy, the customers form a single queue where the person at the end of the line will go to the next available server.

Suppose that each sever takes an exponential amount of time with rate μ to serve a customer. Find the probability that, in equilibrium, as most one server is busy.

- 2. Suppose that in an M/M/1 queue, the customer arrival rate is 3 per minute. Find the service rate so that 95% of the time the queue will contain less than 10 customers.
- 3. Sal the barber has a shop that can hold up to 3 customers, including the one being served. Excess customers get turned away. If customer interarrival times are exponential with rate λ , and Sal, as the only worker in the shop can serve people at a rate that is exponential also with rate λ , find the expected number of customers in the shop.
- 4. For an M/M/1 queue in equilibrium with interarrival rate λ and service rate μ , find the expected time between two consecutive times the queue is empty.
- 5. Consider a Poisson process $\{N(t)\}$ with rate λ with rate λ for some $\lambda > 0$.

Does this process have a stationary distribution? If so, find it. If not, explain why it does not.

- 6. Suppose that d particles are distributed into two cells. A particle in cell 1 remains in that cell for a random length of time that is exponentially distributed with rate λ before moving to cell 2. A particle in cell 2 remains in that cell for a random length of time that is exponentially distributed with rate μ before moving to cell 1. The particles act independently of each other. Let X(t) denote the number of paticles in cell 2 at time $t \ge 0$. The X(t) is a birth-and-death process on $\{0, 1, 2, \ldots, d\}$.
 - (a) Find the stationary distribution for X(t).
 - (b) When the system is in equilibrium, find $\mathsf{E}[X(t)]$.
- 7. For the M/M/1 queue, find the mean queue length in equilibrium
 - (a) "from scratch"
 - (b) using the formula we derived for the M/G/1 queue
- 8. Determine the mean waiting time for a customer in an M/M/2 system when $\lambda = 2$ and $\mu = 1.2$. Compare this with the mean waiting time for a customer in an M/M/1 system with $\lambda = 1$ and $\mu = 1.2$. Why is there a difference when the arrival rate per server is the same in both cases?
- 9. Consider the M/G/1 queue, where the service times have a $\Gamma(2, \nu)$ distribution. Assume the system is in equilibrium.

- (a) What is the probability that an incoming customer has to wait for service?
- (b) What is the expected queue length in equilibrium?
- 10. Consider a simple M/M/1 queue with arrival rate λ and service rate μ . Find the distribution of the number of customers who arrive while a given customer is being served. Assume the queue is in equilibrium.
- 11. Consider an M/M/s queue in equilibrium with the normal arrival and service rate parameters λ and μ . Let L be the mean number of customers in the system and let L_0 be the mean number of customers in the system waiting for, but not undergoing, service.

One can show (but you don't have to) that

$$L_0 = \frac{\pi_0}{s!} \left(\frac{\lambda}{\mu}\right)^s \frac{(\lambda/s\mu)}{(1-\lambda/s\mu)^2}$$

Relate L and L_0 . That is, fill in the question mark in

$$L = L_0 + ?$$

- 12. Describe the accept-reject algorithm, including what it's used for.
- 13. Describe the Metropolis-Hastings algorithm, including what it's used for.
- 14. Suppose we have a CTMC with generator matrix $Q = [q_{ij}]$. Let π be a distribution on the state space.
 - (a) What does it mean when we say that π has "detailed balance" with respect to the generator?
 - (b) If π does have deatiled balance with respect to the generator, show that π is a stationary distribution for the chain.
- 15. Consider a machine that is, at any given time, either in an operating state or a repair state. Suppose that

Let

$$X(t) = \begin{cases} 0 & , & \text{the machine is operating at time } t \\ 1 & , & \text{the machine is in repair at time } t \end{cases}$$

What is the probability that the machine is in the operating state at time t > 0 given that it was operating at time 0

Hint: Solve the Kolmogorov forward equation.