
APPM 4/5560

Solutions to Review Problems for Exam Two

1. Let X ∼ exp(rate = λ). The lack of memory property of the exponential says that, for any
s, t > 0,

P (X > s+ t|X > s) = P (X > t).

In words, if X represents the time until something happens, if we have already waited at
least s units of time, the probability that we will have to wait at least t units more is the
probability we have to wait at least t units in the first place. It is as if the fact that we already
waited more than s units of time is irrelevant!

Proof:

P (X > s+ t|X > s) = P (X>s+t,X>s)
P (X>s) = P (X>s+t)

P (X>s) = e−λ(s+t)

e−λs
= e−λt = P (X > t).

2. (a)
P (N(2) = 3, N(6) = 3) = P (N(2) = 3, N(6)−N(2) = 0)

indep
= P (N(2) = 3) · P (N(6)−N(2) = 0)

= e−663

3! ·
e−12120

0!

(b)

E[N(3)−N(2)|N(2) ≥ 1]
indep
= E[N(3)−N(2)] = (3)(1) = 3

(c)

P (N(2) = 3|S2 = 1.8) = P (N(2)−N(1.8) = 1) =
e−(3)(0.2)[(3)(0.2)]1

1!

3. (a) Forget all about the cars that won’t stop. The cars that will pick up the hitchhiker follow
a Poisson process (thinned from the original) with rate λ1 = (200)(0.05) = 10 cars per
hour. The amount of time the hitchhiker has to wait is the expected value of one of the
exponential, rate 10, interarrival times. This is one-tenth of an hour or six minutes.
Done.

Alternatively, if you don’t want to thin the Poisson process we could let W be the waiting
time and write

E[W ] = E[W |next car stops] · P (next car stops)
+E[W |next car does not stop] · P (next car does not stop)

= 1
λ · 0.05 +

(
1
λ + E[W ]

)
· 0.95 = 1

λ + 0.95E[W ]

So

0.05E[W ] =
1

λ
which implies that

E[W ] =
1

0.05λ
=

1

(0.05)(200)
=

1

10
.



(b) Let T be the time until the hitchhiker gets picked up. We know that

T ∼ exp(rate = 1/10)

Let N2(t) be the number of cars that didn’t stop by time t. This is a thinned Poisson
process with rate λ2 = (200)(0.95) = 190.

We want
E[N2(T )].

Well
E[N2(T )] =

∫∞
0 E[N2(T )|T = t] · fT (t) dt

=
∫∞
0 E[N2(t)|T = t] · 10e−10t dt

=
∫∞
0 E[N2(t)] · 10e−10t dt

That last equality follows from the fact that thinning a Poisson process into two Poisson
processes produces independent processes. N2(t) is a quantity from the second process
and T is a quantity from the first process.

Continuing...
E[N2(T )] = E[N2(t)] · 10e−10t dt

= (190t) · 10e−10t dt

= 1900te−10t dt

= 19

Note: This is what we expect since the expected time for a pickup is 1/10 of an hour
and the expected number of cars passing in 1/10 of an hour is 190(1/10) = 19. Warning:
One could not use this more naive (yet intuitive!) approach if the two processes were
dependent.

(c) This is very similar to part (b). It is not worded very well though. Are the partol
cars included in ones that will pick up or ignore the hitchiker? This would have to be
worded better on an actual exam. For this solution, I’m going to have three distinct
(non-overlapping) groups:

• 1: cars that will pick up the hitchiker

• 2: cars that will pass the hitchiker

• 3: patrol cars that will bother the hitchiker

My interpretation is that

N1(t) is a Poisson process with rate (200)(0.05) = 10 cars per hour.

N3(t) is a Poisson process with rate (200)(1/100)(0.7) = 1.4 cars per hour.

N2(t) is a Poisson process with the remaining rate 200− 10− 1.4 = 188.6 cars per hour.

Letting T3 be the first time the hitchiker gets bothered by police, and T1 be the first
time the hitchiker gets picked up, we want

P (T1 < T3).

Now this is like many problems we have had (but easier– exponentials in place of gam-
mas!).



We have
T1 ∼ exp(rate = 10), T3 ∼ exp(rate = 1.4)

where T1 and T2 are independent.

P (T1 < T3) =
∫∞
0 P (T1 < t) 1.4e−1.4t dt

=
∫∞
0

∫ t
0 10e−10u du 1.4e−1.4t dt

= · · · ≈ 0.87719298

Note: We didn’t have to do an integral at all. Ignoring the type 2 cars. The pickup cars
and patrol cars make one Poisson process with rate 10 + 1.4 = 11.4. The probability
that the next arrival in this process is a pickup car is simply

10

11.4
≈ 0.87719298.

In fact, in general, for X1 exp(rate = λ1) and independent X2 exp(rate = λ2), we always
have that

P (X1 < X2) =
λ1

λ1 + λ2
.

4. The maximum of two numbers is below a value y if and only if each number is below the
value y. Therefore, we get the second inequality in

FY (y) = P (Y ≤ y) = P (max{X1, X2} ≤ y)

= P (X1 ≤ y,X2 ≤ y)

indep
= P (X1 ≤ y) · P (X2 ≤ y)

ident
= [P (X1 ≤ y)]2

= [1− e−λy]2

So, the pdf is

fY (y) =
d

dy
FY (y) =

d

dy
[1− e−λy]2 = 2λe−λy [1− e−λy]

for y > 0.

5. (a) The arrival time is uniformaly distributed between 0 and 60, so, the desired probability
is

20

60
=

1

3
.



(b) Let X = the number that arrive during the first hour. Then X ∼ bin(2, 1/3).

P (X = 1) =

(
2
1

)(
1

3

)1 (2

3

)1

(c)
P ( at least one ) = P (X ≥ 1)

= 1− P (X = 0) = 1−
(

2
0

)(
1
3

)0 (
2
3

)2

6.
P (X = x|X + Y = n) = P (X=x,X+Y=n)

P (X+Y=n) = X=x,Y=n−x
P (X+Y=n)

Since X is a Poisson random variable, this probability will be zero if x is less than 0. Since
Y is a Poisson random variable, this probability will also be zero if n− x gets negative. So,
continuing under the assumption that x = 0, 1, 2, . . . , n, and using the fact that the sum of
independent Poisson random variables is again Poisson with rate parameter equal to the sum
of the individual rate paremters (this can be/was shown using moment generating functions),
we have

P (X = x|X + Y = n) = X=x,Y=n−x
P (X+Y=n)

indep
= P (X=x)·P (Y=n−x)

P (X+Y=n)

=
e−λ1λx1

x!
·
e−λ2λn−x

2
(n−x)!

e−(λ1+λ2)(λ1+λ2)
n

n!

= n!
x!(n−x)!

(
λ1

λ1+λ2

)x (
λ2

λ1+λ2

)n−x
=

(
n
x

)(
λ1

λ1+λ2

)x (
1− λ1

λ1+λ2

)n−x
for x = 0, 1, 2, . . . , n. The probability is 0 otherwise.

So, X|X + Y = n ∼ bin(n, λ1/(λ1 + λ2)).

7. In order to take advantage of “independent increments”, let us rewrite this as

E[N(t)N(s+ t)] = E[N(t) · (N(s+ t)−N(t)) +N2(t)]

= E[N(t) · (N(s+ t)−N(t))] + E[N2(t)]

The first expectation can be computed as

E[N(t) · (N(s+ t)−N(t))] = E[N(t)] · E[(N(s+ t)−N(t))] = λt · λs = λ2st.



The second one is

E[N2(t)] = V ar[N(t)] + (E[N(t)])2 = λt+ (λt)2.

So,
E[N(t)N(s+ t)] = λ2st+ λt+ (λt)2.

8. Let N1(t) and N2(t) be the number of minor and major, respectively, defects by time t.

(a) If 1 minor defect is found in the first 10 feet, it’s location is uniformly distributed over
those 10 feet, so the probability it is in the first 2 feet is 2/10 = 1/5.

(b)

P (N1(10) = 1|N(10) = 1) = P (N1(10)=1,N(10)=1)
P (N(10)=1)

= P (N1(10)=1,N2(10)=0)
P (N(10)=1)

= P (N1(10)=1)·P (N2(10)=0)
P (N(10)=1)

=
e−10λ1 (10λ1)

1!
· e

−10λ2 (10λ2)
0

0!

e−10(λ1+λ2)[10(λ1+λ2)]
1

1!

= λ1
λ1+λ2

.

Note: You did not need to do this “from scratch”. Since the big overall defect process
is a Poisson process with rate λ = λ1 + λ2, it can be thinned down to a minor defect
process by assigning defects as “minor” with probability p. This means that the minor
defect process has rate λp. Since we already know that the minor defect process has rate
λ1, we then know that

p =
λ1
λ

=
λ1

λ1 + λ2
.

(c) Um, well, okay... zero! There are no minor defect between two successive minor defects!
But, let’s suppose that the question was:

“What is the expected number of minor defects between two successive
major defects?”

The time between two successive major defects is an exponential random variable with
rate λ2. So, we want the expected number of minor defects in an interval of length
T ∼ exp(rate = λ2). Since the Poisson process is stationary, we can just consider the
expected number of minor defects in the first T units of time. That, is, we want

E[N1(T )] =
∫∞
0 E[N1(T )|T = t] · fT (t) dt

=
∫∞
0 E[N1(t)|T = t] · fT (t) dt

=
∫∞
0 E[N1(t)] · fT (t) dt



since {N1(t)} and {N2(t)} are independent Poisson processes and since T is an interar-
rival time for the {N2(t)} process.

Continuing,
E[N1(T )] =

∫∞
0 E[N1(t)] · fT (t) dt

=
∫∞
0 λ1t · fT (t) dt = λ1

∫∞
0 t · fT (t) dt

= λ1E[T ] = λ1/λ2.

9. (a)

P (N(1) = 5)|N(2) = 12) =

(
12
5

)(
1

2

)5

·
(

1

2

)7

Alternatively, you can write

P (N(1) = 5)|N(2) = 12) = P (N(1)=5,N(2)=12)
P (N(2)=12)

= P (N(1)=5,N(2)−N(1)=7)
N(2)=12 ) = · · ·

(b) Since, by time 1, we have the first 3 arrivals, the total expected time to wait for 5 arrivals
is 1 plus the expected time to wait for 2 arrivals.

E[S5|N(1) = 3] = 1 + E[S2] = 1 + 2/λ

Since S2 ∼ Γ(2, λ).

(c) Let T1, T1, . . . be the interarrival times. (So, Sn = T1 + · · · + Tn.) First, note that
S1 = T1. So

E[S5|S1 > t] = E[S5|T1 > t]

= E[T1 + T2 + T3 + T4 + T5|T1 > t]

= E[T1|T1 > t] + E[T2|T1 > t] + · · ·+ E[T5|T1 > t]

= E[T1|T1 > t] + E[T2] + · · ·+ E[T5]

since the interarrival times are independent. By the lack of memory property of the
exponential, after the t units of time have gone by, we still have to wait an exponential
rate λ amount of time for the first event. So E[T1|T1 > t] = t+ E[T1]. So

E[S5|S1 > t] = E[T1] + E[T2] + · · ·+ E[T5]

= t+ 1
λ + · · ·+ 1

λ = t+ 5
λ .

(d) E[N(t)|S1 > t] = E[N(t)|T1 > t] = 0 since the first event happens at a time greater than
t therefore no events have happened by time t!



(e) Since E[N(t)|S1 < t] = E[N(t)|T1 < t], we know at least one event has happened before
time t. One way to do this problem is to condition on the time of that first event.
(Note that you would have to use the conditional density for T1 given that T1 < t.)
Alternatively,

E[N(t)] = E[N(t)|T1 < t] · P (T1 < t) + E[N(t)|T1 > t] · P (T1 > t)

= E[N(t)|T1 < t] · P (T1 < t) + 0 · P (T1 > t)

= E[N(t)|T1 < t] · P (T1 < t)

which implies that

E[N(t)|T1 < t] =
E[N(t)]

P (T1 < t)
=

λt

1− e−λt
.

10. X has the same distribution as the time of the nth arrival of a Poisson process with rate λ.
Therefore,

P (X ≤ x) = P (Sn ≤ x).

Well,

P (Sn > t) = P (N(t) < n) =
n−1∑
k=0

P (N(t) = k) =
n−1∑
k=0

e−λt(λt)k

k!
,

so
P (X ≤ x) = P (Sn ≤ x) = 1− P (Sn > x)

= 1−
∑n−1
k=0

e−λx(λx)k

k! .

11. Customers arrive at constant rate λ regardless of the number of people currently in the system.
Thus, we have

λi = λ

for i = 0, 1, 2, . . ..

If there are currently 0 people in the system, no one is leaving. The death rate when there
are 0 in the system is

µ0 = 0,

If there is currently 1 person in the system, he/she is at one of the servers. They will be
leaving after an exponential amount of time with rate µ. (By the lack of memory property
of the exponential, it doesn’t matter when exactly we started looking at the system.) Thus,
we have the death rate when 1 person is in the system as

µ1 = µ.

If there are currently 2 people in the system, they are both in service. They both have an
exponential rate µ amount of time to go. The next departure from the system will be at the



minimum of these two exponential times. The minimum of two exponential rate µ times is
exponential with rate 2µ. Thus, we have the death rate when 2 people are in the system as

µ2 = 2µ.

If there are currently 3 or more people in the system, a total of 2 in actually in service. So,
we still have to wait for the minimum of these two exponential rate µ service times for the
next system departure. The minimum of two exponential rate µ times is exponential with
rate 2µ. Thus, we have the death rate when i people are in the system as

µi = 2µ

for i = 2, 3, 4, . . ..

In summary
λi = λ for i = 0, 1, 2, . . .

and

µi =


0 , i = 0
µ , i = 1
2µ , i = 2, 3, . . .

12. The Poisson process does not have a stationary distribution. If you start a process according
to a draw from a stationary distribution with some probability πi of being in state i, it must
have probability πi of being in state i at all fixed time points in the future. The Poisson
process is non-decreasing in time. So, for any fixed state i, the probability of finding the
process in state i will be going down over time and not be staying constant.

13. At time t, there are X(t) particles in cell 2 and the remaining d−X(t) in cell 1. Let us find,
for small h > 0

P (X(t+ h)−X(t) = 1|X(t) = i) = P (a particle jumps from cell 1 to cell 2) + o(h).

The o(h) represents other “multi-particle events” like 2 jumping from cell 1 to cell 2 and 1
jumping back in the tiny, length h time interval.

Since there are currently i particles in cell 2 and therefore d− i in cell 1, we have

P (X(t+ h)−X(t) = 1|X(t) = i) = P (a particle jumps from cell 1 to cell 2) + o(h)

=

(
d− i

1

)
[λh+ o(h)]1[1− λh+ o(h)]d−i−1 + o(h)

= (d− i)λh[1− (d− i− 1)λh] + o(h)

= (d− i)λh+ o(h)



Also, we have

P (X(t+ h)−X(t) = −1|X(t) = i) = P (a particle jumps from cell 2 to cell 1) + o(h)

=

(
i
1

)
[µh+ o(h)]1[1− µh+ o(h)]d−i−1 + o(h)

= iµh[1− (d− i− 1)µh] + o(h)

= iµh+ o(h)

Here, we have used the simplification established in review problem 14c.

Note that a particle can’t jump from cell 1 to cell 2 if all d particles are already in cell 2.
Similarly, a particle can’t jump from cell 2 to cell 1 if there are 0 particles in cell 2. The birth
and death rates are

λi =

{
(d− i)λ , i = 0, 1, 2, . . . , d
0 , otherwise

µi =

{
iµ , i = 0, 1, 2, . . . , d
0 , otherwise

14. (a) If f and g are the same functions, then f/g = 1, which is not o(h). Another slightly
less “trivial” example would be to take f(h) = h3 and g(h) = h2. Both are o(h) but
f(h)/g(h) = h which is not.

(b) Write

e−λh = 1− lambdah+
λ2h2

2!
− λ3h3

3!
+ · · ·

Then
1− e−λh

h
= λ− 1

2
λ2h+ o(h)

(c) Using the binomial theorem we have

(1− λh)i =

(
i
j

)
(−λh)j(1)i−j =

(
i
j

)
(−λh)j

When j is 2 or higher, we get o(h) terms. Writing out the j = 0, 1 terms we have

(1− λh)i = 1− iλh+ o(h).

15. Let N1(t) be the number of hops for bug 1 by time t, let N2(t) be the number of hops for bug
2 by time t, and let N(t) = N1(t) + N2(t) be the total number of hops by time t. We can
think of {N(t)} as a Poisson process with “type 1” and “type 2” hops.

(a) λ1/(λ1 + λ2)



(b) Let T be the time of 4 total hops. We want the probability of exactly 2 type 1 hops.

P (N1(T ) = 2|N(T ) = 4) =

(
4
2

)(
λ1

λ1 + λ2

)2 ( λ2
λ1 + λ2

)2

(c) Call the event that bug 1 hops a “success” and call the event that bug 2 hops a “failure”.
Then the probability of a success is p = λ1/(λ1 + λ2), and we want to compute the
probability of less than 10 failures before the 10th success. This involves the negative
binomial distribution.

Let X be a random variable that counts the number of failures before the rth success
where p is the probability of success on any one trial. Then X has pdf

P (X = x) =

(
r + x− 1
r − 1

)
pr(1− p)x, x = 0, 1, . . .

So, the answer is
9∑

k=0

P (X = k)

where X is this negative binomial random variable with p = λ1/(λ1 + λ2) and r = 10:

9∑
k=0

(
x+ 9

9

)(
λ1

λ1 + λ2

)10 ( λ2
λ1 + λ2

)x

16. (a)

Q =

 −λ λ 0
µ −(λ+ µ) λ
0 µ −µ


(b) Now, if there are 2 machines operating, the next failure will happen at the minimum of

two exponential rate µ times. This is an exponential amount of time with rate 2µ.

Q =

 −λ λ 0
µ −(λ+ µ) λ
0 2µ −2µ



17. Consider finding P (X(t+ h) = j|X(t) = i) for h vanishingly small. Assume first that j 6= i.
In this case, we must have had an arrival in the Poisson process or X(t) could not have
changed. The probability of this Poisson arrival in the tiny interval of length h is λh+ o(h).
The probability of the move for this arrival changing our state from i to j is pij . So, the
probability of changing from i to j in a tiny h interval of time is λpijh + o(h). This means
that the generator matrix entry qij is λpij whenever j 6= i. We can fill in the diagonal entries
of Q by making sure the rows sum to 0. For example,

q11 = −(λp12 + λp13 + λp14 + λp15) = −λ(1− p11)



In summary, we have

Q =


−λ(1− p11) λp12 λp13 λp14 λp15

λp21 −λ(1− p22) λp23 λp24 λp25
λp31 λp32 −λ(1− p33) λp34 λp35
λp41 λp42 λp43 −λ(1− p44) λp45
λp51 λp52 λp53 λp54 −λ(1− p55)




