1. Let $X \sim \text{exp}(\text{rate } = \lambda)$. The lack of memory property of the exponential says that, for any $s, t > 0$,

$$P(X > s + t | X > s) = P(X > t).$$

In words, if X represents the time until something happens, if we have already waited at least s units of time, the probability that we will have to wait at least t units more is the probability we have to wait at least t units in the first place. It is as if the fact that we already waited more than s units of time is irrelevant!

Proof:

$$P(X > s + t | X > s) = \frac{P(X > s + t, X > s)}{P(X > s)} = \frac{P(X > s + t)}{P(X > s)} = e^{-\lambda(s+t)} e^{-\lambda s} = e^{-\lambda t} = P(X > t).$$

2. (a) \[P(N(2) = 3, N(6) = 3) \underset{\text{indep}}{=} P(N(2) = 3) \cdot P(N(6) - N(2) = 0) \]

\[= \frac{e^{-6}6^3}{3!} \cdot \frac{e^{-12}12^0}{0!} \]

(b) \[E[N(3) - N(2)|N(2) \geq 1] \overset{\text{indep}}{=} E[N(3) - N(2)] = (3)(1) = 3 \]

(c) \[P(N(2) = 3|S_2 = 1.8) = P(N(2) - N(1.8) = 1) = \frac{e^{-(3)(0.2)}[(3)(0.2)]^1}{1!} \]

3. (a) Forget all about the cars that won’t stop. The cars that will pick up the hitchhiker follow a Poisson process (thinned from the original) with rate $\lambda_1 = (200)(0.05) = 10$ cars per hour. The amount of time the hitchhiker has to wait is the expected value of one of the exponential, rate 10, interarrival times.

This is one-tenth of an hour or six minutes.

Done.

Alternatively, if you don’t want to thin the Poisson process we could let W be the waiting time and write

$$E[W] = E[W|\text{next car stops}] \cdot P(\text{next car stops})$$

$$+ E[W|\text{next car does not stop}] \cdot P(\text{next car does not stop})$$

$$= \frac{1}{\lambda} \cdot 0.05 + \left(\frac{1}{\lambda} + E[W]\right) \cdot 0.95 = \frac{1}{\lambda} + 0.95E[W]$$

So

$$0.05E[W] = \frac{1}{\lambda}$$

which implies that

$$E[W] = \frac{1}{0.05\lambda} = \frac{1}{(0.05)(200)} = \frac{1}{10}.$$
(b) Let T be the time until the hitchhiker gets picked up. We know that

$$T \sim \exp(rate = 1/10)$$

Let $N_2(t)$ be the number of cars that didn’t stop by time t. This is a thinned Poisson process with rate $\lambda_2 = (200)(0.95) = 190$.

We want $E[N_2(T)]$.

Well

$$E[N_2(T)] = \int_0^\infty E[N_2(T)|T = t] \cdot f_T(t) \, dt$$

$$= \int_0^\infty E[N_2(t)|T = t] \cdot 10e^{-10t} \, dt$$

That last equality follows from the fact that thinning a Poisson process into two Poisson processes produces independent processes. $N_2(t)$ is a quantity from the second process and T is a quantity from the first process.

Continuing...

$$E[N_2(T)] = E[N_2(t)] \cdot 10e^{-10t} \, dt$$

$$= (190t) \cdot 10e^{-10t} \, dt$$

$$= 1900te^{-10t} \, dt$$

Note: This is what we expect since the expected time for a pickup is $1/10$ of an hour and the expected number of cars passing in $1/10$ of an hour is $190(1/10) = 19$. Warning: One could not use this more naive (yet intuitive!) approach if the two processes were dependent.

(c) This is very similar to part (b). It is not worded very well though. Are the partol cars included in ones that will pick up or ignore the hitchiker? This would have to be worded better on an actual exam. For this solution, I’m going to have three distinct (non-overlapping) groups:

- 1: cars that will pick up the hitchiker
- 2: cars that will pass the hitchiker
- 3: patrol cars that will bother the hitchiker

My interpretation is that $N_1(t)$ is a Poisson process with rate $(200)(0.05) = 10$ cars per hour.

$N_3(t)$ is a Poisson process with rate $(200)(1/100)(0.7) = 1.4$ cars per hour.

$N_2(t)$ is a Poisson process with the remaining rate $200 - 10 - 1.4 = 188.6$ cars per hour.

Letting T_3 be the first time the hitchiker gets bothered by police, and T_1 be the first time the hitchiker gets picked up, we want

$$P(T_1 < T_3).$$

Now this is like many problems we have had (but easier– exponentials in place of gammas!).
We have
\[T_1 \sim \exp(rate = 10), \quad T_3 \sim \exp(rate = 1.4) \]
where \(T_1 \) and \(T_2 \) are independent.

\[
P(T_1 < T_3) = \int_0^\infty P(T_1 < t) 1.4e^{-1.4t} dt
= \int_0^\infty \int_0^t 10e^{-10u} du 1.4e^{-1.4t} dt
= \cdots \approx 0.87719298
\]

Note: We didn’t have to do an integral at all. Ignoring the type 2 cars. The pickup cars and patrol cars make one Poisson process with rate \(10 + 1.4 = 11.4 \). The probability that the next arrival in this process is a pickup car is simply
\[
\frac{10}{11.4} \approx 0.87719298.
\]

In fact, in general, for \(X_1 \exp(rate = \lambda_1) \) and independent \(X_2 \exp(rate = \lambda_2) \), we always have that
\[
P(X_1 < X_2) = \frac{\lambda_1}{\lambda_1 + \lambda_2}.
\]

4. The maximum of two numbers is below a value \(y \) if and only if each number is below the value \(y \). Therefore, we get the second inequality in
\[
F_Y(y) = P(Y \leq y) = P(\max\{X_1, X_2\} \leq y)
= P(X_1 \leq y, X_2 \leq y)
\tag{indep}
= P(X_1 \leq y) \cdot P(X_2 \leq y)
\tag{ident}
= [P(X_1 \leq y)]^2
= [1 - e^{-\lambda y}]^2
\]

So, the pdf is
\[
f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} [1 - e^{-\lambda y}]^2 = 2\lambda e^{-\lambda y} [1 - e^{-\lambda y}]
\]
for \(y > 0 \).

5. (a) The arrival time is uniformly distributed between 0 and 60, so, the desired probability is
\[
\frac{20}{60} = \frac{1}{3}.
\]
(b) Let \(X \) be the number that arrive during the first hour. Then \(X \sim \text{bin}(2, 1/3) \).

\[
P(X = 1) = \binom{2}{1} \left(\frac{1}{3} \right)^1 \left(\frac{2}{3} \right)^1
\]

(c) \(P(\text{at least one}) = P(X \geq 1) \)

\[
= 1 - P(X = 0) = 1 - \binom{2}{0} \left(\frac{1}{3} \right)^0 \left(\frac{2}{3} \right)^2
\]

6.

\[
P(X = x|X + Y = n) = \frac{P(X=x,Y=n-x)}{P(X+Y=n)} = \frac{X=x,Y=n-x}{P(X+Y=n)}
\]

Since \(X \) is a Poisson random variable, this probability will be zero if \(x \) is less than 0. Since \(Y \) is a Poisson random variable, this probability will also be zero if \(n - x \) gets negative. So, continuing under the assumption that \(x = 0, 1, 2, \ldots, n \), and using the fact that the sum of independent Poisson random variables is again Poisson with rate parameter equal to the sum of the individual rate paremters (this can be/was shown using moment generating functions), we have

\[
P(X = x|X + Y = n) = \frac{X=x,Y=n-x}{P(X+Y=n)} = \frac{X=x,Y=n-x}{P(X+Y=n)}
\]

\[
= e^{-\lambda_1 x} e^{-\lambda_2 (n-x)} \frac{x!}{\lambda_1 x! \lambda_2 (n-x)!} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^x \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^{n-x}
\]

\[
= \binom{n}{x} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^x \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^{n-x}
\]

for \(x = 0, 1, 2, \ldots, n \). The probability is 0 otherwise.

So, \(X|X + Y = n \sim \text{bin}(n, \lambda_1/(\lambda_1 + \lambda_2)) \).

7. In order to take advantage of "independent increments", let us rewrite this as

\[
\mathbb{E}[N(t)N(s+t)] = \mathbb{E}[N(t) \cdot (N(s+t) - N(t)) + N^2(t)]
\]

\[
= \mathbb{E}[N(t) \cdot (N(s+t) - N(t))] + \mathbb{E}[N^2(t)]
\]

The first expectation can be computed as

\[
\mathbb{E}[N(t) \cdot (N(s+t) - N(t))] = \mathbb{E}[N(t)] \cdot \mathbb{E}[(N(s+t) - N(t))] = \lambda t \cdot \lambda s = \lambda^2 st.
\]
The second one is
\[\mathbb{E}[N^2(t)] = \text{Var}[N(t)] + (\mathbb{E}[N(t)])^2 = \lambda t + (\lambda t)^2. \]
So,
\[\mathbb{E}[N(t)N(s + t)] = \lambda^2 st + \lambda t + (\lambda t)^2. \]

8. Let \(N_1(t) \) and \(N_2(t) \) be the number of minor and major, respectively, defects by time \(t \).

 (a) If 1 minor defect is found in the first 10 feet, it’s location is uniformly distributed over those 10 feet, so the probability it is in the first 2 feet is \(\frac{2}{10} = \frac{1}{5} \).

 (b) \[
P(N_1(10) = 1 | N(10) = 1) = \frac{P(N_1(10) = 1, N(10) = 1)}{P(N(10) = 1)}
= \frac{P(N_1(10) = 1, N_2(10) = 0)}{P(N(10) = 1)}
= \frac{P(N_1(10) = 1) - P(N_2(10) = 0)}{P(N(10) = 1)}
= \frac{e^{-10\lambda_1} \cdot e^{-10\lambda_2} \cdot 0}{e^{0} \cdot 0!} = \frac{\lambda_1}{\lambda_1 + \lambda_2}.
\]

Note: You did not need to do this “from scratch”. Since the big overall defect process is a Poisson process with rate \(\lambda = \lambda_1 + \lambda_2 \), it can be thinned down to a minor defect process by assigning defects as “minor” with probability \(p \). This means that the minor defect process has rate \(\lambda p \). Since we already know that the minor defect process has rate \(\lambda_1 \), we then know that
\[
p = \frac{\lambda_1}{\lambda} = \frac{\lambda_1}{\lambda_1 + \lambda_2}.
\]

(c) Um, well, okay... zero! There are no minor defect between two successive minor defects! But, let’s suppose that the question was:

“What is the expected number of minor defects between two successive major defects?”

The time between two successive major defects is an exponential random variable with rate \(\lambda_2 \). So, we want the expected number of minor defects in an interval of length \(T \sim \text{exp}(\text{rate} = \lambda_2) \). Since the Poisson process is stationary, we can just consider the expected number of minor defects in the first \(T \) units of time. That is, we want
\[
\mathbb{E}[N_1(T)] = \int_0^\infty \mathbb{E}[N_1(T) | T = t] \cdot f_T(t) \, dt = \int_0^\infty \mathbb{E}[N_1(t) | T = t] \cdot f_T(t) \, dt = \int_0^\infty \mathbb{E}[N_1(t)] \cdot f_T(t) \, dt
\]
since \(\{N_1(t)\} \) and \(\{N_2(t)\} \) are independent Poisson processes and since \(T \) is an interarrival time for the \(\{N_2(t)\} \) process.

Continuing,
\[
\begin{align*}
\mathbb{E}[N_1(T)] &= \int_0^\infty \mathbb{E}[N_1(t)] \cdot f_T(t) \, dt \\
&= \int_0^\infty \lambda_1 t \cdot f_T(t) \, dt = \lambda_1 \int_0^\infty t \cdot f_T(t) \, dt \\
&= \lambda_1 \mathbb{E}[T] = \frac{\lambda_1}{\lambda_2}.
\end{align*}
\]

9. (a)
\[
P(N(1) = 5) | N(2) = 12) = \binom{12}{5} \left(\frac{1}{2}\right)^5 \left(\frac{1}{2}\right)^7
\]
Alternatively, you can write
\[
P(N(1) = 5) | N(2) = 12) = \frac{P(N(1)=5,N(2)=12)}{P(N(2)=12)} = \ldots
\]

(b) Since, by time 1, we have the first 3 arrivals, the total expected time to wait for 5 arrivals is 1 plus the expected time to wait for 2 arrivals.
\[
\mathbb{E}[S_5 | N(1) = 3] = 1 + \mathbb{E}[S_2] = 1 + \frac{2}{\lambda}
\]

Since \(S_2 \sim \Gamma(2, \lambda) \).

(c) Let \(T_1, T_1, \ldots \) be the interarrival times. (So, \(S_n = T_1 + \cdots + T_n \).) First, note that \(S_1 = T_1 \). So
\[
\begin{align*}
\mathbb{E}[S_5 | S_1 > t] &= \mathbb{E}[S_5 | T_1 > t] \\
&= \mathbb{E}[T_1 + T_2 + T_3 + T_4 + T_5 | T_1 > t] \\
&= \mathbb{E}[T_1 | T_1 > t] + \mathbb{E}[T_2 | T_1 > t] + \cdots + \mathbb{E}[T_5 | T_1 > t] \\
&= \mathbb{E}[T_1 | T_1 > t] + \mathbb{E}[T_2] + \cdots + \mathbb{E}[T_5]
\end{align*}
\]

since the interarrival times are independent. By the lack of memory property of the exponential, after the \(t \) units of time have gone by, we still have to wait an exponential rate \(\lambda \) amount of time for the first event. So \(\mathbb{E}[T_1 | T_1 > t] = t + \mathbb{E}[T_1] \). So
\[
\begin{align*}
\mathbb{E}[S_5 | S_1 > t] &= \mathbb{E}[T_1] + \mathbb{E}[T_2] + \cdots + \mathbb{E}[T_5] \\
&= t + \frac{1}{\lambda} + \cdots + \frac{1}{\lambda} = t + \frac{5}{\lambda}.
\end{align*}
\]

(d) \(\mathbb{E}[N(t) | S_1 > t] = \mathbb{E}[N(t) | T_1 > t] = 0 \) since the first event happens at a time greater than \(t \) therefore no events have happened by time \(t \)!
(e) Since \(\mathbb{E}[N(t)|S_1 < t] = \mathbb{E}[N(t)|T_1 < t] \), we know at least one event has happened before time \(t \). One way to do this problem is to condition on the time of that first event. (Note that you would have to use the conditional density for \(T_1 \) given that \(T_1 < t \).) Alternatively,
\[
\mathbb{E}[N(t)] = \mathbb{E}[N(t)|T_1 < t] \cdot P(T_1 < t) + \mathbb{E}[N(t)|T_1 > t] \cdot P(T_1 > t)
\]
\[
= \mathbb{E}[N(t)|T_1 < t] \cdot P(T_1 < t) + 0 \cdot P(T_1 > t)
\]
which implies that
\[
\mathbb{E}[N(t)|T_1 < t] = \frac{\mathbb{E}[N(t)]}{P(T_1 < t)} = \frac{\lambda t}{1 - e^{-\lambda t}}.
\]

10. \(X \) has the same distribution as the time of the \(n \)th arrival of a Poisson process with rate \(\lambda \). Therefore,
\[
P(X \leq x) = P(S_n \leq x).
\]
Well,
\[
P(S_n > t) = P(N(t) < n) = \sum_{k=0}^{n-1} P(N(t) = k) = \sum_{k=0}^{n-1} \frac{e^{-\lambda t} (\lambda t)^k}{k!},
\]
so
\[
P(X \leq x) = P(S_n \leq x) = 1 - P(S_n > x)
\]
\[
= 1 - \sum_{k=0}^{n-1} \frac{e^{-\lambda x} (\lambda x)^k}{k!}.
\]

11. Customers arrive at constant rate \(\lambda \) regardless of the number of people currently in the system. Thus, we have
\[
\lambda_i = \lambda
\]
for \(i = 0, 1, 2, \ldots \).
If there are currently 0 people in the system, no one is leaving. The death rate when there are 0 in the system is
\[
\mu_0 = 0.
\]
If there is currently 1 person in the system, he/she is at one of the servers. They will be leaving after an exponential amount of time with rate \(\mu \). (By the lack of memory property of the exponential, it doesn’t matter when exactly we started looking at the system.) Thus, we have the death rate when 1 person is in the system as
\[
\mu_1 = \mu.
\]
If there are currently 2 people in the system, they are both in service. They both have an exponential rate \(\mu \) amount of time to go. The next departure from the system will be at the
minimum of these two exponential times. The minimum of two exponential rate μ times is exponential with rate 2μ. Thus, we have the death rate when 2 people are in the system as

$$\mu_2 = 2\mu.$$

If there are currently 3 or more people in the system, a total of 2 in actually in service. So, we still have to wait for the minimum of these two exponential rate μ service times for the next system departure. The minimum of two exponential rate μ times is exponential with rate 2μ. Thus, we have the death rate when i people are in the system as

$$\mu_i = 2\mu$$

for $i = 2, 3, 4, \ldots$.

In summary

$$\lambda_i = \lambda \text{ for } i = 0, 1, 2, \ldots$$

and

$$\mu_i = \begin{cases}
0 & , i = 0 \\
\mu & , i = 1 \\
2\mu & , i = 2, 3, \ldots
\end{cases}$$

12. The Poisson process does not have a stationary distribution. If you start a process according to a draw from a stationary distribution with some probability π_i of being in state i, it must have probability π_i of being in state i at all fixed time points in the future. The Poisson process is non-decreasing in time. So, for any fixed state i, the probability of finding the process in state i will be going down over time and not be staying constant.

13. At time t, there are $X(t)$ particles in cell 2 and the remaining $d - X(t)$ in cell 1. Let us find, for small $h > 0$

$$P(X(t + h) - X(t) = 1|X(t) = i) = P(\text{a particle jumps from cell 1 to cell 2}) + o(h).$$

The $o(h)$ represents other “multi-particle events” like 2 jumping from cell 1 to cell 2 and 1 jumping back in the tiny, length h time interval.

Since there are currently i particles in cell 2 and therefore $d - i$ in cell 1, we have

$$P(X(t + h) - X(t) = 1|X(t) = i) = P(\text{a particle jumps from cell 1 to cell 2}) + o(h)$$

$$= \binom{d - i}{1} [\lambda h + o(h)]^1 [1 - \lambda h + o(h)]^{d-i-1} + o(h)$$

$$= (d - i)\lambda h[1 - (d - i - 1)\lambda h] + o(h)$$

$$= (d - i)\lambda h + o(h)$$
Also, we have
\[P(X(t+h) - X(t) = -1|X(t) = i) = P(\text{a particle jumps from cell 2 to cell 1}) + o(h) \]
\[= \binom{i}{1} [\mu h + o(h)]^1 [1 - \mu h + o(h)]^{d-i-1} + o(h) \]
\[= i\mu h[1 - (d - i - 1)\mu h] + o(h) \]
\[= i\mu h + o(h) \]

Here, we have used the simplification established in review problem 14c.

Note that a particle can’t jump from cell 1 to cell 2 if all \(d \) particles are already in cell 2. Similarly, a particle can’t jump from cell 2 to cell 1 if there are 0 particles in cell 2. The birth and death rates are
\[\lambda_i = \begin{cases} (d - i)\lambda, & i = 0, 1, 2, \ldots, d \\ 0, & \text{otherwise} \end{cases} \]
\[\mu_i = \begin{cases} i\mu, & i = 0, 1, 2, \ldots, d \\ 0, & \text{otherwise} \end{cases} \]

14. (a) If \(f \) and \(g \) are the same functions, then \(f/g = 1 \), which is not \(o(h) \). Another slightly less “trivial” example would be to take \(f(h) = h^3 \) and \(g(h) = h^2 \). Both are \(o(h) \) but \(f(h)/g(h) = h \) which is not.

(b) Write
\[e^{-\lambda h} = 1 - \lambda h + \frac{\lambda^2 h^2}{2!} - \frac{\lambda^3 h^3}{3!} + \cdots \]
\[\frac{1 - e^{-\lambda h}}{h} = \lambda - \frac{1}{2}\lambda^2 h + o(h) \]

(c) Using the binomial theorem we have
\[(1 - \lambda h)^i = \binom{i}{j} (-\lambda h)^j (1)^i-j = \binom{i}{j} (-\lambda h)^j \]

When \(j \) is 2 or higher, we get \(o(h) \) terms. Writing out the \(j = 0, 1 \) terms we have
\[(1 - \lambda h)^i = 1 - i\lambda h + o(h). \]

15. Let \(N_1(t) \) be the number of hops for bug 1 by time \(t \), let \(N_2(t) \) be the number of hops for bug 2 by time \(t \), and let \(N(t) = N_1(t) + N_2(t) \) be the total number of hops by time \(t \). We can think of \(\{N(t)\} \) as a Poisson process with “type 1” and “type 2” hops.

(a) \(\lambda_1/(\lambda_1 + \lambda_2) \)
(b) Let T be the time of 4 total hops. We want the probability of exactly 2 type 1 hops.

$$P(N_1(T) = 2 | N(T) = 4) = \binom{4}{2} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^2 \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^2$$

(c) Call the event that bug 1 hops a “success” and call the event that bug 2 hops a “failure”. Then the probability of a success is $p = \lambda_1 / (\lambda_1 + \lambda_2)$, and we want to compute the probability of less than 10 failures before the 10th success. This involves the negative binomial distribution.

Let X be a random variable that counts the number of failures before the rth success where p is the probability of success on any one trial. Then X has pdf

$$P(X = x) = \binom{r + x - 1}{r - 1} p^r (1 - p)^x, \quad x = 0, 1, \ldots$$

So, the answer is

$$\sum_{k=0}^{9} P(X = k)$$

where X is this negative binomial random variable with $p = \lambda_1 / (\lambda_1 + \lambda_2)$ and $r = 10$:

$$\sum_{k=0}^{9} \binom{x + 9}{9} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^{10} \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^{x}$$

16. (a)

$$Q = \begin{bmatrix} -\lambda & \lambda & 0 \\ \mu & -(\lambda + \mu) & \lambda \\ 0 & \mu & -\mu \end{bmatrix}$$

(b) Now, if there are 2 machines operating, the next failure will happen at the minimum of two exponential rate μ times. This is an exponential amount of time with rate 2μ.

$$Q = \begin{bmatrix} -\lambda & \lambda & 0 \\ \mu & -(\lambda + \mu) & \lambda \\ 0 & 2\mu & -2\mu \end{bmatrix}$$

17. Consider finding $P(X(t + h) = j | X(t) = i)$ for h vanishingly small. Assume first that $j \neq i$. In this case, we must have had an arrival in the Poisson process or $X(t)$ could not have changed. The probability of this Poisson arrival in the tiny interval of length h is $\lambda h + o(h)$. The probability of the move for this arrival changing our state from i to j is p_{ij}. So, the probability of changing from i to j in a tiny h interval of time is $\lambda p_{ij} h + o(h)$. This means that the generator matrix entry q_{ij} is λp_{ij} whenever $j \neq i$. We can fill in the diagonal entries of Q by making sure the rows sum to 0. For example,

$$q_{11} = -\lambda (p_{12} + p_{13} + p_{14} + p_{15}) = -\lambda (1 - p_{11})$$
In summary, we have

\[
Q = \begin{bmatrix}
-\lambda(1 - p_{11}) & \lambda p_{12} & \lambda p_{13} & \lambda p_{14} & \lambda p_{15} \\
\lambda p_{21} & -\lambda(1 - p_{22}) & \lambda p_{23} & \lambda p_{24} & \lambda p_{25} \\
\lambda p_{31} & \lambda p_{32} & -\lambda(1 - p_{33}) & \lambda p_{34} & \lambda p_{35} \\
\lambda p_{41} & \lambda p_{42} & \lambda p_{43} & -\lambda(1 - p_{44}) & \lambda p_{45} \\
\lambda p_{51} & \lambda p_{52} & \lambda p_{53} & \lambda p_{54} & -\lambda(1 - p_{55}) \\
\end{bmatrix}
\]