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Painlevé IV with Both Parameters Zero: A Numerical Study

By Jonah A. Reeger 1 and Bengt Fornberg 2

The six Painlevé equations were introduced over a century ago, motivated by rather theoretical

considerations. Over the last several decades, these equations and their solutions, known as the

Painlevé transcendents, have been found to play an increasingly central role in numerous areas of

mathematical physics. Due to extensive dense pole fields in the complex plane, their numerical

evaluation remained challenging until the recent introduction of a fast ’pole field solver’ (Fornberg

and Weideman, J. Comp. Phys. 230 (2011), 5957-5973). The fourth Painlevé equation has two

free parameters in its coefficients, as well as two free initial conditions. The present study applies

this new computational tool to the special case when both of its parameters are zero. We confirm

existing analytic and asymptotic knowledge about the equation, and also explore solution regimes

which have not been described in the previous literature.

Key words Painlevé equation, Painlevé transcendent, PIV , pole field, connection for-

mula.

1 Introduction

The six Painlevé equations (PI -PV I) are second order ordinary differential equations (ODEs) with

solutions that are free from movable branch points, but with the possibility of movable poles or

movable isolated essential singularities [1, Section 32.2]. The term movable refers to the dependence

of their location on the ODE’s initial data. The second through sixth Painlevé equations also exhibit
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dependence on one to four arbitrary parameters. The fourth Painlevé equation (PIV ),

d2

dz2
u(z) =

1

2u(z)

(
d

dz
u(z)

)2

+
3

2
u(z)3 + 4zu(z)2 + 2

(
z2 − α

)
u(z) +

β

u(z)
, (1)

has two such parameters, α and β. Together with two initial conditions (ICs) a vast array of solutions

can arise.

The solutions to the Painlevé equations are often dubbed the Painlevé transcendents since, except

for a very small subset of the possible parameter choices and ICs, they are not expressible in terms

of elementary or traditional special functions. With regard to PIV , a particularly small portion of

the two-dimensional parameter space leads to solutions expressible as rational functions or in terms

of special functions such as the parabolic cylinder function. These solutions are well documented;

however, nearly all of the parameter and IC choices are unexplored. For the case α = β = 0, which

this study focuses on, no closed form solution is known (apart from the trivial u(z) = 0).

The growing importance of the Painlevé transcendents in mathematical physics is reflected in that

they, although absent in the classical Handbook of Mathematical Functions [2], have received a full

chapter in the NIST Handbook [1]. Numerous applications for the Painlevé equations are given in [1,

Sections 32.13-32.16], along with extensive references. These include reductions of partial differential

equations, combinatorics, and many physical applications including statistical and quantum physics.

Some applications specific to the PIV equation include random matrix theory (see, e.g., [3], [4], [5],

and [6]) and supersymmetric quantum mechanics (e.g., [7]). Further applications are noted in [8].

The explorations we describe in this paper are mostly computational. Some early computational

work on PIV in [9] focused on the real line with little or no exploration into the complex plane.

The numerical approach introduced in [10]–combining a Padé based ODE solver [11] with a partly

randomized integration path strategy–allowed for the first time rapid numerical solutions of the

Painlevé equations over extended regions in the complex plane. It was first used for PI in [10] and

later for PII in [12]. This paper describes similar computations for PIV .

1.1 Organization of the paper

This paper will first cover some background information about PIV , such as the series expansion

around a pole and a notable symmetry in the differential equation. The known asymptotic ap-

proximations are followed up with a discussion on computing corresponding ICs. Verifications of
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these asymptotic approximations and further numerical explorations are then considered, including

solutions with a pole located at the origin.

2 Background Observations

2.1 Series Expansion

In a neighborhood of a pole z0 the coefficients of the Laurent expansion of PIV can be determined

by substituting a truncated expansion

u(z) =

n∑
k=−1

ak(z − z0)k +O((z − z0)n+1) (2)

into (1) (starting with k = −1 since otherwise ak = 0 for k < −1). For example, choosing n = 4

and equating coefficients gives

a−1 = ±1

a0 = −z0

a1 =
1

3
(−4± z20 ± 2α)

a2 = c

a3 =
1

45
(±26∓ 36cz0 + 20z20 ∓ z40 − 32α∓ 4z20α± 14α2 ± 9β)

a4 =
1

9
(∓9c+ 5z0 + 3cz20 ∓ 2z30 + 6cα∓ 4z0α).

Hence, all poles in the solutions to PIV are simple and have residue of either +1 or −1. The only

further free parameter is c, first appearing in a2.
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2.2 Symmetry in the PIV Equation

Let PIV (α, β) be the set of all solutions of (1) for the particular α and β. Direct inspection of (1)

shows that if u(z) ∈ PIV (α, β), then

−u(−z) ∈ PIV (α, β), (3)

−iu(iz) ∈ PIV (−α, β), and (4)

iu(−iz) ∈ PIV (−α, β) [13]. (5)

Incidentally the first of these symmetries also holds for PIII (for all parameter choices), but never for

any of the other Painlevé equations. With our current focus on α = β = 0, we note in particular that

if u(z) ∈ PIV (0, 0), then −u(−z), −iu(iz), and iu(−iz) ∈ PIV (0, 0). This first symmetry simplifies

the analysis of the various computations considered in this paper. For instance, the number of poles

and oscillations over a given interval of the real line is monitored to determine ICs that give pole-

and/or oscillation-free solutions over the entire real line. When given initial data to the ODE at z = 0

it then suffices to consider the solution for an interval along the positive real axis. It is important

to keep this symmetry in mind since any solution presented in this paper has a counterpart that is

the odd reflection about the origin among others.

3 Asymptotic Approximations

Much of the previous computational work on PIV was designed to verify its asymptotic approxima-

tions. A contributing factor to this was likely the difficulty experienced by typical ODE solvers when

encountering a pole. For instance, solutions with very special parameter choices were explored in [9]

using a classical fourth order Runge-Kutta scheme, a sixth-order scheme, and an Adams Moulton

predictor-corrector method, each of which are rendered ineffective when encountering a pole. Alter-

nate approaches that are applicable also when poles are encountered have been proposed in [14] and

[15]. A wider selection of parameter choices will be discussed in the following subsections.
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3.1 Parameter Choices, an Approximation, and Connection Formulae

Before limiting to the case of α = β = 0, let α = 2ν + 1 ∈ R and β = 0 (with ν = − 1
2 giving α = 0).

Equation (1) then becomes

d2

dz2
u(z) =

1

2u(z)

(
d

dz
u(z)

)2

+
3

2
u(z)3 + 4zu(z)2 + 2

(
z2 − 2ν − 1

)
u(z). (6)

This particular form of PIV is presented in [1, Section 32.11] and is in contrast to those presented

in [9] and [16], where the change of variables

u(z) = 2
√

2w(x)2 and z =
1

2

√
2x (7)

is applied. For some of the following examples, the boundary condition

u(z)→ 0, as z → +∞ and z ∈ R (8)

is also imposed. Based on the symmetry (3) discussed previously, the condition u(z) → 0, as z →

−∞ could likewise be considered, to achieve analogous results.

It is noted in the NIST handbook [1, Section 32.11(v)] that any nontrivial solution of (6) satisfying

(8) is asymptotic to

k
(
Dν(
√

2z)
)2

as z → +∞ and k 6= 0, (9)

where k ∈ R and Dν(ζ) is the parabolic cylinder function, satisfying

d2

dζ2
Dν(ζ) =

(
1

4
ζ2 − ν − 1

2

)
Dν(ζ)

with boundary conditions

Dν(ζ) ∼ ζνe− 1
4 ζ

2

, ζ → +∞.

Previous studies of PIV present only cases where k > 0; however, this study will also consider k < 0.
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There is a critical value of k given by

k∗ =
1√

πΓ(ν + 1)
(10)

such that when 0 ≤ k < k∗ there are no poles on the real axis. In the case of ν = − 1
2 , k∗ = 1

π .

One can further distinguish between two cases for ν when 0 ≤ k < k∗. First, if ν ∈ Z+, then

u(z) is asymptotic to

k2νz2νe−z
2

, z → −∞. (11)

Likewise, if 0 6= ν 6∈ Z+, which includes the present case of ν = − 1
2 , then u(z) is asymptotic to

−2

3
z +

4

3
d
√

3 sin(φ(z)− θ0) +O(z−1), z → −∞, (12)

where

φ(z) =
1

3

√
3z2 − 4

3
d2
√

3 ln(
√

2|z|). (13)

Here d and θ0 are given by the connection formulas, derived in [17], as

d2 = −1

4

√
3π−1 ln(1− |µ|2) (14)

and

θ0 =
1

3
d2
√

3 ln(3) +
2

3
πν +

7

12
π + arg(µ) + arg

(
Γ

(
−2

3
i
√

3d2
))

, (15)

with

µ = 1 +
2ikπ3/2e−iπν

Γ(−ν)
. (16)

Note that the connection formulas for d and θ0 were presented incorrectly in [18] and [19], but

corrected in, for example, [9] and [16].

Next, for k = k∗, u(z) again has no poles on the real axis and is asymptotic to −2z for z → −∞.
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Finally, if k > k∗ or k < 0, then u(z) has poles on the real axis whose locations are dependent on k.

Previous studies of PIV do not explicitly describe the behavior of (6) with k < 0. Infinitely many

poles are found along the negative real axis in these cases.

Applying the method of dominant balance (see, e.g., [20, Section 3.4]) to (6) leads to the asymp-

totic relation

u±(z) ∼ −4z ± 2
√
z2 + 6ν + 3

3
as |z| → ∞.

Taking ν = − 1
2 leads to u+(z) ∼ − 2

3z and u−(z) ∼ −2z, respectively, with the upper and lower sign

choice. The dominance of this relation is apparent for 0 < k ≤ k∗; however, this approximation is

not meaningful for k > k∗ or k < 0. It is particularly important in the cases of k = k∗ and k = 1
2k
∗,

as we will show later.

3.2 Computing the ICs for Asymptotic Approximations

Consider the asymptotic condition (9), shown in the left of figure 1. The values of (Dν(
√

2z))2

are less than machine precision for even relatively small values of z. As it will transpire, z can

nevertheless be selected such that it is large enough to make the approximation useful and small

enough so that a solution of (6) is computable to machine precision.
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Figure 1: Left: A plot of (Dν(
√

2z))2 with k = 1. Right: A plot of
∣∣∣u(0)−û(0)u(0)

∣∣∣ for various values of

k and ν = 0. Roundoff begins to dominate the error in û(0) when z0 is slightly more than 5.

It is stated in [9] that, for ν = 0, 1, 2, . . ., a closed form solution to (6) for arbitrary values of k
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and z ∈ R exists. For instance, for ν = 0 the solution becomes

u(z) =
2
√

2k exp(−z2)

23/2 − k
√

2πerfc(z)
,

where

erfc(ζ) =
2√
π

∫ ∞
ζ

exp(−s2)ds

is the complementary error function discussed in [1, Section 7.2]. Knowing this closed form solution,

the exact value of u(0) can be compared to the value obtained numerically beginning with initial

conditions

k
(
Dν(
√

2z0)
)2
, (17)

z0 ∈ [1, 10]. Call this numerical solution û(0). Comparing the left and right images in figure 1 shows

that for various k z0 ≈ 5 can be chosen to achieve an accurate solution with (Dν(
√

2z0))2 large

enough. To be in agreement with the choice of z0 to generate initial data in [9] z0 = 4
√

2 ≈ 5.65 is

used throughout this article, which has been shown to be sufficient.

In the case of the PII equation,

d2

dz2
u(z) = 2u(z)3 + zu(z) + α,

it was found in [12] that its leading asymptotic term alone was numerically sufficient when α = 0, but

otherwise needed to be supplemented by asymptotic expansions. We encounter the same situation

with PIV in its α = β = 0 case. The leading term in

u(z) ∼ k
(
D− 1

2
(
√

2z)
)2

+

k2
e−2z

2

z3

[
1

4
− 9

16

1

z2
+

205

128

1

z4
−+ · · ·

]
+

k3
e−3z

2

√
2z5

[
1

8
− 31

64

1

z2
+

1853

1024

1

z4
−+ · · ·

]
+

O

(
e−4z

2

z7

)
.

suffices for any choice of z > 4. Further terms are here unnecessary for the identification of critical
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k-values.

4 An Exploration of the u(0), u′(0)-Plane

4.1 Pole and Oscillation Counting

A particularly useful tool in determining the various types of solutions that exist for fixed α and β

is to count the number of poles and oscillations that occur in a given interval on either the positive

or negative real axis. Displays can then be created that indicate the number of poles appearing on

the positive or negative real axis for different regions of the u(0), u′(0) plane. This is shown in figure

2 for the case α = β = 0 (that is, ν = − 1
2 ). The left and right images were produced by counting

the number of poles to the left and right of the origin, respectively. The symmetry (3) is apparent

in these figures.

Figure 2: Number of poles on the negative (left) and positive (right) real axes. The colored regions

correspond to solutions with a fixed number of poles on the appropriate half of the real axis; however,

these solutions may have oscillations over that half. The black and colored curves indicate initial

conditions with a fixed number of poles and no oscillations on the corresponding half of the real

axis. White regions correspond to an infinity of poles. The area in the small box at the bottom of

the right figure is enlarged in figure 3.

Consider, for now, only the right frame in figure 2, since the left is completely analogous. Each

of the ICs marked by a curve or contained within a shaded region generates a solution with a finite
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number of poles on the positive real axis. The color bar indicates the exact number of poles for a

given initial condition with darker (blues/greens) and lighter (reds/yellows) indicating odd and even

numbers of poles, respectively.

Each of the shaded regions in the right half-plane contains ICs that generate solutions with an

odd number of poles on the positive real axis, while the u(0), u′(0) values along the colored curves

lead to solutions with an even number. The left half-plane is the opposite.

Most of the ICs in the shaded regions generate solutions that oscillate as z → +∞; however, each

initial condition marked by a curve or located at the boundary of a shaded region has no oscillations

as z → +∞.

Figure 2 also identifies the initial conditions of many of the solutions shown in this paper by

marking them with an arrow and the corresponding figure number(s).

Still focusing on the right frame, notice that as u(0)→ 0 from the left the shaded regions become

finer. Figure 3 shows two zoomed windows to further highlight this behavior. In these images it is

shown that these regions become infinitely narrower as u(z) approaches zero and in each consecutive

region the number of poles increases by two.

Figure 3: Zoomed views of the number of poles on the positive real line. The left frame corresponds to

the box outlined in the right frame of figure 2 and the right frame corresponds to the box highlighted

in the left frame of this figure. Note that the right edge corresponds to u(0) = −0.02, rather than

u(0) = 0, to avoid displaying an infinity of shaded regions.
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4.2 Exploring the Known Asymptotic Solutions

Armed with the pole- and oscillation-counting images, two natural questions become: “Which initial

conditions correspond to varying k?” and “What do the solutions to these asymptotic approximations

look like across the complex plane?”

To answer the first question k is varied from near zero to |k| � 0. The dashed and solid curves

in figure 4 indicate the location of u(0) and u′(0) found by varying k and computing the numerical

solution beginning with (17) at z0 = 4
√

2. The continuation of the curves outside the axes illustrates

the transitions of u(0) and u′(0) to +∞ or −∞ and back as we increase or decrease k. This is due to

the movement of a pole through the origin z = 0. A following section will show that the continuation

of the dashed and solid curves corresponds to a pole at the origin with positive and negative residue,

respectively.



PIV WITH BOTH PARAMETERS ZERO: A NUMERICAL STUDY 12

Figure 4: A view of how u(0) and u′(0) change as k is varied. The locations of several values of k

are marked. The dashed and solid curves represent values when k > 0 and k < 0, respectively. The

labels k±j , j = 1, 2, . . . , 8, correspond to diffferent values of c in figures 15 and 16, which represent

the movement of a pole through the origin. Approximate values of k and c are also shown in table

1. Note that this image is a detailed version of the right frame of figure 2, where the horizontal axis

indicates the value of u(0) from −7.5 to 7.5 and the vertical axis indicates the values of u′(0), again

from −7.5 to 7.5.

Next, the second question is answered with examples of the solutions similar to those presented

(along the real axis) for the transformed case of PIV in [1], [9] and [16]. To this end, a number

of solutions are presented in a two frame format. The left frames display the pole locations and
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corresponding residues, dark (blue) for +1 and light (yellow) for -1. The right frames display the

solution along the real axis, in a style similar to figure 32.3.6 in [1] (but without stopping when a pole

is encountered); that is, solutions are displayed for k = k∗−1×10−8, k = k∗ and k = k∗+ 1×10−8.

Notice that for 0 < k ≤ k∗ there are no poles on the real axis and that the asymptotic approximations

of −2z and (12) match well even for z close to the origin.

Figure 5: Solutions to (6) with ν = − 1
2 . The solid (blue) lines indicate the numerical solutions. The

dashed-dotted (red) and dashed (green) lines show − 2
3z and −2z, respectively. The dotted (black)

lines in the first and second rows show (12).

Generally, the solutions of (6) satisfying (9) with k > 0 occur at critical initial data where a

region of poles has moved out to infinity leaving a pole free region of the complex plane behind.

For simplicity, refer to this type of solution as a k-positive solution. An example of this appears

in figure 6, where the initial conditions for the middle row of frames are generated from (6) and

(9) by choosing k = +0.75. The top and bottom rows show the solutions in a neighborhood of the

generated initial data.
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Figure 6: A view of the solutions that have poles that move to +∞ leaving a near zero segment

behind and then return. In all cases u0 = 1.84810583 and u′(0) = −4.61669536, which result from

integrating (6) (ν = − 1
2 ) starting with (9) (k = 0.75) from z = 4

√
2 to z = 0. There is no noticeable

difference between the top and bottom figure sets, highlighting that there is no change in pole field

orientation as we pass through these special ICs.

On the other hand, choosing k < 0 leads to another type of solution. As u(0) and u′(0) generated

from (6) and (9) for k < 0 are approached the solutions have an infinity of oscillations that move

toward +∞ while leaving a near zero solution behind. These solutions will be referred to as k-

negative solutions. Picking k = −0.75 the solution in the middle row of figure 7 is found. The

top and bottom rows again highlight the movement of the oscillations for u(0) and u′(0) in a

neighborhood of the generated initial data.
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Figure 7: A view of the solutions that have oscillations that move to +∞ leaving a near zero segment

behind and then return. In all cases u0 = −0.87721765 and u′(0) = 1.14146647, which result from

integrating (6) (ν = − 1
2 ) starting with (9) (k = −0.75) from z = 4

√
2 to z = 0. There is no

noticeable difference between the top and bottom figure sets, highlighting that there is no change in

pole field orientation as we pass through these special ICs.

Figures 6 and 7 show another, yet peculiar, behavior of the solutions of the PIV equation. As

u(0) and u′(0) pass through critical ICs for both PI and PII there is a distinct change in the location

of the poles closest to the real axis. For instance, let u0 and u′0 be critical ICs for PI and u(0) = u0−ε

and u′(0) = u′0 generate a solution with no poles on the negative real axis. Then the solution for

u(0) = u0 + ε and u′(0) = u′0 will have an infinity of the poles on the negative real axis. An example

of this is shown for PI in figure 4.3 of [10], which is also shown only on the real axis in figure 32.3.3

of [1]. This same behavior has been witnessed for all possible choices of critical ICs shown in the

available literature for PII .

On the other hand, if u(0) or u′(0) generated from (6) and (9) are fixed and a small neighborhood

of u′(0) or u(0), respectively, is considered, then there is no change in pole field orientation or residue
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when passing through the critical ICs. The action of passing through the critical ICs is the same as

passing through either a solid or dashed line in figure 4. This is the behavior for nearly all of the

k-positive and k-negative solutions, except those which occur at the boundary of a shaded region in

figure 4. An example of this appears in figure 5.

To complete this section consider extreme values of k. That is, consider values of k with very

large and very small magnitudes. Figure 8 shows some such solutions.

Figure 8: A view of the solutions which result from (6) starting with (9), where ν = − 1
2 and four

different values for k.

Notice that values of k that are equal in magnitude but opposite in sign lead to solutions that

are similar, but with the sign of the residue of the pole located furthest to the right on the real axis

equalling the sign of k.

4.3 Solution with a Pole Free Half-Plane

One of the more interesting cases appears in figure 9, when k = 0.5k∗. In this case, the solution

follows − 2
3z, as z → −∞ and z ∈ R, and appears pole and oscillation free across the entire real axis.

In fact, (12) becomes − 2
3z, and substitution of u(z) = − 2

3z into (6) with ν = − 1
2 leads to a residual

of 1
3z . Figure 10 shows a sequence of solutions where k increases to 1

2k
∗ and beyond. Notice that

two regions of poles, nearly symmetric about the rays re±i
3π
4 , r ≥ 0, move away from the origin
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and, after the critical k = 0.5k∗, return with changed orientation.

Figure 11 displays a sequence of frames of size 1 × 0.5 in the real and imaginary directions,

respectively, depicting |u(z)| adjacent to the imaginary axis. This frame size was chosen so that

the magnitude of u(z) could be clearly displayed when the density of the poles is so great near

Im(z) = 100. The distance of the nearest row of poles from the imaginary axis appears to be

O
(

1

Im(z)

)
, with the left half-plane pole free.

Figure 9: Solution to (6) with ν = − 1
2 and k = 0.5k∗. The dashed (black) lines on the left indicate

the rays re±i
3π
4 , r ≥ 0. The dashed-dotted (red) and dashed (green) lines on the right show − 2

3z

and −2z, respectively.

Figure 10: Solutions in the complex plane to (6) with ν = − 1
2 for six k-values near k = 1

2k
∗. The

dashed (black) lines indicate the rays re±i
3π
4 , r ≥ 0.
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Figure 11: Solutions in the complex plane to (6) with ν = − 1
2 and k = 1

2k
∗. Here we show |u(z)|.

That is we show pole locations only, without the alternating pattern of residues.

The pole free nature of the left half-plane and a large portion of the right half-plane is reminiscent

of a special solution to PI known as the tritronquée solution (see, for example, [21], [10] or [14]). It

is well known that the PI equation,

d2

dz2
u(z) = 6u(z)2 + z, (18)

is invariant under the changes u→ ω3u, z → ωz when ω5 = 1 (see, for example, [10]). This results

in solutions with poles aligned in the five distinct sectors shown the left in figure 12. The tritronquée

solution for PI is pole free except for the region 1 in the figure, leaving the entire left half-plane

pole free. Similarly, many of the PIV solutions considered here indicate that the poles line up in the

eight sectors shown to the right in figure 12. This will become even more apparent in section 4.6.

Figure 12: The asymptotic far field sector structures for the PI and PIV equations.
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4.4 Tronquée-Like Solutions

In both the k-positive and k-negative cases behavior different from the tronquée solutions for PI dis-

cussed in, for example, [10] and [14] is encountered. Concerning PI , transitioning through tronquée

initial data leads to a fundamental change in the location of the poles in the solutions. That is,

beginning with a solution to PI with no poles on the real axis, the initial conditions on the other

side of the tronquée initial data will have poles on the real axis. The opposite occurs when beginning

with poles on the real axis. Tronquée-like behavior for PIV occurs at the transition from a shaded

region in figure 2 to a blank region.

One of the tronquée-like solutions occurs when u(0) ≈ −1.59610846592044 and u′(0) = 1. Figure

13 displays the behavior just described. Notice, also, that as z → ∞ the solution at the critical

initial data is asymptotic to −2z. This is found to be the case for nearly all tronquée-like solutions.

The exception is the trivial solution when u(0) = u′(0) = 0.

Figure 13: Solutions to (1) with α = β = 0 and ICs u0 = −1.59610846592044 and u′(0) = 1.
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4.5 Solutions with a Pole at the Origin

Until now solutions have only been considered for which u(0) and u′(0) are finite. However, beginning

with a truncated series like (2), with z0 = 0, initial conditions can be generated to also view solutions

with a pole at the origin. In the case of α = β = 0 the expansion becomes

u(z) ≈ ±1

z
− 4

3
z + cz2 ± 26

45
z3 ∓ cz4 +

1

945

(
−128± 405c2

)
z5 +

41

90
cz6 +(

±1604− 12960c2
)

28350
z7 +

(
∓3092 + 1800c2

)
12600

cz8 +

(
−10240± 136512c2

)
374220

z9 +(
45555∓ 77760c2

)
340200

cz10 +

(
±15846104− 324788400c2 ± 66156750c4

)
1277025750

z11 +(
∓27096717 + 92409660c2

)
392931000

cz12 +O(z13). (19)

Reiterating, the residue at the origin can be either +1 or −1, and the only remaining free parameter

is c. Choosing c = 0 gives the two solutions shown in figure 14.

Figure 14: A view of solutions with a pole at the origin in the case of c = 0.

Varying u(0) and u′(0) allows the exploration of all solutions apart from those with a pole at

the origin. In that case the single parameter c can instead be varied to explore the number of poles

and oscillations along the two halves of the real axis. Figures 15 and 16 show that certain choices

of c lead to solutions with a finite number of poles on the positive and negative real axes. This is

shown in two ways for both possible choices of the residue for the pole located at the origin. On the

left the locations of the poles on the real axis are shown, with solid lines indicating +1 residue and

dashed lines indicating −1 residue. Due to (2) and (19) the curves are symmetric around the origin

Re(z) = c = 0. The right images mimic figure 2. In these images lines and dots correspond to values

of c that generate solutions with a finite number of poles. The horizontal axis indicates the exact
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number of poles on either the positive or negative real axis. The corresponding half of the real axis

is indicated by the color of the line or dot. Consequently, we can deduce that the colored and black

dots indicate the values of c that correspond to solutions generated from (6) and (9) with k > 0 and

k < 0, respectively. Colored line segments, then, correspond to colored regions in figure 2.

Figure 15: Left Frame: Locations of the poles on the real axis for various c. Solid lines indicate poles

with residue +1 and dashed lines those with residue −1. Right Frame: Number of poles includes

the pole at the origin. Values of c with no lines or dots indicate solutions with an infinity of poles

on the real axis.
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Figure 16: Left Frame: Locations of the poles on the real axis for various c. Solid lines indicate poles

with residue +1 and dashed lines those with residue −1. Right Frame: Number of poles includes

the pole at the origin. Values of c with no lines or dots indicate solutions with an infinity of poles

on the real axis.

Table 1 shows the approximate values of k and c corresponding to the k+j and k−j , j = 1, 2, . . . , 8,

solutions, respectively, in figures 4, 15 and 16. The columns ±7.5 (out) and ±7.5 (in) show the values

of k where the dashed and solid line segments leave and enter the window in figure 4. The column

labeled ±∞ gives the value of k corresponding to the transition of a pole through the origin. The c

column and ±∞ column lead to the same solution when substituted into (19) and (9), respectively,

to generate ICs.
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Pole Located at Origin has Residue +1

k Corresponding to u′(0) equal to
7.5 (out) ∞ 7.5 (in) c

k
+
1 0.87 × 100 1.54 × 100 3.49 × 100 0.5100

k
−
2 −6.82 × 101 −2.47 × 102 −1.42 × 103 3.5240

k
+
3 1.23 × 104 5.48 × 104 7.13 × 105 8.1000

k
−
4 −2.52 × 106 −1.25 × 107 −2.12 × 108 13.8100

k
+
5 5.50 × 108 2.85 × 109 5.75 × 1010 20.4520

k
−
6 −1.22 × 1011 −6.55 × 1011 −1.45 × 1013 27.9203

k
+
7 2.74 × 1013 1.50 × 1014 3.63 × 1015 36.1202

k
−
8 −6.22 × 1015 −3.45 × 1016 −8.85 × 1017 44.9203

Pole Located at Origin has Residue −1

k Corresponding to u′(0) equal to
−7.5 (out) −∞ −7.5 (in) c

k
−
1 −2.72 × 100 −6.97 × 100 −1.75 × 101 1.2710

k
+
2 2.69 × 102 1.49 × 103 5.34 × 103 4.9020

k
−
3 −2.97 × 104 −3.35 × 105 −1.42 × 106 9.8903

k
+
4 4.67 × 106 7.61 × 107 3.49 × 108 15.9233

k
−
5 −8.75 × 108 −1.75 × 1010 −8.45 × 1010 22.8524

k
+
6 1.77 × 1011 4.00 × 1012 2.02 × 1013 30.5710

k
−
7 −3.75 × 1013 −9.20 × 1014 −4.77 × 1015 38.3697

k
+
8 8.12 × 1015 2.12 × 1017 1.12 × 1018 48.1000

Table 1: This table shows the approximate values of k and c corresponding to the k+ and k−

solutions, respectively, in figures 4, 15 and 16. The columns ±7.5 (out) and ±7.5 (in) show the

values of k where the dashed and solid line segments leave and enter the window in figure 4. The

column labeled ±∞ gives the value of k corresponding to the transition of a pole through the

origin. The c column and ±∞ column lead to the same solution when substituted into (19) and (9),

respectively, to generate ICs.

In order to see how close the solutions corresponding to the ±∞ and c columns are, consider

those for k−1 in table 1. If the corresponding solutions are computed, the pole locations and residues

are shown in figure 17. Notice that even these low precision values for k and c already lead to

solutions that are very similar. The pole locations shared by both frames differ by at most O(10−3).

Figure 17: Solutions corresponding to the values in the −∞ and c columns of k−1 in table 1. Notice

that even these low precision values lead to solutions that are very similar. The pole locations shared

by both frames differ by at most O(10−3).
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4.6 Neighborhoods of Solutions

Throughout this paper several special solutions to PIV with α = β = 0 have been considered

along with many of their neighboring solutions. However, the neighboring solutions that have been

considered only resulted from a perturbation in the asymptotic parameter k or the single IC u(0).

To complete this study, consider six of the same special solutions, with the difference that now

neighboring solutions that result from varying both u(0) and u′(0) are shown.

Figures 18, 19, 20, and 21 show solutions in the neighborhood of the middle row of each of the

figures 5, 9, 6, and 7, respectively. The rays rei
jπ
4 , r ≥ 0 and j = 1, 2, . . . , 8, are included to highlight

the behavior of the poles when the ICs are near or equal to those of a special solution. We find

that near these particular ICs the poles fall within the eight distinct sectors discussed previously

and shown in figure 12.

Figure 18: A view of the solutions with u(0) and u′(0) in a neighborhood of the values gen-

erated by (6) with ICs given by (9) where ν = − 1
2 and k = k∗ shown in figure 5. Here

u(0) = 0.555491078710868 + ρ cos(φ) and u′(0) = −0.886725480333295 + ρ sin(φ) to generate the

solutions.
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Figure 19: A view of the solutions with u(0) and u′(0) in a neighborhood of the values gen-

erated by (6) with ICs given by (9) where ν = − 1
2 and k = 1

2k
∗ shown in figure 9. Here

u(0) = 0.253975473568026 + ρ cos(φ) and u′(0) = −0.367698229229807 + ρ sin(φ) to generate the

solutions.
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Figure 20: A view of the solutions with u(0) and u′(0) in a neighborhood of the values gen-

erated by (6) with ICs given by (9) where ν = − 1
2 and k = 0.75 shown in figure 6. Here

u(0) = 1.852476801971173 + ρ cos(φ) and u′(0) = −4.634118664573674 + ρ sin(φ) to generate the

solutions.
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Figure 21: A view of the solutions with u(0) and u′(0) in a neighborhood of the values generated

by (6) with ICs given by (9) where ν = − 1
2 and k = −0.75 shown in figure 7. Here u(0) =

−0.878189808443538 + ρ cos(φ) and u′(0) = 1.142924661194064 + ρ sin(φ) to generate the solutions.

Solutions with initial conditions given in a neighborhood of the origin (figure 22) and near the

tronquée-like solution (figure 23) shown in figure 13 are also displayed. Notice figures 2-4 show that

when u(0) = 0 and u′(0) 6= 0 the solutions have pole fields of infinite density. Therefore, only six

neighboring solutions around u(0) = u′(0) = 0 are given.



PIV WITH BOTH PARAMETERS ZERO: A NUMERICAL STUDY 28

Figure 22: A view of the solutions in a neighborhood of the origin. Here u(0) = ρ cos(φ) and

u′(0) = ρ sin(φ) to generate the solutions. Since we cannot compute numerically the solution when

u(0) = 0, except when u′(0) = 0 also, we show only six neighboring solutions in a neighborhood of

the origin to preserve symmetry.
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Figure 23: A view of the solutions in a neighborhood of the tronquée-like solution shown in 13. Here

u(0) = −1.59610846592044 + ρ cos(φ) and u′(0) = 1 + ρ sin(φ) to generate the solutions.

5 Conclusions

In this study of the fourth Painlevé equation for the case α = β = 0 (i.e. ν = − 1
2 ), existing analytic

and asymptotic knowledge about the equation has been confirmed, and solution regimes which have

not been described in the previous literature were explored. The fast numerical approach introduced

in [10] allowed the location ICs with unique characteristics. Notably, a solution that has no poles

located in the entire left half-plane was discovered. Likewise, symmetry leads to a solution that is

pole free in the entire right half-plane.

This study has highlighted some peculiar behavior in the neighborhood of some of the known

asymptotic solutions. Further, the existence of an entire family of solutions, like the one in figure 13,

was confirmed that is similar to the tronquée solutions of PI . Connections were also made between

the free parameter, c, in the Laurent expansion of a pole located at the origin and the asymptotic

parameter k.
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The flexibility of the numerical algorithm has left ample opportunities for further explorations

of the solutions of PIV , particularly for nonzero α and β. A few of these include:

• Confirmation of known rational and special function solutions, and exploration of solutions

with neighboring ICs.

• Finding connections between parameter choices with known asymptotic and analytic solutions

and neighboring parameter choices with no such information available.

• Locating yet unknown solutions with large pole free sectors in the complex plane.
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