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Abstract. Many types of radial basis functions, such as multiquadrics, contain a free parameter.
In the limit where the basis functions become increasingly flat, the linear system to solve becomes
highly ill-conditioned, and the expansion coefficients diverge. Nevertheless, we find in this study that
limiting interpolants often exist and take the form of polynomials. In the 1-D case, we prove that
with simple conditions on the basis function, the interpolants converge to the Lagrange interpolating
polynomial. Hence differentiation of this limit is equivalent to the standard finite difference method.
We also summarize some preliminary observations regarding the limit in 2-D.
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1. Introduction. During the last few decades, radial basis functions (RBFs)
have found increasingly widespread use for functional approximation of scattered data.
Given data at nodes x1, . . . ,xN in d dimensions, the basic form for such approxima-
tions is

s(x) =
n∑

k=1

λk φ
(‖x − xk‖

)
(1.1)

where ‖ · ‖ denotes the Euclidean distance between two points, and φ(r) is some
function defined for r ≥ 0. Given scalar function values fi = f(xi), the expansion
coefficients λk are obtained by solving the linear system


 A







λ1

...
λN


 =




f1

...
fN


 or Aλ = f , (1.2)

where Ai,j = φ
(‖xi − xj‖

)
. This ensures that (1.1) interpolates f(x) at x1, . . . , xN .

For many choices of φ it is well known that the system (1.2) is guaranteed to be
nonsingular [3, 4].

Many of the common choices for φ(r) fall into one of two categories:
• infinitely smooth and containing a free parameter, such as multiquadrics (MQ,

φ(r) =
√

r2 + c2) and Gaussians (φ(r) = e−(εr)2), and
• piecewise smooth and parameter-free, such as cubics (φ(r) = r3) and thin

plate splines (φ(r) = r2 ln r).
Generally speaking, the infinitely smooth class provides spectrally accurate approx-
imations of smooth data. Previous authors have observed experimentally that the
quality of approximation is influenced by the free parameter, and that the “optimal”
parameter value depends strongly on the data [1, 6]. In this paper we are interested in
what happens as the free parameter makes φ(r) increasingly flat near the origin—that
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is, c → ∞ for MQ or ε → 0 for Gaussians. To make this limiting process in all cases
correspond to ε → 0, from now on we write MQ as φ(r) =

√
1 + (εr)2.

Large values of ε lead to well-conditioned linear systems, but the resulting approx-
imations tend to be inaccurate and useless. For example, they resemble uncoupled
spikes in the case of Gaussians and a piecewise linear interpolant (in 1-D) with MQs.
Intermediate values of ε can often be employed successfully and have been extensively
explored in the literature. In the limit ε → 0, the condition number of the system (1.2)
grows rapidly and without bound (equivalently, the expansion coefficients diverge),
and this fact has been a barrier to investigation.

Our main point is that, although the coefficient vector λ diverges as ε → 0, the
RBF interpolant itself (usually) converges to a finite limit. If we rewrite the RBF
system (1.2) in slightly different notation as


...

· · · φ(‖xi − xj‖) · · ·
...


λ = f , (1.3)

and the interpolant (1.1) as

s(x, ε) =
[· · · φ(‖x − xj‖) · · ·]λ, (1.4)

it is perhaps not so surprising that numerical cancellation occurs in s to compensate
for the divergence of λ. One point of view is that transforming f to s(x, ε) is a
well-conditioned process, but computing λ is an ill-conditioned intermediate step in
one particular implementation. If this step could be avoided, perhaps a more stable
algorithm could be found.

This paper is structured as follows: In Section 2, we provide a rough estimate
of how ill-conditioned the system (1.2) is for different numbers of spatial dimensions.
We then focus on 1-D in Section 3, presenting some analytic results for small N as
well as a theorem showing that, subject to some easily stated conditions on φ(r),
as ε → 0 the RBF interpolant converges to the Lagrange interpolating polynomial.
In Section 4 we demonstrate that the situation in 2-D is more complicated. The
existence of limits evidently depends on the node locations, and the limit itself (again
polynomial) depends on the choice of φ(r). Some concluding remarks are given in
Section 5.

2. The conditioning of RBF systems. It is well known that φ(r) = r3 will
give rise to a nonsingular linear system of the form (1.2), no matter how N distinct
data points are scattered in d dimensions [4]. The situation for even powers is quite
different. For example, φ(r) = r2 leads to a singular system in 1-D whenever N >
3. This is an immediate consequence of the fact that each basis function is then a
parabola, and that any linear combination of parabolas is again a parabola. Since each
is described by three coefficients, at most three of them can be linearly independent.
Even more trivially, if φ(r) ≡ 1, the system becomes singular whenever N > 1,
regardless of d.

To generalize these observations, suppose

φ(r) = a0 + a1r
2 + a2r

4 + · · · + amr2m.

In Table 2.1 we list the maximum possible number of independent translates as a
function of m and d. The cases of m = 0 and of m = d = 1 have already been
discussed; other cases can be studied in the same manner.
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Example 1. Determine the entry in Table 2.1 for m = 1, d = 2. Suppose we
have 5 RBF centers, located at (xk, yk), and that the corresponding RBF coefficients
are λk , k = 1, 2, . . . , 5. The RBF approximation becomes

s(x, y) =
5∑

k=1

λk

[
a0 + a1

(
(x − xk)2 + (y − yk)2

)]

= x2

(
a1

5∑
k=1

λk

)
− 2x

(
a1

5∑
k=1

λkxk

)
+ y2

(
a1

5∑
k=1

λk

)

− 2y

(
a1

5∑
k=1

λkyk

)
+ 1

( 5∑
k=1

λk(a0 + a1(x2
k + y2

k))
)

Assuming a1 6= 0, this is identically zero if and only if




1 1 1 1 1
x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

x2
1 + y2

1 x2
2 + y2

2 x2
3 + y2

3 x2
4 + y2

4 x2
5 + y2

5







λ1

λ2

λ3

λ4

λ5


 =




0
0
0
0
0


 .

Since this system has more columns than rows, a nontrivial solution is guaranteed
to exist. Thus there cannot be more than 4 independent RBFs of the specified type.
�

When this approach is applied to larger values of m and d, a pattern emerges. In
general, we find that at most

2m + d

m + d

(
m + d

d

)

translated basis functions are independent. Based on such data, we can get a lower
bound on the condition number of RBF matrices in the case where φ(r) depends on
the parameter ε; i.e.,

φ(r) = a0 + a1(εr)2 + a2(εr)4 + · · · .

For example, with N = 300 and d = 2, we see that going out only as far as the m = 16
term would give a singular RBF matrix. So the fact which “saves” us from singularity
is the continuation to a17(εr)34 + a18(εr)36 + · · · . Hence an O(ε34) perturbation of
the O(1)-sized RBF matrix A would certainly suffice to make A singular, and the
condition number of A satisfies κ(A) = O(ε−34). (This bound is not tight—in fact,
we computationally observe κ(A) = O(ε−46) in this case.) Clearly, the RBF coefficient
vector λ grows very rapidly as ε → 0.

3. Some examples and a limit result for 1-D. For the smallest values of N ,
the limit s(x, 0) of s(x, ε) as ε → 0 can be found directly.

Example 2. Determine the limiting approximations when N = 2 and

φ(r) = a0 + ε2a1r
2 + ε4a2r

4 + O(ε6) (3.1)

Substituting (3.1) into (1.3) and solving for λ in terms of f gives

[
λ1

λ2

]
=


ε−2

(
f2−f1

2(x1−x2)2a1

)
+ 1

4

(
f1+f2

a0
+ 2(f1−f2)a2

a2
1

)
+ O(ε2)

ε−2
(

f1−f2
2(x1−x2)2a1

)
+ 1

4

(
f1+f2

a0
− 2(f1−f2)a2

a2
1

)
+ O(ε2)


 .
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For the interpolant, we get (after many cancellations)

s(x, ε) =
[
φ(x − x1) φ(x − x2)

] [
λ1

λ2

]
=

(x − x2) f1 + (x − x1) f2

x1 − x2
+ O(ε2).

The limiting approximation is simply the interpolating straight line.
Some of the cancellations above required assuming that a0

a0
= 1 and a1

a1
= 1.

These relations are suspect if either (or both) of a0 = 0 or a1 = 0 hold. These special
cases can themselves have special subcases of their own, as summarized in Table 3.1.
We see however that the limit is always of polynomial form, and in no case do the
expansion coefficients a0, a1, a2, . . . appear explicitly. �

Example 3. Determine the limiting approximations when N = 3. To get a defi-
nite answer, it is now necessary to extend (3.1) with terms up to and including a4(εr)8.
The λ components are found to grow like O(ε−4). After quite extensive algebra, the
final answer for s(x, 0) simplifies to (x−x2)(x−x3) f1

(x1−x2)(x1−x3)
+ (x−x1)(x−x3) f2

(x2−x1)(x2−x3)
+ (x−x1)(x−x2) f3

(x3−x1)(x3−x2)
,

i. e., again to the interpolating polynomial of lowest degree. The exceptional cases
(featuring different limits) arise this time when a1 = 0 or when 6a0a2−a2

1 = 0. These
situations again have further exceptional cases, which we do not attempt to describe
here. �

This explicit approach to finding the limits s(x, 0) is useful for illustration and
inspiration, but the procedure quickly becomes algebraically intractable as N grows.
It turns out, however, that the pattern holds in general: s(x, 0) is the Lagrange
interpolating polynomial, given some easily stated conditions on the expansion of φ.

Theorem 3.1. Let N distinct data nodes in 1-D be given. Suppose the basis
function

φ(r) = a0 + ε2a1r
2 + ε4a2r

4 + · · · (3.2)

is such that the RBF system (1.2) has a solution for all ε > 0. For integer n, define
the symmetric matrices G2n−1 and G2n by

G2n−1 =




(
0
0

)
a0

(
2
2

)
a1 · · · (

2n−2
2n−2

)
an−1(

2
0

)
a1

(
4
2

)
a2 · · · (

2n
2n−2

)
an

...
...

...(
2n−2

0

)
an−1

(
2n
2

)
an · · · (

4n−4
2n−2

)
a2n−2




n×n

(3.3)

G2n =




(
2
1

)
a1

(
4
3

)
a2 · · · (

2n
2n−1

)
an(

4
1

)
a2

(
6
3

)
a3 · · · (

2n+2
2n−1

)
an+1

...
...

...(
2n
1

)
an

(
2n+2

3

)
an+1 · · · (

4n−2
2n−1

)
a2n−1




n×n

. (3.4)

If GN−1 and GN are nonsingular, then the the RBF interpolant s(x, ε) defined by (1.1)
satisfies

lim
ε→0

s(x, ε) = LN(x),

where LN (x) is the Lagrange interpolating polynomial for f on the nodes.
The proof is given in the appendix. Here we make some remarks:
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• For each value of N , only two conditions need to be tested. Since G1 = a0,
G2 = 2a1, G3 = 6a0a2−a2

1, we recognize here the exceptional cases we already
found for N = 2 (a0 = 0 or a1 = 0) and for N = 3 (a1 = 0 or 6a0a2−a2

1 = 0).
• Changing ε effectively changes the RBF expansion coefficients:

a0 → a0

a1 → a1ε
2

a2 → a2ε
4

...

Forming the G-matrices based on such altered coefficients does not affect the
issue of singularity—their determinants will just end up scaled by a power of
ε (as can be verified by cofactor expansion, for instance).

• Our numerical tests suggests that all the G-matrices are nonsingular for all
standard choices of φ(r). However, we have not been able to find proofs our
observations, including:

– With φ(r) = e−r2
, we get ak = (−1)k

k! and det(G1) = 1, det(G2) =
−2. Subsequent determinants in the sequence satisfy det(Gk+1) =
(−2)k

k! det(Gk−1).
– With φ(r) = cos r, only G1 and G2 are nonsingular. This is quite cer-

tainly linked to the fact that the RBF matrix is then always singular
whenever N > 2. Just as no more than three parabolas can be linearly
independent, no more than two different translates of the cosine function
can be independent.

• Suppose the nodes are equispaced (say, unit spaced) over [−∞,∞] and that
all (sufficiently large) G-matrices are nonsingular. Since the approximation on
a finite interval converges to the interpolating polynomial of minimal degree,
and we can consider increasingly wide finite intervals, the RBF limit on the
infinite interval becomes the sinc interpolant

s(x, 0) =
∞∑

k=−∞
f(k)

sin π(x − k)
π(x − k)

. (3.5)

This can be seen by comparing Lagrange’s interpolation formula to

sin πx

πx
=

∞∏
k=1

(
1 − x2

k2

)
.

In the special case of φ(r) = e−(εr)2, this limit was demonstrated via Fourier
analysis in [5]. With φ(r) = 1/

(
1 + (εr)2

)
, the interpolant is known in closed

form for all ε [2], and the limit ε → 0 can be directly reduced to (3.5).
If moreover the data are periodic, the sinc expansion (3.5) becomes the stan-
dard lowest-degree trigonometric interpolant, thanks to

∞∑
k=−∞

sin π(x − kN)
π(x − kN)

=




2
N

[
1
2 + cos 2πx

N + cos 4πx
N + . . . + cos (N−2)πx

N + 1
2 cosπx

]
, N even,

2
N

[
cos πx

N + cos 3πx
N + . . . + cos (N−1)πx

N

]
, N odd.
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4. Observations about 2-D. Our investigations for 2-D limits are still prelim-
inary. Here we will show a few illustrative examples of different limiting behaviors in
some simple cases. In the first four examples below, the diagrams to the left show
how the nodes were distributed. The limits in the first three cases were calculated
analytically (using Mathematica). The fourth case was carried out numerically in
arbitrary-precision floating point arithmetic.

Example 4. f(x, y) = x − 2y + 3xy

0 1
0

1 Limit s(x, y, 0) = f(x, y) for φ(r) =
√

1 + (εr)2 and φ(r) =
1

1 + (εr)2
. This is the same as the original function, and is not

affected by RBF choice.

Example 5. f(x, y) = x − y − 2xy − 2y2

0 1
0

1 Limit with φ(r) =
1

1 + (εr)2
is 7

5x − y − 2
5x2 + 2xy − 2y2.

Limit with φ(r) =
√

1 + (εr)2 is different, and very complex
algebraically.

Example 6. f(x, y) = x+2y
3x−y+2

0 1
0

1
Limit with φ(r) =

1
1 + (εr)2

is (8485 − 20375x + 4579y +

15228x2 − 4512xy + 1692y2)/7378.
Limit with φ(r) =

√
1 + (εr)2 is (8615 − 16345x − 2743y +

11844x2 − 2256xy + 5076y2)/5474.
The limits are both quadratics in x and y, but with some
differences in their coefficients.

Example 7. f(x, y) arbitrary

0 1
0

1 Limit with φ(r) =
√

1 + (εr)2 fails to exist—divergence of
type O(ε−2) as ε → 0. The coefficients of the ε−2 terms
are very small; divergence does not become apparent until
ε reaches the range of 0.01 to 0.001.

So far, we have only observed divergence in cases of highly regular grid layouts—
never in cases with scattered data points.

5. Concluding remarks. In this paper we have found that the RBF interpolant
usually has a well-behaved limit as the basis functions become increasingly flat (ε →
0). In 1-D, conditions which are easily stated and typically satisfied guarantee that
the limit is the Lagrange minimal-degree interpolating polynomial. In 2-D the limit
may not exist if the nodes make a tensor-product grid. When a limit does exist, its
value clearly depends on φ(r). All such limits that we have encountered are low-degree
polynomials; only the coefficients vary.
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The appearance of low-degree polynomials suggests that small values of ε will
be best when the target function f is well approximated by such a polynomial (for
instance, f is so well sampled that just a few Taylor series terms provide a good
approximation). This was earlier observed empirically by Carlson and Foley [1].

Since standard finite-difference (FD) methods in 1-D are based on finding the
polynomial interpolant and then differentiating it analytically, the ε → 0 limit might
be one path to developing FD methods on scattered grids in any dimension. However,
there are two serious practical obstacles:

• Tensor-product grids allow a natural refinement process that creates con-
vergence using a fixed FD stencil. This does not seem to be possible on a
scattered grid.

• Poor conditioning for small ε make computation of the limit difficult in fixed
precision. However, while it has long been clear that computing via the
usual path of finding the expansion coefficients is bound to suffer from ill-
conditioning, we now also know that the RBF interpolants themselves gen-
erally depend smoothly on the input data. This suggests that a more stable
algorithm might be feasible.

Appendix A. Proof of Theorem 3.1.
Proof. We start with the expansions

φ(r) = a0 + ε2a1r
2 + ε4a2r

4 + · · · (A.1)

λ = ε−2N+2
(
λ−qε

−2q + · · · + λ0 + ε2λ1 + · · · ), (A.2)

for some integer q ≥ 0. Equation (A.1) is a definition. To understand (A.2), recall
that Aλ = f and that the entries of A can be expanded in even powers of ε according
to (A.1). It is then clear from Cramer’s rule that each entry of λ is a rational function
of ε2; hence, the expansion (A.2) is possible for a finite q.

Straightforward expansion of (1.1) reveals that

s(x, ε) = ε−2N+2
(
ε−2qP−q(x) + · · · + P0(x) + ε2P1(x) + · · · ), (A.3)

where each Pi is a convolution-type polynomial:

P−q(x) = a0

N∑
k=1

λ−q,k

P−q+1(x) = a0

N∑
k=1

λ−q+1,k + a1

N∑
k=1

λ−q,k(x − xk)2

...

Polynomial P−q+m has degree at most 2m. We are about to apply binomial expansion
to write out these formulas. To that end, we introduce a notation:

σ
(m)
i =

N∑
k=1

λi,k xm
k .

We note that there is a one-to-one correspondence between λi and the vector

[σ(0)
i σ

(1)
i · · · σ

(N−1)
i ].
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In fact, the transformation between the two is just a square Vandermonde matrix for
x1, . . . , xN .

We now apply the binomial theorem to each of the (x− xk)2j terms appearing in
the polynomials. Separating even and odd powers of x in the result, we find

P−q+m(x) =
m∑

j=0

x2(m−j)

j∑
i=0

am−i

(
2(m − i)
2(j − i)

)
σ

(2(j−i))
i−q

−
m−1∑
j=0

x2(m−j)−1

j∑
i=0

am−i

(
2(m − i)

2(j − i) + 1

)
σ

(2(j−i)+1)
i−q .

To make the expression more manageable, we replace the inner sums with inner
products. This requires the new definitions

bm,j =
[(

2(m−j)
0

)
am−j

(
2(m−j)+2

2

)
am−j+1 · · · (

2m
2j

)
am

]
1×(j+1)

(A.4)

vj =
[
σ

(0)
−q+j σ

(2)
−q+j−1 · · · σ

(2j)
−q

]T

(j+1)×1
(A.5)

cm,j =
[(

2(m−j)
1

)
am−j

(
2(m−j)+2

3

)
am−j+1 · · · (

2m
2j+1

)
am

]
1×(j+1)

(A.6)

wj =
[
σ

(1)
−q+j σ

(3)
−q+j−1 · · · σ

(2j+1)
−q

]T

(j+1)×1
. (A.7)

We now write

P−q+m(x) =
m∑

j=0

x2(m−j)bm,jvj −
m−1∑
j=0

x2(m−j)−1cm,jwj .

For example,

P−q(x) = b0,0v0

P−q+1(x) = (b1,0v0)x2 − (c1,0w0)x + (b1,1v1)
...

If s(x, ε) (as written in (A.3)) is to interpolate f for all ε, then

P−q, . . . , PN−2, PN , PN+1, . . . interpolate 0 at x1, . . . , xN ; (A.8a)
PN−1 interpolates f at x1, . . . , xN . (A.8b)

Henceforth we assume N = 2n; the case of odd N differs only slightly. Consider
P−q . . . , P−q+n−1. They have maximum degrees 0, 2, . . . , 2(n− 1) = N − 2, and each
must be zero at N points. Hence each of these polynomials is identically zero. Looking
at the highest-order coefficient of each, we conclude that




b0,0

b1,0

...
bn−1,0




n×1

v0 =



0
0
...
0


 .
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By (A.4), the matrix of this system is precisely the first column of G2n−1, which
is guaranteed to be nonsingular by assumption. Therefore the only solution of this
system is

v0 = 0. (A.9)

Now consider the next polynomial, P−q+n. Its leading coefficient is bn,0v0 x2n,
which is zero by (A.9). Hence the degree of P−q+n is no more than N − 1, and, since
it is zero at N points, it is identically zero. If we consider the second-highest terms
of P−q+1, . . . , P−q+n, we find 


c1,0

c2,0

...
cn,0




n×1

w0 =




0
0
...
0


 .

The matrix here is just the first column of G2n (see (A.6)), which is also nonsingular
by assumption. So we conclude

w0 = 0. (A.10)

Collecting the third-highest terms of P−q+1, . . . , P−q+n, we see that

b1,1

b2,1

...
bn,1




n×2

v1 =



0
0
...
0


 .

Here we are using the first two columns of G2n−1. They must be independent, so we
have

v1 = 0. (A.11)

Equations (A.9), (A.10), and (A.11) imply that the three highest terms of P−q+n+2

must vanish, and thus it too has degree ≤ N − 1, etc. We use this to establish
w1 = v2 = 0, which knocks out two more terms of P−q+n+3. This iteration continues
up through P−q+N−2, and we can say

vj = 0, 0 ≤ j < n

wj = 0, 0 ≤ j < n − 1.
(A.12)

Now consider P−q+N−1. If q > 0, this is also zero at N points by (A.8a), and
continuing the above logic leads to


cn,n−1

cn+1,n−1

...
cN−1,n−1




n×n

wn−1 = G2nwn−1 =



0
0
...
0


 ,

so we must conclude wn−1 = 0. But then the last entry of wn−1 and all the vectors
in (A.12) together imply (refer to (A.5) and (A.7))

σ
(0)
−q = σ

(1)
−q = · · · = σ

(N−1)
−q = 0,
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which in turn implies λ−q = 0. In other words, we could have started the expan-
sion (A.2) with q−1 in place of q. Hence we are free to assume q = 0 in (A.2) without
loss of generality.

Thus P−q+N−1 = PN−1 must interpolate f at the N nodes, by (A.8b). Since our
earlier reasoning implies deg(PN−1) ≤ N − 1, PN−1 must be the Lagrange interpo-
lating polynomial for f . Since Pm ≡ 0 for m < N − 1, expansion (A.3) shows that
s(x, ε) → PN−1(x) = LN(x) as ε → 0.

Remark. A side result of the proof is that the condition number of the RBF
matrix A must satisfy κ(A) = O(ε−2N+2). This is clear because there are choices of f
such that λ0 6= 0 in (A.3)—in fact, any f(x) for which the Lagrange polynomial has
degree exactly N − 1 will do. This result is in perfect agreement with the data from
Table 2.1, and in this case the bound is tight.
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Table 2.1

Dependence of the maximum number of independent basis functions on power (2m) and dimen-
sion (d).

d = 1 2 3 · · ·
m = 0 1 1 1 · · ·

1 3 4 5 · · ·
2 5 9 14 · · ·
3 7 16 30 · · ·
4 9 25 55 · · ·
5 11 36 91 · · ·
...

...
...

...

Table 3.1

Different limits in 1-D with N = 2 data points.

Coefficients Limit
a0 a1 a2 a3

6= 0 6= 0 (x−x2) f1+(x−x1) f2
x1−x2

= 0 6= 0 (x−x2)
2f1+(x−x1)

2f2
(x1−x2)2

= 0 = 0 6= 0 (x−x2)
4f1+(x−x1)

4f2
(x1−x2)4

= 0 = 0 = 0 6= 0 (x−x2)
6f1+(x−x1)

6f2
(x1−x2)6

. . .

6= 0 = 0 {(x−x2)(2x2−x(3x1+x2)+2x2
1−x1x2+x2

2) f1 −
−(x−x1)(2x2−x(3x2+x1)+2x2

2−x1x2+x2
1) f2}/(x1−x2)3


