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In a constantly changing world, animals must account for environmental
volatility when making decisions. To appropriately discount older, irrel-
evant information, they need to learn the rate at which the environment
changes. We develop an ideal observer model capable of inferring the
present state of the environment along with its rate of change. Key to
this computation is an update of the posterior probability of all possible
change point counts. This computation can be challenging, as the number
of possibilities grows rapidly with time. However, we show how the com-
putations can be simplified in the continuum limit by a moment closure
approximation. The resulting low-dimensional system can be used to in-
fer the environmental state and change rate with accuracy comparable
to the ideal observer. The approximate computations can be performed
by a neural network model via a rate-correlation-based plasticity rule.
We thus show how optimal observers accumulate evidence in changing
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environments and map this computation to reduced models that perform
inference using plausible neural mechanisms.

1 Introduction

Animals continuously make decisions in order to find food, identify mates,
and avoid predators. However, the world is seldom static. Information that
was critical yesterday may be of little value now. Thus, when accumulat-
ing evidence to decide on a course of action, animals weight new evidence
more strongly than old (Pearson, Heilbronner, Barack, Hayden, & Platt,
2011). The rate at which the world changes determines the rate at which
an individual should discount previous information (Deneve, 2008; Veliz-
Cuba, Kilpatrick, & Josić, 2016). For instance, when actively tracking prey,
a predator may use visual information obtained only within the last second
(Olberg, Worthington, & Venator, 2000; Portugues & Engert, 2009), while
social insect colonies integrate evidence that can be hours to days old when
deciding on a new home site (Franks, Pratt, Mallon, Britton, & Sumpter,
2002). These environmental state variables (e.g., prey location, best home
site) are constantly changing, and the timescale on which the environment
changes is unlikely to be known in advance. Thus, to make accurate deci-
sions, animals must learn how rapidly their environment changes (Wilson,
Nassar, & Gold, 2010).

Evidence accumulators are often used to model decision processes in
static and fluctuating environments (Smith & Ratcliff, 2004; Bogacz, Brown,
Moehlis, Holmes, & Cohen, 2006). These models show how noisy observa-
tions can be accumulated to provide a probability that one among multiple
alternatives is correct (Gold & Shadlen, 2007; Beck et al., 2008). They explain
a variety of behavioral data (Ratcliff & McKoon, 2008; Brunton, Botvinick,
& Brody, 2013), and electrophysiological recordings suggest that neural ac-
tivity can reflect the accumulation of evidence (Huk & Shadlen, 2005; Kira,
Yang, & Shadlen, 2015). Since normative evidence accumulation models
determine the belief of an ideal observer, they also show the best way to
integrate noisy sensory measurements and can tell us if and how animals
fail to use such information optimally (Bogacz et al., 2006; Beck et al., 2008).

Early decision-making models focused on decisions between two choices
in a static environment (Wald & Wolfowitz, 1948; Gold & Shadlen, 2007).
Recent studies have extended this work to more ecologically relevant situa-
tions, including multiple alternatives (Churchland, Kiani, & Shadlen, 2008;
Krajbich & Rangel, 2011), multidimensional environments (Niv, Daniel,
Geana, Gershman, Leong, & Radulescu, 2015), and cases where the correct
choice (McGuire, Nassar, Gold, & Kable, 2014; Glaze, Kable, & Gold, 2015)
or context (Shvartsman, Srivastava, & Cohen, 2015) changes in time. In these
cases, normative models are more difficult to derive and analyze (Wilson
& Niv, 2011), and their dynamics are more complex. However, methods
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of sequential and stochastic analysis are still useful in understanding their
properties (Wilson et al., 2010; Veliz-Cuba et al., 2016).

We examine the case of a changing environment where an optimal ob-
server discounts prior evidence at a rate determined by environmental
volatility. In this work, a model performs optimally if it maximizes the
likelihood of predicting the correct environmental state, given the noise
in observations (Bogacz et al., 2006). Experiments suggest that humans
learn the rate of environmental fluctuations to make choices nearly opti-
mally (Glaze et al., 2015). During dynamic foraging experiments where the
choice with the highest reward changes in time, monkeys also appear to
use an evidence discounting strategy suited to the environmental change
rate (Sugrue, Corrado, & Newsome, 2004).

However, most previous models have assumed that the rate of change
of the environment is known ahead of time to the observer (Glaze et al.,
2015; Veliz-Cuba et al., 2016). Wilson et al. (2010) developed a model of an
observer that infers the rate of environmental change from observations.
To do so, the observer computes a joint posterior probability of the state
of the environment, the time since the last change in the environment,
and a count of the number of times the environment has changed (the
change point count). With more measurements, such observers improve
their estimates of the change rate and are therefore better able to predict the
environmental state. Inference of the change rate is most important when
an observer makes fairly noisy measurements and cannot determine the
current state from a single observation.

We extend previous accumulator models of decision making to the case
of multiple, discrete choices with asymmetric, unknown transition rates
between them. We assume that the observer is primarily interested in the
current state of the environment, often referred to as the correct choice in
decision-making models (Bogacz et al., 2006). Therefore, we show how an
ideal observer can use sensory evidence to infer the rates at which the envi-
ronment transitions between states and simultaneously use these inferred
rates to discount old evidence and determine the present environmental
state.

Related models have been studied (Wilson et al., 2010; Adams & MacKay,
2007). However, they relied on the assumption that after a change, the new
state does not depend on the previous state. This excludes the possibility of a
finite number of states. For example, in the case of two choices, knowledge of
the present state determines with complete certainty the state after a change,
and the two are thus not independent. For cases with a finite number of
choices, our algorithm is simpler than previous ones. The observer only
needs to compute a joint probability of the environmental state and the
change point count.

The storage needed to implement our algorithms grows rapidly with the
number of possible environmental states. However, we show that moment
closure methods can be used to decrease the needed storage considerably,
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albeit at the expense of accuracy and the representation of higher-order
statistics. Nonetheless, when measurement noise is not too large, these ap-
proximations can be used to estimate the most likely transition rate and
the current state of the environment. This motivates a physiologically plau-
sible neural implementation for the present computation. We show that
a Hebbian learning rule that shapes interactions between multiple neural
populations representing the different choices allows a network to inte-
grate inputs nearly optimally. Our work therefore links statistical principles
for optimal inference with stochastic neural rate models that can adapt to
the environmental volatility to make near-optimal decisions in a changing
environment.

2 Optimal Evidence Accumulation for Known Transition Rates

We start by revisiting the problem of inferring the current state of the envi-
ronment from a sequence of noisy observations. We assume that the number
of states is finite and the state of the environment changes at times unknown
to the observer. We first review the case when the rate of these changes is
known to the observer. In later sections, we assume that these rates must
also be learned. Following Veliz-Cuba et al. (2016), we derived a recursive
equation for the likelihoods of the different states and an approximating
stochastic differential equation (SDE). Similar derivations were presented
for decisions between two choices by Deneve (2008) and Glaze et al. (2015).

An ideal observer decides between N choices, based on successive ob-
servations at times tn (n = 1, 2, . . .). We denote each possible choice by
Hi, (i = 1, . . . , N), with Hn being the correct choice at time tn. The transi-
tion rates εi j, i �= j, correspond to the known probabilities that the state
changes between two observations: εi j = P

(
Hn = Hi|Hn−1 = H j

)
. The ob-

server makes measurements, ξn, at times tn with known conditional proba-
bility densities f i(ξ ) = P

(
ξn = ξ |Hn = Hi

)
. Here, and elsewhere, we assume

that the observations are conditionally independent. We also abuse notation
slightly by using P(·) to denote a probability, or the value of a probability
density function, depending on the argument. We use explicit notation for
the probability density function when there is a potential for confusion.

We denote by ξ j:n the vector of observations (ξ j, . . . , ξn) and by Pn( · )
the conditional probability P( · |ξ1:n). To make a decision, the observer
can compute the index that maximizes the posterior probability, ı̂ =
argmaxi Pn(Hn = Hi). Therefore, Hı̂ is the most probable state, given the
observations ξ1:n.

A recursive equation for the update of each of the probabilities Pn(Hn =
Hi) after the nth observation has the form (Veliz-Cuba et al., 2016)

Pn(Hn = Hi) ∝ f i(ξn)

N∑
j=1

εi jPn−1(Hn−1 = H j) (i = 1, . . . , N). (2.1)
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Thus, the transition rates, εi j, provide the weights of the previous probabili-
ties in the update equation. Unless transition rates are large or observations
very noisy, the probability Pn(Hn = Hı̂) grows and can be used to identify
the present environmental state. However, with positive transition rates, the
posterior probabilities tend to saturate at a value below unity. Strong ob-
servational evidence that contradicts an observer’s current belief can cause
the observer to change belief subsequently. Such contradictory evidence
typically arrives after a change in the environment.

Following Veliz-Cuba et al. (2016), we take logarithms, xi
n := ln Pn(Hn =

Hi) and denote by �xi
n := xi

n − xi
n−1 the change in log probability due to an

observation at time tn. Finally, we assume the time between observations
�t := tn − tn−1 is small, and ε

i j
�t = �tεi j + o(�t) for i �= j, so that dropping

higher-order terms yields

�xi
n = ln f i

�t (ξn) + ln

⎛⎝1 −
∑
j �=i

�tε ji +
∑
j �=i

�tεi jex j
n−1−xi

n−1

⎞⎠, i = 1, . . . , N,

where the likelihood function f i
�t (ξ ) may vary with �t. Next, we use the

approximation ln(1 + z) ≈ z for |z| � 1 and replace the index n by time, t,
to write

�xi
t ≈ �tgi

t,�t +
√

�tWi
�t + �t

∑
j �=i

(
εi jex j

t −xi
t − ε ji), i = 1, . . . , N,

where the drift gi
t = 1

�t Eξ

[
ln f i

�t (ξ )|Ht

]
is the expectation of ln f i

�t (ξ )

over ξ , conditioned on the true state of the environment at time t,
Ht ∈ {H1, . . . , HN}, and W�t = (W1

�t, . . . ,WN
�t ) follows a multivariate gaus-

sian distribution with mean zero and covariance matrix ��t given by

�
i j
�t = 1

�t
Covξ

[
ln f i

�t (ξ ), ln f j
�t (ξ )|Ht

]
.

Finally, taking the limit �t → 0, we can approximate the discrete process,
equation 2.1, with the system of SDEs:

dxi
t = gi

tdt + dWi
t +

∑
j �=i

(
εi jex j

t −xi
t − ε ji

)
dt, i = 1, . . . , N, (2.2)

where we assume the following limits hold:

gi
t := lim

�t→0
gi

t,�t and �
i j
t := lim

�t→0
�

i j
t,�t .
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The nonlinear term in equation 2.2 implies that in the absence of noise,
the system has a stable fixed point and older evidence is discounted. Such
continuum models of evidence accumulation are useful because they are
amenable to the methods of stochastic analysis (Bogacz et al., 2006). Lin-
earization of the SDE provides insights into the system’s local dynamics
(Glaze et al., 2015; Veliz-Cuba et al., 2016) and can be used to implement the
inference process in model neural networks (Bogacz et al., 2006; Veliz-Cuba
et al., 2016).

We next extend this approach to the case when the observer infers the
transition rates, εi j, from measurements.

3 Environments with Symmetric Transition Rates

We first derive the ideal observer model when the unknown transition rates
are symmetric, εi j ≡ constant when j �= i, and εii := 1 − (N − 1)εi j. This
simplifies the derivation, since the observer only needs to estimate a single
change-point count. The asymmetric case discussed in section 4 follows
the same idea, but the derivation is more involved since the observer must
estimate multiple counts.

Our problem differs from previous studies in two key ways (Adams
& MacKay, 2007; Wilson et al., 2010): First, we assume the observer tries
to identify the most likely state of the environment at time tn. To do so,
the observer computes the joint conditional probability, Pn(Hn, an), of the
current state, Hn, and the number of environmental changes, an, since
beginning the observations. Previous studies focused on obtaining the
predictive distribution, Pn(Hn+1). The two distributions are closely related,
as Pn(Hn+1) = ∑

Hn
Pn(Hn+1|Hn)Pn(Hn).

Second, and more important, Adams and Mackay (2007) and Wilson
et al. (2010) implicitly assumed that only observations since the last change
point provide information about the current environmental state. That is, if
the time since the last change point—the current run length, rn—is known
to the observer, then all observations before that time can be discarded:

P(Hn|ξ1:n, rn) = P(Hn|ξn−rn :n).

This follows from the assumption that the state after a change is condition-
ally independent of the state that preceded it. We assume that the number of
environmental states is finite. Hence, this independence assumption does
not hold. Intuitively, if observations prior to a change point indicate the
true state is H j, then states Hi, i �= j are more likely after the change point.

Adams and Mackay (2007) and Wilson et al. (2010) derive a probability
update equation for the run length and the number of change points and use
this equation to obtain the predictive distribution of future observations.
We show that it is not necessary to compute run-length probabilities when
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Figure 1: Online inference of the change rate in a dynamic environment. (A) The
environment alternates between states H+ and H− with transition probabilities
ε+, ε−. We analyze the symmetric case (ε := ε±) in section 3.1 and the asym-
metric case (ε+ �= ε−) in section 4. The state of the environment determines
f ±(ξ ) = P(ξ |H±), which we represent as gaussian densities. (B) A sample path
of the environment (color bar) together with the first 10 values of the actual
change-point count, an, and non-change-point count, bn. (C) Evolution of the
conditional probabilities, P(ε|an) (given by beta distributions), corresponding
to the change-point count from panel B, until tn = t100. The dashed red line in-
dicates the value of ε in the simulation. The densities are scaled so that each
equals 1 at the mode.

the number of environmental states is finite. Instead we derive a recursive
equation for the joint probability of the current state, Hn, and number of
change points, an. As a result, the total number of possible pairs (Hn, an)

grows as N · n (linearly in n) where N is the fixed number of environmental
states Hi, rather than n2 (quadratically in n) as in Wilson et al. (2010).1

3.1 Symmetric Two-State Process. We first derive a recursive equa-
tion for the probability of two alternatives, Hn ∈ {H±}, in a changing en-
vironment, where the change process is memoryless and the change rate,
ε := P(Hn = H∓|Hn−1 = H±), is symmetric and initially unknown to the
observer (see Figure 1A). The most probable choice given the observations
up to a time, tn, can be obtained from the log of the posterior odds ratio

Ln = log
(

Pn(Hn=H+ )

Pn(Hn=H− )

)
. The sign of Ln indicates which option is more likely,

and its magnitude indicates the strength of this evidence (Bogacz et al., 2006;
Gold & Shadlen, 2007). Old evidence should be discounted according to the
inferred environmental volatility. Since this is unknown, an ideal observer
computes a probability distribution for the change rate, ε (see Figure 1C),
along with the probability of environmental states.

Let an be the number of change points and bn = n − 1 − an the count of
non-change-points between times t1 and tn (n = 1, 2, . . .) (see Figure 1B).

1The algorithm in Wilson et al. (2010) requires estimating the run length rn and change-
point count an, so the dimension of the pair (rn, an) grows like n2.
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The process {an}n≥1 is a pure birth process with birth rate ε. The observer
assumes no changes prior to the start of observation, P(a1 = 0) = 1, and
must make at least two observations, ξ1 and ξ2, to detect a change.

To develop an iterative equation for the joint conditional probability
density, Pn(Hn, an), given the n observations ξ1:n, we begin by marginalizing
over these quantities at the time of the previous observation, tn−1, for n > 1
(see section A.1 for details):

Pn(Hn, an) =
P(ξ1:n−1)

P(ξ1:n)
P(ξn|Hn)

∑
Hn−1=H±

n−2∑
an−1=0

P(Hn, an|Hn−1, an−1)Pn−1(Hn−1, an−1).

(3.1)

With two choices, we have the following relationships for all n > 1:

Hn = Hn−1 ⇔ an = an−1, and Hn �= Hn−1 ⇔ an = an−1 + 1. (3.2)

The term P(Hn, an|Hn−1, an−1) in equation 3.1 is therefore nonzero only if
either, Hn−1 = Hn, and an−1 = an, or Hn−1 �= Hn and an−1 = an − 1. If the sys-
tem is in the joint state (Hn−1, an−1) at tn−1, then at tn, it can either transition
to (Hn �= Hn−1, an = an−1 + 1) or remain at (Hn = Hn−1, an = an−1). This ob-
servation is central to the message-passing algorithm described in Adams
and MacKay (2007) and Wilson et al. (2010), with probability mass flowing
from lower to higher values of a according to a pure birth process (see Fig-
ure 2A). We can thus simplify equation 3.1, leaving only two terms in the
double sum. Writing Pn

(
H±, a

)
for Pn

(
Hn = H±, an = a

)
, and similarly for

any conditional probabilities, we have for n > 1:

Pn

(
H±, a

)= P(ξ1:n−1)

P(ξ1:n)
f ±(ξn)[P(H±, a|Hn−1 = H±, an−1 = a)

· Pn−1

(
H±, a

)+ P(H±, a|Hn−1 = H∓, an−1 = a − 1)

· Pn−1

(
H∓, a − 1

)
]. (3.3)

We must also specify initial conditions at time t1 and boundary values when
a ∈ {0, n − 1} for these equations. At t1 we have P(a1 = 0) = 1. Therefore,

P1(H
±, 0) = 1

P(ξ1)
f ±(ξ1)P0(H

±), (3.4)

and P1(H
±, a) = 0 for a �= 0. Here P0(H

±) is the prior over the two choices,
which we typically take to be uniform so P0(H

+) = P0(H
−). The probability
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Figure 2: Inference of the states, H±, and change rate, ε. (A) The joint posterior
probability, Pn(H

±, a), is propagated along a directed graph according to equa-
tion 3.14. Only paths corresponding to the initial condition (H1, a1) = (H+, 0)

are shown. (B) A sample sequence of environmental states (color bar, top) to-
gether with the first 10 observations ξ1, . . . ξ10 (blue dots), for ε = 0.1. Super-
imposed in black (right y-axis) is the log-posterior odds ratio Ln as a function
of time. (C) Evolution of the posterior over an (gray scale). The posterior mean
(red) converges to the expected number of change points ε(n − 1) (dashed line).
(D) Evolution of the posterior over the change rate ε (gray scale). The pos-
terior mean (red) converges to the true value (dashed line), and the variance
diminishes with the number of observations.

P(ξ1) is unknown to the observer. However, similar to the ratio
P(ξ1:n−1 )

P(ξ1:n )
in

equation 3.3, P(ξ1) acts as a normalization constant and does not appear in
the posterior odds ratio, Rn (see equation 3.15). Finally, at all future times
n > 1, we have separate equations at the boundaries,

Pn(H±, 0) = P(ξ1:n−1)

P(ξ1:n)
f ±(ξn)P(H±, 0|Hn−1 = H±, an−1 = 0)Pn−1(H

±, 0)

(3.5)
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and

Pn(H±, n−1) = P(ξ1:n−1)

P(ξ1:n)
f ±(ξn)P(H±, n−1|Hn−1 = H∓, an−1 = n − 2)

× Pn−1

(
H∓, n − 2

)
. (3.6)

We next compute P(Hn, an|Hn−1, an−1) in equation 3.1, with n > 1, by
marginalizing over all possible transition rates ε ∈ [0, 1]:

P(Hn, an|Hn−1, an−1) =
∫ 1

0
P(Hn, an|ε, Hn−1, an−1)P(ε|Hn−1, an−1)dε.

(3.7)

Note that P(ε|Hn−1, an−1) = P(ε|an−1), so we need the distribution of ε, given
an−1 change points, for all n > 1. We assume that prior to any change point
observations—that is, at time t1—the rates follow a beta distribution with
hyperparameters a0, b0 > 0 (see also sections 3.1 and 3.2 in Wilson et al.,
2010),

P0(ε) = β(ε; a0, b0) := εa0−1(1 − ε)b0−1

B(a0, b0)
,

where β denotes the probability density of the associated beta distribution
and B(x, y) := ∫ 1

0 εx−1(1 − ε)y−1dε is the beta function. For any n > 1, the
random variable an|ε follows a binomial distribution with parameters (n −
1, ε), for which the beta distribution is a conjugate prior. The posterior over
the change rate when the change-point count is known at time n > 1 is
therefore

ε|an ∼ Beta(a0 + an, b0 + bn). (3.8)

For simplicity, we assume that prior to any observations, the probability
over the transition rates is uniform, P0(ε) = 1, for all ε ∈ [0, 1], and therefore
a0 = b0 = 1 (see Figure 1C).

We now return to equation 3.7 and use the definition of the transition
rate, ε, (see Figure 1) to find

P(Hn, an|ε, Hn−1, an−1) =

⎧⎪⎨⎪⎩
1 − ε, & : Hn = Hn−1 & an = an−1,

ε, & : Hn �= Hn−1 & an = an−1 + 1,

0, & : otherwise.

(3.9)
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Equation 3.7 can therefore be rewritten using two integrals, depending on
the values of (Hn, an) and (Hn−1, an−1),

P(H±, a|Hn−1 = H±, an−1 = a) =
∫ 1

0
(1 − ε)β(ε; an−1 + 1, bn−1 + 1)dε,

(3.10)

and similarly for P(H±, a|Hn−1 = H∓, an−1 = a − 1).
The mean of the beta distribution, for n > 1, can be expressed in terms

of its two parameters:

ε̂n−1(an−1) := E
[
ε|an−1

] = an−1 + 1
an−1 + bn−1 + 2

. (3.11)

We denote this expected value by ε̂n−1(an−1) as it represents a point estimate
of the change rate ε at time tn−1 when the change-point count is an−1, n > 1.
Since an−1 + bn−1 = n − 2, we have

ε̂n−1(an−1) = an−1 + 1
n

. (3.12)

The expected transition rate, ε̂n−1(an−1), is thus determined by the ratio
between the previous change-point count and the number of time steps,
n. Leaving a0 and b0 as parameters in the prior gives ε̂n−1(an−1) = (an−1 +
a0)/(n − 2 + a0 + b0). Using the definition in equation 3.12, it follows from
equation 3.10 that

P(H±, a|Hn−1 = H±, an−1 = a)= 1 − ε̂n−1(a), (3.13a)

P(H±, a|Hn−1 = H∓, an−1 = a − 1)= ε̂n−1(a − 1). (3.13b)

Equations 3.13a and 3.13b, illustrated in Figure 2A, can in turn be substituted
into equation 3.3 to yield, for all n > 1:

Pn

(
H±, a

)= P(ξ1:n−1)

P(ξ1:n)
f ±(ξn)

[(
1 − ε̂n−1(a)

) · Pn−1

(
H±, a

)
+ ε̂n−1(a − 1) · Pn−1

(
H∓, a − 1

)]
. (3.14)

The initial conditions and boundary equations for this recursive probability
update have already been described in equations 3.4 to 3.6. Equation 3.14
is the equivalent of equation 3 in Adams and MacKay (2007), and equation
3.7 in Wilson et al. (2010). However, here the observer does not need to
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estimate the length of the interval since the last change point. We demon-
strate the inference process defined by equation 3.14 in Figure 2.

The observer can compute the posterior odds ratio by marginalizing over
the change-point count:

Rn := Pn

(
H+)

Pn (H−)
=
∑n−1

a=0 Pn

(
H+, a

)∑n−1
a=0 Pn (H−, a)

. (3.15)

Here log(Rn) = Ln > 0 implies that Hn = H+ is more likely than Hn = H−

(see Figure 2B). Note that P(ξ1:n−1)/P(ξ1:n) and 1/P(ξ1) need not be known
to the observer to obtain the most likely choice.

A posterior distribution of the transition rate ε can also be derived from
equation 3.14 by marginalizing over (Hn, an),

Pn(ε) =
∑
s=±

n−1∑
a=0

P(ε|an = a)Pn

(
Hs, a

)
, (3.16)

where P(ε|an) is given by the beta distribution prior, equation 3.8. The
expected rate is therefore

ε̄ :=
∫ 1

0
εPn(ε)dε =

∑
s=±

n−1∑
an=0

∫ 1

0
εP(ε|an)Pn(Hs, an)dε

=
∑
s=±

n−1∑
an=0

an + 1
n + 1

Pn(Hs, an). (3.17)

Explicit knowledge of the transition rate, ε, is not used in the inference
process described by equation 3.14. However, computing it allows us to
evaluate how the observer’s estimate converges to the true transition rate
(see Figure 2D). We will also relate this estimate to the coupling strength
between neural populations in the model described in section 6.

We conjecture that when measurements are noisy, the variance of the
distribution Pn(ε) does not converge to a point mass at the true rate, ε, in
the limit of infinitely many observations, n → ∞; that is, the estimate of
ε is not consistent. As we have shown, to infer the rate, we need to infer
the parameter of a Bernoulli variable. It is easy to show that the posterior
over this parameter converges to a point mass at the actual rate value if
the probability of misclassifying the state is known to the observer (Djuric
& Huang, 2000). However, when the misclassification probability is not
known, the variance of the posterior remains positive even in the limit of
infinitely many observations. In our case, when measurements are noisy,
the observer does not know the exact number of change points at a finite
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Figure 3: The performance of the inference algorithm. (A) Performance under
the interrogation paradigm measured as the percentage of correct responses
at the interrogation time. Here and in the next panel, ε = 0.05, and SNR= 1.
The black curve represents the performance of an ideal observer who infers the
change rate from measurements. The green curves represent the performance
of observers who assume a fixed change rate (0.3, 0.15, 0.05, 0.03 from darker
to lighter; see equation 2.1). The solid green line corresponds to an observer
who assumes the true rate and the dashed lines to erroneous rates. (B) The
green curve represents the performance at interrogation time t300 of an observer
who assumes a fixed change rate. The red star marks the maximum of this
curve, corresponding to the true change rate ε = 0.05. The horizontal black
curves represent the performance at times t40, t100, t200, t300 (from bottom to top)
of the observer who learns the change rate. (C) The accuracy as a function of
the average threshold hitting time in the free response protocol. Here ε = 0.1,

and SNR = 0.75. See section A.2 for details on numerical simulations. See also
Figure 3 in Veliz-Cuba et al. (2016).

time. Hence, the observer does not know exactly how to weight previous
observations to make an inference about the current state. As a result,
the probability of misclassifying the current state may not be known. We
conjecture that this implies that even in the limit n → ∞, the posterior over
ε has positive variance (see Figure 2D).

In Figure 3, we compare the performance of this algorithm in three cases:
when the observer knows the true rate (point mass prior over the true rate
ε), when the observer assumes a wrong rate (point mass prior over an
erroneous ε), and when the observer learns the rate from measurements
(flat prior over ε). We define performance as the probability of a correct
decision.

Under the interrogation protocol, the observer infers the state of the
environment at a fixed time. As expected, performance increases with in-
terrogation time and is highest if the observer uses the true rate (see Fig-
ure 3A and equation 2.1). Performance plateaus quickly when the observer
assumes a fixed rate and more slowly if the rate is learned. The performance
of observers who learn the rate slowly increases toward that of observers
who know the true rate. In Figure 3B, we present the performance of the
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unknown-rate algorithm at four different times (t40, t100, t200, t300) and com-
pare it to the asymptotic values with different assumed rates (green curves).

Note that an observer who assumes an incorrect change rate can still
perform near optimally (e.g., curve for 0.03 in Figure 3A), especially when
the signal-to-noise ratio (SNR) is quite high. The SNR is the difference in
means of the likelihoods divided by their common standard deviation.
Change rate inference is more effective at lower SNR values, in which case
multiple observations are needed for an accurate estimate of the present
state. However, at very low SNR values, the observer will not be able to
substantially reduce uncertainty about the change rate, resulting in high
uncertainty about the state.

In the free response protocol, the observer makes a decision when the
log-odds ratio reaches a predefined threshold. In Figure 3C, we present
simulation results for this protocol in a format similar to Figure 3A, with
empirical performance as a function of average hitting time. Each per-
formance level corresponds to unique log-odds threshold. Similar to the
interrogation protocol (see Figure 3A), the performance of the free response
protocol saturates much more quickly for an observer who fixes the change
rate estimate than one that infers this rate over time.

3.2 Symmetric Multistate Process. We next consider evidence accu-
mulation in an environment with an arbitrary number of states, {H1, H2,

. . . , HN}, with symmetric transition probabilities, εi j ≡ constant, whenever
i �= j. We define ε := (N − 1)εi j for any i �= j, so that the probability of
remaining in the same state becomes εii = 1 − ε, for all i = 1, . . . , N. The
symmetry in transition rates means that an observer still needs only to
track the total number of change points, an, as in section 3.1.

Equations 3.1 and 3.2 remain valid with N possible choices, {H1, . . . , HN}.
When n > 1, the double sum in equation 3.1 simplifies to

Pn

(
Hi, a

)= P(ξ1:n−1)

P(ξ1:n)
f i(ξn)

[
P
(
Hi, a|Hn−1 = Hi, an−1 = a

) · Pn−1

(
Hi, a

)
+
∑
j �=i

P
(
Hi, a|Hn−1 = H j, an−1 = a − 1

) · Pn−1

(
H j, a − 1

) ]
.

As in section 3.1, we have P1(H
i, 0) = f i(ξ1)P0(H

i)/P(ξ1) and P1(H
i, a1) = 0

for a1 �= 0, where P0(H
i) describes the observer’s belief prior to any ob-

servations. At all future times, n > 1, we have at the boundaries for all
i = 1, . . . , N

Pn(Hi, 0) = P(ξ1:n−1)

P(ξ1:n)
f i(ξn)P(Hi, 0|Hn−1 = Hi, an−1 = 0)Pn−1

(
Hi, 0

)
,



Evidence Accumulation and Change Rate Inference 1575

and

Pn(Hi, n − 1)= P(ξ1:n−1)

P(ξ1:n)
f i(ξn)

∑
j �=i

P(Hi, n−1|Hn−1 = H j, an−1 = n−2)

× Pn−1

(
H j, n − 2

)
.

Equation 3.7 remains unchanged, and we still have P(ε|Hn−1, an−1) =
P(ε|an−1). Furthermore, assuming a beta prior on the change rate, equation
3.8, remains valid, and equation 3.9 is replaced by

P(Hn, an|ε, Hn−1, an−1) =

⎧⎪⎨⎪⎩
1 − ε Hn = Hn−1 & an = an−1,

ε/(N − 1) Hn �= Hn−1 & an = an−1 + 1,

0 otherwise.

The integral from equation 3.7 gives, once again, the mean of the beta
distribution, ε̂n−1(a), defined in equations 3.11 and 3.12. As in section 3.1,
ε̂n−1(an−1) is a point estimate of the change rate ε at time tn−1 when the
change-point count is an−1. We have

P(Hn, an|Hn−1, an−1)

=

⎧⎪⎨⎪⎩
1 − ε̂n−1(an), & : Hn = Hn−1 & an = an−1,

ε̂n−1(an − 1)/(N − 1), & : Hn �= Hn−1 & an = an−1 + 1,

0, & : otherwise,

(3.18)

and the main probability update equation is now

Pn

(
Hi, a

)= P(ξ1:n−1)

P(ξ1:n)
f i(ξn)

[ (
1 − ε̂n−1(an)

) · Pn−1

(
Hi, a

)
+ ε̂n−1(an − 1)

N − 1

∑
j �=i

Pn−1

(
H j, a − 1

) ]
.

The observer can infer the most likely state of the environments by com-
puting the index that maximizes the posterior probability, marginalizing
over all change-point counts,

ı̂ = argmaxi Pn(Hi) = argmaxi

(
n−1∑
a=0

Pn

(
Hi, a

))
.
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The observer can also compute the posterior probability Pn(ε) of the transi-
tion rate ε by marginalizing over all states Hn and change-point counts an,

as in equation 3.16. Furthermore, a point estimate of ε is given by the mean
of the posterior after marginalizing, as in equation 3.17.

4 Environments with Asymmetric Transition Rates

In this section, we depart from the framework of Adams and MacKay (2007)
and Wilson et al. (2010) and consider unequal transition rates between
states. This includes the possibility that some transitions are not allowed.
We consider an arbitrary number, N, of states with unknown transition
rates, εi j, between them. The switching process between the states is again
memoryless, so that Hn is a stationary, discrete-time Markov chain with
finite state space, � := {H1, . . . , HN}. We write the (unknown) transition
matrix for this chain as a left stochastic matrix,

ε :=

⎛⎜⎜⎝
ε11 . . . ε1N

...
. . .

...

εN1 . . . εNN

⎞⎟⎟⎠ ,

where εi j = P(Hn = Hi|Hn−1 = H j), with i, j ∈ {1, . . . , N}. We denote by ε·i

the ith column of the matrix ε, and similarly for other matrices. Each such
column sums to 1. We define the change-point counts matrix at time tn as

an :=

⎛⎜⎜⎝
a11

n . . . a1N
n

...
. . .

...

aN1
n . . . aNN

n

⎞⎟⎟⎠ ,

where ai j
n is the number of transitions from state j to state i up to time tn.

There can be a maximum of n − 1 transitions at time tn. For a fixed n ≥ 1, all
entries in an are nonnegative and sum to n − 1, that is,

∑
i, j ai j

n = n − 1. As
in the symmetric case, the change-point matrix at time t1 must be the zero
matrix, a1 = 0.

We will show that our inference algorithm assigns positive probability
only to change-point matrices that correspond to possible transition paths
between the states {H1, . . . , HN}. Many nonnegative integer matrices with
entries that sum to n − 1 are not possible change-point matrices an. A com-
binatorial argument shows that when N = 2, the number of possible pairs,
(Hn, an), grows quadratically with the number of steps, n, to leading order.
It can also be shown that the growth is polynomial for N > 2, although we
do not know the growth rate in general (see Figure 4B). An ideal observer
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has to assign a probability of each of these states, which is much more
demanding than in the symmetric rate case where the number of possible
states grows linearly in n.

We next derive an iterative equation for Pn(Hn, an), the joint probability
of the state Hn, and an allowable combination of the N(N − 1) change-point
counts (off-diagonal terms of an) and N non-change-point counts (diagonal
terms of an). The derivation is similar to the symmetric case. For n > 1, we
first marginalize over Hn−1 and an−1,

Pn(Hn, an)

= 1
P(ξ1:n)

∑
Hn−1,an−1

P(ξ1:n|Hn, Hn−1, an, an−1)P
(
Hn, Hn−1, an, an−1

)
,

where the sum is over all Hn−1 ∈ {H1, . . . , HN} and possible values of the
change-point matrix, an−1.

Using P(Hn, Hn−1, an, an−1) = P(Hn, an|Hn−1, an−1)P(Hn−1, an−1), and
applying Bayes’ rule to write

P(ξ1:n−1|Hn−1, an−1)P(Hn−1, an−1) = P(Hn−1, an−1|ξ1:n−1)P(ξ1:n−1)

gives

Pn(Hn, an)= P(ξ1:n−1)

P(ξ1:n)
P(ξn|Hn)

∑
Hn−1,an−1

Pn−1(Hn−1, an−1)

× P(Hn, an|Hn−1, an−1). (4.1)

We compute the conditional probability P(Hn, an|Hn−1, an−1) by
marginalizing over all possible transition matrices, ε. To do so, we relate the
probabilities of ε and a. Note that if the observer assumes the columns ε· j are
independent prior to any observations, then the exit rates conditioned on
the change-point counts, ε· j|a· j

n , are independent for all states, j = 1, . . . , N.
To motivate the derivation, we first consider a single state, j = 1, and

assume that the environmental state has been observed perfectly over T >

1 time steps, but the transition rates are unknown. Therefore, all a·1
n are

known to the observer (1 ≤ n ≤ T ), but the ε·1 are not. The state of the
system at time n + 1, given that it was in state H1 at time n, is a categorical
random variable, and P(Hn+1 = Hi|Hn = H1) = εi1, for 1 ≤ n ≤ T − 1. The
observed transitions H1 �→ Hi are independent samples from a categorical
distribution with unknown parameters ε·1.

The conjugate prior to the categorical distribution is the Dirichlet distri-
bution, and we therefore use it as a prior on the change-point probabilities.
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For simplicity, we again assume a flat prior over ε·1, that is, P(ε·1) = χS(ε·1),
where χS is the indicator function on the standard (N − 1)-simplex, S.

Denote by D the sequence of states that the environment transitioned to
at time n + 1 whenever it was in state H1 at time n, for all 1 ≤ n ≤ T − 1.
Therefore, D is a sequence of states from the set {H1, . . . , HN}. By definition,

P(D|ε·1) = ∏N
i=1

(
εi1
)∑T−1

n=1 χ(Hn+1=Hi,Hn=H1 ), where χ(Hn+1 = Hi, Hn = H1) is
the indicator function, which is unity only when Hn+1 = Hi and Hn = H1

and zero otherwise. Equivalently, we can write P(a·1
T |ε·1) = ∏N

i=1

(
εi1
)ai1

T ,
since ai1

T = ∑T−1
n=1 χ(Hn+1 = Hi, Hn = H1). For general n > 1, the posterior

distribution for the transition probabilities ε·1 given the change-point vec-
tor a·1

n is then

P(ε·1|a·1
n ) =

	
(∑N

i=1(a
i1
n + 1)

)
∏N

i=1 	(ai1
n + 1)

N∏
i=1

(
εi1)ai1

n = dir(ε·1; a·1
n + 1).

Here 1 = (1, . . . , 1)T , so a·1
n + 1 should be interpreted as the vector with

entries (ai1
n + 1)N

i=1, 	(x) is the gamma function, and dir(ε·1; a·1
n + 1) the

probability density function of the N-dimensional Dirichlet distribution,
Dir(a·1

n + 1).
The same argument applies to all initial states, H j, j ∈ {1, . . . , N}. We

assume that the transition rates are conditionally independent, so that

P(ε|an) =
N∏

j=1

dir(ε· j; a· j
n + 1) =

N∏
j=1

	
(∑N

i=1(a
i j
n + 1)

)
∏N

i=1 	((ai j
n + 1))

N∏
k=1

(
εk j
)ak j

n
. (4.2)

Using this observation, the transition probability between two states
can be computed by marginalizing over all possible transition matrices, ε,

conditioned on an−1,

P(Hn, an|Hn−1, an−1)

=
∫
M

P(Hn, an|ε, Hn−1, an−1)P(ε|Hn−1, an−1)dε

=
∫

S
· · ·
∫

S
P(Hn, an|ε·1, . . . , ε·N, Hn−1, an−1)

×dir(ε·1; a·1
n−1 + 1) × · · · × dir(ε·N; a·N

n−1 + 1)dε·1 · · · dε·N, (4.3)

where M represents the space of all N × N left stochastic matrices and S is
the N − 1-dimensional simplex of ε· j ∈ [0, 1]N such that

∑N
i=1 εi j = 1.
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Let δi j be the N × N matrix containing a 1 as its i jth entry, and 0 every-
where else. For all i, j ∈ {1, . . . , N} we have

P(Hn = Hi, an|ε, Hn−1 = H j, an−1) =
{

εi j if an = an−1 + δi j,

0 otherwise.
(4.4)

Implicit in equation 4.4 is the requirement that the environment must have
been in state Hn−1 = H j in order for the transition H j �→ Hi to have occurred
between tn−1 and tn. This will ensure that the change-point matrices an that
are assigned nonzero probability correspond to admissible paths through
the states {H1, . . . , HN}. Applying equation 4.4, we can compute the inte-
grals in equation 4.3 for all pairs (i, j). We let ε̂

i j
n−1(an−1) := P(Hn = Hi, an =

an−1 + δi j|Hn−1 = H j, an−1) to simplify notation and find

ε̂
i j
n−1(an−1)=

∫
S
· · ·
∫

S
εi j

N∏
k=1

dir(ε·k; a·k
n−1 + 1)dε·1 · · · dε·N

=
∫

S
εi jdir(ε· j; a· j

n−1 + 1)dε· j
∏
k �= j

∫
S

dir(ε·k; a·k
n−1 + 1)dε·k

=
∫

S
εi jdir(ε· j; a· j

n−1 + 1)dε· j = ai j
n−1 + 1

N +∑N
k=1 ak j

n−1

. (4.5)

As in the point estimate of the rate ε̂n−1(an−1) in equation 3.12, each
ε̂

i j
n−1(an−1) is a ratio containing the number of H j �→ Hi transitions in the

numerator and the total number of transitions out of the jth state in the de-
nominator. Thus, the estimated transition rate ε̂

i j
n−1(an−1) increases with the

number of transitions H j �→ Hi in a given interval {1, . . . , n}. Furthermore,
each column sums to unity;

N∑
i=1

ε̂
i j
n−1(an−1) =

∑N
i=1

(
ai j

n−1 + 1
)

N +∑N
k=1 ak j

n−1

= N +∑N
i=1 ai j

n−1

N +∑N
k=1 ak j

n−1

= 1,

so the point estimates ε̂
i j
n−1(an−1) for the transition rates out of each state j

provide an empirical probability mass function along each column. How-
ever, as in the symmetric case, these estimates are biased toward the interior
of the domain. This is a consequence of the hyperparameters we have cho-
sen for our prior density, dir(ε; a0 + 1).
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Therefore, for n > 1, the probability update equation in the case of asym-
metric transition rates, equation 4.1, is given by

Pn(Hn = Hi, an)

= P(ξ1:n−1)

P(ξ1:n)
f i(ξn)

N∑
j=1

ε̂
i j
n−1(an − δi j)Pn−1

(
Hn−1 = H j, an − δi j) . (4.6)

The point estimates of the transition rates, ε̂
i j
n−1(an−1 = an − δi j), are de-

fined in equation 3.5. As before, P1(H
i, a1 = 0) = f i(ξ1)P0(H

i)/P(ξ1) and
P1(H

i, a1) = 0 for any a1 �= 0. At future times, it is only possible to obtain
change-point matrices an whose entries sum to

∑
i, j ai j

n = n − 1; the change-
point matrices an and an−1 must be related as an = an−1 + δi j, as noted in
equation 4.4. This considerably reduces the number of terms in the sum in
equation 4.6.

The observer can find the most likely state of the environment by maxi-
mizing the posterior probability after marginalizing over the change-point
counts an,

ı̂ = argmaxi Pn(Hi) = argmaxi

⎛⎝∑
an

Pn

(
Hi, an

)⎞⎠ .

The transition rate matrix can also be computed by marginalizing across all
possible states, Hn, and change-point count matrices, an,

Pn(ε) =
N∑

s=1

∑
an

P(ε|an)Pn(Hs, an),

where P(ε|an) is the product of probability density functions, dir(ε· j; a· j
n +

1), given in equation 4.2. The mean of this distribution is given by

ε̄ =
∫
M

εPn(ε)dε =
N∑

s=1

∑
an

Pn(Hs, an)

∫
M

εP(ε|an)dε

=
N∑

s=1

∑
an

Pn(Hs, an)E(an), (4.7)

where E(an)i j = ε̂
i j
n (an) = E

[
εi j|an

]
, defined in equation 4.5, is a conditional

expectation over each possible change-point matrix an.
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Equation 4.6 is easier to interpret when N = 2. Using equation 4.5, we
find

ε̂21
n−1(an−1) = a21

n−1 + 1

2 + a21
n−1 + a11

n−1

, ε̂12
n−1(an−1) = a12

n−1 + 1

2 + a12
n−1 + a22

n−1

,

and we can express ε̂11
n−1(an−1) = 1 − ε̂21

n−1(an−1) and ε̂22
n−1(an−1) = 1 −

ε̂12
n−1(an−1). Expanding the sum in equation 4.6, we have

Pn

(
H1, an

)= P(ξ1:n−1)

P(ξ1:n)
f 1(ξn)

[
ε̂11

n−1(an − δ11)Pn−1

(
H1, an − δ11)

+ ε̂12
n−1(an − δ12)Pn−1

(
H2, an − δ12)] , (4.8a)

Pn

(
H2, an

)= P(ξ1:n−1)

P(ξ1:n)
f 2(ξn)

[
ε̂22

n−1(an − δ22)Pn−1

(
H2, an − δ22)

+ ε̂21
n−1(an − δ21)Pn−1

(
H1, an − δ21)] . (4.8b)

The boundary and initial conditions will be given as above, and the mean in-
ferred transition matrix is given by equation 4.7. Importantly, the inference
process described by equations 4.8a and 4.8b allows for both asymmetric
change-point matrices, an, and inferred transition rate matrices E(an), un-
like the process in equation 3.14. However, the variance of the posteriors
over the rates will decrease more slowly, as fewer transitions out of each
particular state will be observed.

This algorithm can be used to infer unequal transition rates as shown
in Figure 4. Figures 4C through 4E show that the mode of the joint poste-
rior distribution, Pn(ε21, ε12), approaches the correct rates, while its vari-
ance decreases. As in section 3.1, we conjecture that this joint density does
not converge to a point mass at the true rate values unless the SNR is
infinite.

5 Continuum Limits and Stochastic Differential Equation Models

We next derive continuum limits of the discrete probability update equa-
tions for the symmetric case discussed in section 3. We assume that ob-
servers make measurements rapidly, so we can derive a stochastic differ-
ential equation (SDE) that models the update of an ideal observer’s belief
(Gold & Shadlen, 2007). SDEs are generally easier to analyze than their
discrete counterparts (Gardiner, 2004). For example, response times can be
studied by examining mean first passage times of log-likelihood ratios (Bo-
gacz et al., 2006), or log likelihoods (McMillen & Holmes, 2006), which is
much easier done in the continuum limit (Redner, 2001). For simplicity, we
begin with an analysis of the two-state process and then extend our results
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Figure 4: Evidence accumulation and change rates inference in a two-state
asymmetric system. (A) Sample path (color bar, top) of the environment be-
tween times t70 and t80 (same simulation as in panels C–E) with corresponding
observations (blue dots) and log-posterior odds ratio (black step function). Here
and in panels C–E, (ε21, ε12) = (0.2, 0.1), SNR= 1.4. (B) The number of allowable
change-point matrices as a function of observation number, n, for N = 2 (blue
circles) and N = 3 (blue triangles). (C–E) Color plots (gray scale) of the joint
density, Pn

(
ε21, ε12

)
, with mean value (red star) approaching the true transition

rates (green circle).

to the multistate case. The full inference model, Figure 5A, in the two-state
case can be reduced using moment closure to truncate the resulting infinite
system of SDEs to an approximate finite system (see Figure 5B). This both
saves computation time and suggests a potential mechanism for learning
the rate ε of environmental change. We map this approximation to a neural
population model in section 6 (see Figure 5C). This model consists of pop-
ulations that track the environmental state and synaptic weights that learn
the transition rate ε.

5.1 Derivation of the Continuum Limit.

5.1.1 Two-State Symmetric Process. We first assume that the state of the
environment, {Ht}, is a homogeneous continuous-time Markov chain with
state-space {H+, H−}. The probability of transitions between the two states
is symmetric and given by P(Ht+�t = H±|Ht = H∓) = ε�t + o(�t), where
0 ≤ ε < ∞. The number of change points, at, up to time t is a Poisson
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Figure 5: Schematic showing the reduction of the full inference model, equa-
tion 5.7, for a two-state (H±) symmetric environment (ε = ε±) carried out in
sections 5 and 6. (A) Observations ξt arrive continuously in time and are used to
update the probabilities P±

t (a) that the environment is in state H± after a change
points. (B) Red and pink arrows from panels A to B represent, respectively, the
summation and averaging of P±

t (a) over a to obtain equation 5.1b for the zeroth
P̄±

t and first Ā±
t moments in section 5.2. Arrows from P−

t (a) have been omitted
for clarity. (C) Moment equations are converted to a neural population model,
equation 6.7, by assigning the probabilities to population variables, P̄±

t �→ u±
t ,

and the ratio of first and zeroth moments to synaptic weights, Ā±
t /P̄±

t �→ w±
t .

Orange arrows from panel B demonstrate this mapping. The transition rate ε

is learned by changes in the weights w±
t . If the observer assumes or knows the

rate ε ahead of time, the weights remain fixed.

process with rate ε. An observer infers the present state from a sequence of
observations, ξ1:n, made at equally spaced times,2 t1:n, with �t = t j − t j−1.
Each observation, ξn, has probability f ±

�t (ξn) := Pr(ξn|H±) (see Veliz-Cuba
et al., 2016, for more details). We again use the notation Pn(H±, a) = P(Htn

=
H±, atn

= a|ξ1:n) where tn is the time of the nth observation.
As in the previous sections, an estimate of the rate parameter, ε, is ob-

tained from the posterior distribution over the change-point count, atn
, at

the time of the nth observation, tn. For simplicity, we assume a gamma prior
with parameters α and β over ε, so that ε ∼ Gamma(α, β). By assumption,
the change-point count follows a Poisson distribution with parameter εtn, so
that P(atn

= a|ε) = (εtn)ae−εtn/a!. Therefore, once an change points have been
observed, we have the posterior distribution ε|an ∼ Gamma(an + α, tn + β),
that is,

P(ε|an) = (tn + β)an+αεan+α−1e−ε(tn+β)

	(an + α)
. (5.1)

2Equal spacing �t = t j − t j−1 is not necessary for all j = 2, . . . , n, but it does allow
for a more concise derivation of the continuum limit. Irregular spacings would require a
more careful selection of the scaling of the log likelihoods ln f ±(ξ ).
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We can substitute equation 5.1 into equation 3.7 describing the probabil-
ity of transitions between time tn−1 and tn to find

P(Hn, an|Hn−1, an−1)

=
∫ ∞

0
P(Hn, an|ε, Hn−1, an−1)γ (ε; an−1 + α, tn−1 + β)dε, (5.2)

where γ (ε;α, β) = βαεα−1e−εβ/	(α) is the density of the gamma distribu-
tion. Using the definition of the transition rate ε, we can relate it to the first
conditional probability in the integral of equation 5.2 via

P(Hn, an|ε, Hn−1, an−1) =

⎧⎪⎨⎪⎩
1 − ε�t, & : Hn = Hn−1 & an = an−1,

ε�t, & : Hn �= Hn−1 & an = an−1 + 1,

0, & : otherwise.

(5.3)

We have dropped the o(�t) terms as we are interested in the limit �t → 0.
Using equation 5.3 and properties of the gamma distribution, we can

evaluate the integral in equation 5.2 to obtain

P(Hn, an|Hn−1, an−1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 − �t
an + α

tn−1 + β
Hn = Hn−1 & an = an−1

�t
an + α − 1
tn−1 + β

Hn �= Hn−1 & an = an−1 + 1

0 otherwise.

(5.4)

We can use equation 5.4 in the update equation, equation 3.1, to obtain the
probabilities of (Hn, an) given observations ξ1:n. As before, only terms in-
volving an − 1 and an remain in the sum for n ≥ 1. Using the same notational
convention as in previous sections, we obtain

Pn(H±, a) = P(ξ1:n−1)

P(ξ1:n)
f ±
�t (ξn)

[(
1 − �t

a + α

tn−1 + β

)
Pn−1

(
H±, a

)
+ �t

a + α − 1
tn−1 + β

Pn−1

(
H∓, a − 1

)]
. (5.5)

Note that equation 5.5 is similar to the update equation 3.14 we derived in
section 3, with the time index replaced by tn−1/�t up to the β term. Also,
since we have used a gamma instead of a beta distribution as a prior, the
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point estimate of the transition rate is slightly different (see equation 3.12).
As in the discrete time case, a point estimate of the transition rate is required
even before the first change point can be observed. We therefore cannot use
an improper prior as the rate point estimate would be undefined.

To take the limit of equation 5.5 as �t → 0, we proceed as in Bogacz
et al. (2006) and Veliz-Cuba et al. (2016), working with logarithms of the
probabilities. Dividing equation 5.5 by Pn−1(H

±, a), taking logarithms of
both sides, and using the notation x±

tn
(a) := ln Pn(H±, a), we obtain3

�x±
tn
(a) ∝ ln f ±

�t (ξn)

+ ln
[

1 − �t
a + α

tn−1 + β
+ �t

a + α − 1
tn−1 + β

e
x∓

tn−1
(a−1)−x±

tn−1
(a)
]

.

Using the approximation ln(1 + z) ≈ z for small z yields

�x±
tn
(a) ∝ ln f ±

�t (ξn) + �t
(

a + α − 1
tn−1 + β

e
x∓

tn−1
(a−1)−x±

tn−1
(a) − a + α

tn−1 + β

)
.

Since the proportionality constant is equal for all a, we drop it in the SDE for
the log-likelihood xt (see Veliz-Cuba et al., 2016, for details of the derivation),

dx±
t (a) = g±

t dt + dW±
t +

(
a + α − 1

t + β
ex∓

t (a−1)−x±
t (a) − a + α

t + β

)
dt, (5.6)

where g±
t = lim�t→0

1
�t Eξ [ln f ±

�t (ξ )|Ht] and Wi satisfies 〈Wi
t W

j
t 〉 = �

i j
t · t

with �
i j
t = lim�t→0

1
�t Covξ [ln f i

�t (ξ ), ln f j
�t (ξ )|Ht] for i, j ∈ {+,−}.

Note that equation 5.6 is an infinite set of differential equations, one for
each pair (H±, a), a ∈ Z≥0. The initial conditions at t = 0 are given by x±(a) =
ln P0(H

±, a). To be consistent with the prior over the rate, ε, we can choose a
Poisson prior over a with mean, α—P0(a) := αae−α

a! . The initial conditions for
equation 5.6 are given by x± = ln P0(H

±, a) = ln
[
P0(H

±)P0(a)
]
. Note also

that equation 5.6 at the boundary a = 0 is a special case. Since at a = 0 there
is no influx of probability from a − 1, equation 5.6 reduces to

dx±
t (0) = g±

t dt + dW± +
(
(α − 1)e−x±

t (0) − α
) dt

t + β
.

3Note that we drop the ln
[
P(ξ1:n−1)/P(ξ1:n)

]
term below since it is common to all

evolution equations. For determining the most likely option, only the relative magnitudes
of the log likelihoods are important. In numerical simulations, we normalize to account
for this discrepancy.
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Finally, note that we can obtain evolution equations for the likelihoods,
P±

t (a) = P(Ht = H±, a), by applying the change of variables P±
t (a) = ex±

t (a).
Itô’s change of coordinates rules (Gardiner, 2004) implies that equation 5.6
is equivalent to

dP±
t (a) = P±

t (a)

[(
g±

t + 1
2

)
dt + dW±

t

]
+
[

a + α − 1
t + β

P∓
t (a − 1) − a + α

t + β
P±

t (a)

]
dt, (5.7)

where now initial conditions at t = 0 are simply P±
0 (a) = P0(H

±, a) =
P0(H

±)P0(a). We will compare the full system, equation 5.7, with an ap-
proximation using a moment expansion in section 5.2 (see also Figure 5).

5.1.2 Two States with Asymmetric Rates. Next we consider the case where
the state of the environment, {Ht}, is still a continuous-time Markov chain
with state-space {H1, H2}, but the probabilities of transition between the two
states are asymmetric: P(Ht+�t = Hi|Ht = H j) = εi j�t + o(�t), i �= j, where
ε12 �= ε21. Thus, we must separately enumerate change points, a12

t and a21
t ,

to obtain an estimate of the rates ε12 and ε21. In addition, we will rescale the
enumeration of non-change-points so that a j j

t = t j := a j j
�t�t, in anticipation

of the divergence of a j j
�t as �t → 0. This will mean the total dwell time,

a j j
t , will be continuous, while the change-point count will be discrete. The

quantities ai j
t are then placed into a 2 × 2 matrix, At = (ai j

t ) ∈ R
2×2, where

ai j
t ∈ Z≥0 for i �= j and a j j

t ∈ R≥0. Note that if the number of change points,

ai j
t , and the total dwell time in a state, a j j

t = t j, were known, the change rate
could be estimated as ε̃

i j
t = ai j

t /a j j
t .

As before, we will estimate the rate parameters, εi j, using the poste-
rior probability of the change-point matrix, At . We assume gamma pri-
ors on each rate, so that εi j ∼ gamma(α j, β j). By assumption, the change-

point count, ai j
t , follows a Poisson distribution with parameter εi ja j j

t , so
that P(ai j

t = a|εi ja j j
t ) = (εi ja j j

t )ae−εi ja j j
t /a!. Therefore, once ai j

t change points
have been observed along with the dwell time a j j

t , we have the posterior
distribution εi j|(ai j

t , a j j
t ) ∼ Gamma(ai j

t + α j, a j j
t + β j), so

P(εi j|ai j
t , a j j

t ) =
(a j j

t + β j)
ai j

t +α j
(
εi j
)ai j

t +α j−1 e−εi j (a j j
t +β j )

	(ai j
t + α j)

. (5.8)

We now derive the continuum limit of equation 4.8. One key step of the
derivation is the application of a change of variables to the change-point
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matrix a, where we replace the non-change-point counts with dwell times
t j, defined as a j j

t = t j := a j j
�t�t for �t = tn − tn−1. This is necessary due to the

divergence of aii
�t as �t → 0. In the limit �t → 0, the modified change-point

matrix becomes

At =
(

t1 a21

a12 t2

)
,

where ai j
t ∈ Z

∗ is the change-point count from H j �→ Hi, while ti ∈ R≥0 is
the dwell time in state Hi. Thus, taking logarithms, linearizing, and tak-
ing the limit �t → 0, we obtain the following system of stochastic partial
differential equations (SPDEs) for the log likelihoods, x j

t (A) = ln Pn(H±, A):

dx1
t (At )= g1

t dt + dW1
t

+
(

a12
t + α2 − 1

t2 + β2
ex2

t (At−δ12 )−x1
t (At ) − a21

t + α1

t1 + β1
− ∂x1

t

∂t1

)
dt, (5.9a)

dx2
t (At )= g2

t dt + dW2
t

+
(

a21
t + α1 − 1

t1 + β1
ex1

t (At−δ21 )−x2
t (At ) − a12

t + α2

t2 + β2
− ∂x2

t

∂t2

)
dt, (5.9b)

where the drift, gi
t, and noise, Wi

t , are defined as before (for details, see
section A.3). Note that the flux terms,

∂xi
t

∂ti , account for the flow of probability
to longer dwell times ti. For example, the SPDE for x1

t has a flux term for the
linear increase of the dwell time t1 since this represents the environment
remaining in state H1. These flux terms simply propagate the probability
densities exi

t (A) = Pt

(
Hi, At

)
over the space (t1, t2), causing no net change

in the probability of residing in either state Hi: Pi
t = ∫∞

0

∫∞
0 exi

t (At )dt1dt2.
Equation 5.9 generalizes equation 4.8 as an infinite set of SPDEs, indexed

by the discrete variables (H j, a12
t , a21

t ) where a12
t , a21

t ∈ Z≥0. Each SPDE is over
the space (t1, t2), and it is always true that t1 + t2 = t. Initial conditions at
t = 0 are given by x j(At ) = ln

[
P0(H

j) · P0(At )
]
. For consistency with the

prior on the rates, εi j, we choose a Poisson prior over the change-point
counts ai j, i �= j and a Dirac delta distribution prior over the dwell times ti,

P0(A) = αa21

1 e−α1

a21!
αa12

2 e−α2

a12!
δ(t1 − β1)δ(t

2 − β2). (5.10)

As before, equation 5.9 at the boundaries a12
t = 0 and a21

t = 0 is a special
case, since there will be no influx of probability from a12

t − 1 or a21
t − 1.

As in the symmetric case, we can convert equation 5.9 to equations de-
scribing the evolution of the likelihoods Pi

t (At ) = P(Ht = Hi, At ). Applying
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the change of variables Pi
t (At ) = exi

t (At ), we find

dP1
t (At ) = P1

t (At )

[(
g1

t + 1
2

)
dt + dW1

t

]

+
[

a12
t + α2 − 1

t2 + β2
P2

t (At − δ12) − a21
t + α1

t1 + β1
P1

t (At ) − ∂P1
t (At )

∂t1

]
dt,

(5.11a)

dP2
t (At ) = P2

t (At )

[(
g2

t + 1
2

)
dt + dW2

t

]

+
[

a21
t + α1 − 1

t1 + β1
P1

t (At − δ21) − a12
t + α2

t2 + β2
P2

t (At ) − ∂P2
t (At )

∂t2

]
dt,

(5.11b)

where now initial conditions at t = 0 are Pi
0(At ) = P0(H

i)P0(At ).

5.1.3 Multiple States with Symmetric Rates. The continuum limit in the
case of N states, {H1, . . . , HN}, with symmetric transition rates can be de-
rived as with N = 2 (see section A.4 for details). Again, denote the transi-
tion probabilities by P(Ht+�t = Hi|Ht = H j) = εi j�t + o(�t) and the rate of
switching from one to any other state by ε = (N − 1)εi j.

Assuming again a gamma prior on the transition rate, ε ∼ Gamma(α, β),

and introducing xi
tn
(a) := ln Pn(Hi, a), we obtain the SDE

dxi
t(a) = gi

tdt + dWi
t +

⎛⎝ a + α − 1
(N − 1)(t + β)

∑
j �=i

ex j
t (a−1)−xi

t (a) − a + α

t + β

⎞⎠dt,

(5.12)

where gi
t = lim�t→0

1
�t Eξ [ln f i

�t (ξ )|Ht] andWi satisfies 〈WiW j〉 = �
i j
t · t with

�
i j
t = lim�t→0

1
�t Covξ [ln f i

�t (ξ ), ln f j
�t (ξ )|Ht].

Equation 5.12 is again an infinite set of stochastic differential equations,
one for each pair (Hi, a), i ∈ 1, . . . , N, a ∈ Z≥0. We have some freedom in
choosing initial conditions at t = 0. For example, since xi(a) = ln P0(H

i, a),
we can use the Poisson distribution discussed in the case of two states.

The posterior over the transition rate, ε, is

Pn(ε) =
N∑

s=1

∞∑
an=0

P(ε|an)Pn(Hs, an),
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where P(ε|an) is the gamma distribution given by equation 4.9. Similar to
equation 3.17, the expected rate is

ε̄ :=
∫ ∞

0
εPn(ε)dε =

N∑
s=1

∞∑
an=0

∫ ∞

0
εP(ε|an)Pn(Hs, an)dε

=
N∑

s=1

∞∑
an=0

an + α

tn + β
Pn(Hs, an).

An equivalent argument can be used to obtain the posterior over the rates
in the asymmetric case with N states.

5.2 Moment Hierarchy for the Two-State Process. In the previous sec-
tion, we approximated the evolution of the joint probabilities of environ-
mental states and change-point counts. The result, in the symmetric case,
was an infinite set of SDEs, one for each combination of state and change-
point values (Hi, a). However, an observer is mainly concerned with the
current state of the environment. The change-point count is important for
this inference but may not be of direct interest itself. We next derive simpler,
approximate models that do not track the entire joint distribution over all
change-point counts, only essential aspects of this distribution. We do so by
deriving a hierarchy of iterative equations for the moments of the distribu-
tion of change-point counts, a ∈ Z≥0, focusing specifically on the two-state
symmetric case.

Our goal in deriving moment equations is to have a low-dimensional,
and reasonably tractable, system of SDEs. Similar to previous studies of
sequential decision-making algorithms (Bogacz et al., 2006), such low-
dimensional systems can be used to inform neurophysiologically relevant
population rate models of the evidence accumulation process. To begin,
we consider the infinite system of SDEs given in the two-state symmetric
case, equation 5.7. Our reduction then proceeds by computing the SDEs
associated with the lower order (zeroth, first, and second) moments over
the change-point count a:

P̄±
t =

∑
a∈Z≥0

P±
t (a), ā±

t =
∑

a∈Z≥0

(a + α)P±
t (a), b̄±

t =
∑

a∈Z≥0

(a + α)2P±
t (a).

(5.13)

We denote the moments using bars (b̄±
t ). Below, when we discuss cumulants,

we will represent them using hats (b̂±
t ). Note that the “zeroth” moments are

the marginal probabilities of H+ and H−.
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We begin by summing equation 5.7 over all a ∈ Z≥0 and applying equa-
tion 5.13 to find this generates an SDE for the evolution of the moments P̄±

t
given

dP̄±
t = P̄±

t

[(
g±

t + 1
2

)
dt + dW±

t

]
+ 1

t + β

[
ā∓

t − ā±
t

]
dt, (5.14)

where we have used the fact that

(a − 1)
±
t =

∞∑
a=1

(a + α − 1)P±
t (a − 1) =

∞∑
a=0

(a + α)P±
t (a) = ā±

t .

The SDE given by equation 5.14 for the zeroth moment, P̄±
t , depends on the

first moment, ā±
t . We can determine values for the first moment by either

obtaining the next SDE in the moment hierarchy or assuming a reasonable
functional form for ā±

t . For instance, if the transition rate ε is known, we
can assume ā±

t := (t + β)εP̄±
t + O(1), so that ā+

t + ā−
t is approximately the

mean of the counting process with rate ε. In this case, the continuum limit
t → ∞ of equation 5.14 becomes

dP̄±
t = P̄±

t

[(
g±

t + 1
2

)
dt + dW±

t

]
+ ε · [P̄∓

t − P̄±
t

]
dt.

As expected, this is the two-state version of equation 2.2, with known rate,
ε. However, if the observer has no prior knowledge of the rate, ε, then ā±

t
should evolve toward (t + β)εP̄±

t at a rate that depends on the noisiness of
observations.

To obtain an equation for ā±
t we multiply equation 5.7 by (a + α) and

sum to yield

dā±
t = ā±

t

[(
g±

t + 1
2

)
dt + dW±

t

]
+ 1

t + β

[
ā∓

t + b̄∓
t − b̄±

t

]
dt. (5.15)

This equation relates the first and second moments, ā±
t and b̄±

t . Again,
we require an expression for the next moment, b̄±

t , to close the system of
equations 5.14 and 5.15. We could obtain an equation for b̄±

t by multiplying
equation 3.7 by (a + α)2 and summing. However, as is typical with moment
hierarchies, we would not be able to close the system as equations for
subsequent moments will depend on successively higher moments (Socha,
2007; Kuehn, 2016). To close the equations for P̄±

t , ā±
t , . . . we can truncate.

One possibility is cumulant neglect (Whittle, 1957; Socha, 2007), which
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assumes all cumulants above a given order grow more slowly than the
moment itself and can thus be ignored. This allows one to express the
highest-order moment as a function of the lower-order moments, since
a moment is an algebraic function of its associated cumulant and lower
moments. For instance, neglecting the second cumulant b̂±

t ≈ 0 allows us to
approximate the second moment as b̄±

t = b̂±
t + (

ā±
t

)2 ≈ (
ā±

t

)2.4

Applying cumulant neglect to the second moment, b̄±
t , in equations 5.14

and 5.15, using the change of variables, Ā±
t = ā±

t /(t + β), and the fact that
dĀ±

t = [
(t + β)dā±

t − ā±
t dt

]
/(t + β)2, we obtain a closed system of equa-

tions for the zeroth and first moments,

dP̄±
t = P̄±

t

[(
g±

t + 1
2

)
dt + dW±

]
+ [

Ā∓
t − Ā±

t

]
dt, (5.16a)

dĀ±
t = Ā±

t

[(
g±

t + 1
2

)
dt + dW±

]
+ (

Ā∓
t − Ā±

t

) ( 1
t + β

+ Ā∓
t + Ā±

t

)
dt.

(5.16b)

Here initial conditions are given by P̄±
0 := P0(H

±) and Ā±
0 = αP0(H

±)/β.
We show in section A.5 that equation 5.16 is also consistent with equation
2.2, which holds in the case of two states and known rate ε. Trajectories
of equation 5.16 are shown in Figure 6. Note that both P̄±

t and Ā±
t tend

to increase when g±
t is the maximal drift rate, that is, when H± is the true

environmental state. Thus, we expect that when P̄± is high (close to unity),
Ā±

t will tend to be larger than Ā∓
t .

Immediately after a change point (where the maximal drift rate g±
t

changes), there is an additional contribution to the increase of Ā±
t due to the

(Ā∓
t − Ā±

t ) term. It is this brief burst of additional input to the subsequently
dominant variable that generates the counting process, enumerating the
change points. For instance, when a H+ �→ H− switch occurs, an increase in
Ā−

t will temporarily be driven by both the drift term, g−
t , and the nonlinear

term involving (Ā+
t − Ā−

t ). The burst of input generated by the nonlinear
term in equation 5.16b has an amplitude that decays nonautonomously
with time. In fact, it can be shown that when the signal-to-noise ratio of
the system is quite high, the variables Ā±

t ≈ (m + α)/(t + β), which is effec-
tively the true change-point count m divided by elapsed time as modified
by the prior.

We can also obtain a point estimate of the transition rate of the envi-
ronment, which we define as ε̃t := Ā+

t + Ā−
t , since the following relations

4We have used a hat to distinguish cumulants (b̂±
t ), whereas bars still denote moments

(b̄±
t ).
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Figure 6: The dynamics of the first two moments as approximated by equa-
tion 5.16. (A) The probabilities P̄±

t track the present state of the environment
(bar above), switching with rate ε = 0.1, and approach the stationary densities
around the equilibria determined by the dichotomous drift terms g±

t . (B) The
first moments, Ā±

t , also switch with the environmental state and alternate be-
tween the neighborhoods of two points. (C) The sum ε̃t := Ā+

t + Ā−
t provides

a running point estimate of the environmental transition rate, ε, as shown in
equation 5.17. The estimate is determined by the actual change points and nois-
ily tracks m/t, where m is the actual number of change points. (D–F) Same as
panels A–C, but the moment simulations are compared with numerical simu-
lations of the full system of SDEs given by equation 5.7. (D) The thick red line
is P̄+

t from equation 5.16, and the thin black line is
∑∞

a=0 P+
t (a) using equation

5.7. (E) The thick red line is Ā+
t from equation 5.16, and the thin black line is∑∞

a=0(a + α)P+
t (a) using equation 5.7. (F) Estimates of ε̃t using equation 5.16

and equation 5.7. Details about the simulation method, initial conditions, and
parameters are provided in section A.9.
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hold:

Ā+
t + Ā−

t = 1
t + β

∑
a∈Z≥0

(a + α)
[
P(H+, a|ξt ) + P(H−, a|ξt )

]

=
∑

a∈Z≥0

(a + α)

t + β
P(a|ξt ) =

∫ ∞

0
ε
∑

a∈Z≥0

P(ε|a)P(a|ξt )dε. (5.17)

This estimate is an average over the distribution of possible change-point
counts, a, given the observations, ξt . Here P(ε|a) is a gamma distribution
with parameters α and β. In Figure 6C we compare this approximation, ε̃t ,
with the true change rate ε and the running estimate m/t, obtained from
the actual number of change points, m.

In Figures 6D and 6E, these approximations are compared to equation
5.7, the full SDE giving the distribution over all change-point counts, a.
Notice that the first moments Ā±

t are overestimates of the true average,∑∞
a=0(a + α)P±

t (a)/(t + β), obtained from equation 5.7. We expect this is
due to the fact that the moment equations, equation 5.16, tend to overcount
the number of change points. Fluctuations lead to an increase in the number
of events whereby Ā+

t and Ā−
t exchange dominance (Ā+

t = Ā−
t ), which will

lead to a burst of input to one of the variables Ā±
t . As a consequence, the

transition rate tends to be overestimated by equation 5.16 compared to
equation 5.7.

In sum, while the inference approximation given by equation 5.16 does
not provide an estimate of the variance, it does provide insight into the
computations needed to estimate the change-point count and transition
probability. Transitions increment the running estimate of the change-point
count, and this increment decays over time, inversely with the total obser-
vation time t. Similar equations for the moments can be obtained in the case
of asymmetric transition rates, or more than two choices using equations
5.11 and 5.12, respectively, although we omit their derivations here.

6 Learning Transition Rate in Neural Populations with Plasticity

Models of decision making often consist of mutually inhibitory neural pop-
ulations with finely tuned synaptic weights (Machens, Romo, & Brody,
2005; McMillen & Holmes, 2006; Wong, Huk, Shadlen, & Wang, 2007). For
instance, many models of evidence integration in two alternative choice
tasks assume that synaptic connectivity is tuned so that the full system ex-
hibits line attractor dynamics in the absence of inputs. Such networks inte-
grate inputs perfectly and maintain this integrated information in memory
after the inputs are removed. However, in changing environments, opti-
mal evidence integration should be leaky, since older information becomes
irrelevant for the present decision (Deneve, 2008; Glaze et al., 2015).
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We previously showed that optimal integration in changing environ-
ments can be implemented by mutually excitatory neural populations
(Veliz-Cuba et al., 2016). Instead of a line attractor, the resulting dynam-
ical systems contain globally attracting fixed points. Such leaky integrators
maintain a limited memory of their inputs on a timescale determined by
the frequency of environmental changes. However, in this previous work,
we assumed that the rates of the environmental changes were known to the
observer. Here, we show that when these rates are not known a priori, a
plastic neuronal network is capable of learning and implicitly representing
them through coupling strengths between neural populations.

6.1 Symmetric Environment. We begin with equation 5.16, the leading-
order equations for the likelihood P̄±

t and change rate variables Ā±
t derived

in section 5.2. We interpret the likelihoods as neural population activity vari-
ables u±

t := P̄±
t , reflecting a common modeling assumption that two popu-

lations receive separate streams of input associated with evidence for either
choice (Bogacz et al., 2006). Next, we define a new variable w±

t := Ā±
t /P̄±

t ,
which represents the synaptic weight between these neural populations
(see Figure 5C). In particular, w±

t represents the strength of coupling from
u±

t to u∓
t , as well as the local inhibitory coupling within u±

t . Applying this
change of variables to equation 5.16, we derive a set of equations for the
population activities, u±

t , and their associated synaptic weights, w±
t :

du±
t = u±

t

[(
g±

t + 1
2

)
dt + dW±

t

]
+ [

w∓
t u∓

t − w±
t u±

t

]
dt (6.1a)

dw±
t =−

[
w±

t + w∓
t − w∓

t

u±
t

] [
1

t + β
+ u∓

t (w∓
t − w±

t )

]
dt. (6.1b)

This is a neural population model with a rate-correlation-based plasticity
rule (Miller, 1994; Pfister & Gerstner, 2006). Each neural population u±

t
affects its neighboring population via mutual excitation as in Veliz-Cuba
et al. (2016). Note that each population in equation 6.1 is also locally affected
by self-inhibition, whose weight evolves according to the same dynamics as
the excitatory weights between populations. We expect that such dynamics
could arise as the quasi-static approximation of a network with separate
excitatory and inhibitory populations, but we save such analyses for future
work. We can interpret the nonautonomous term, 1/(t + β), as modeling
the dynamics of a chemical agent involved in the plasticity process whose
availability decays over time. Simple chemical degradation kinetics for a
concentration Ct yield such a function when

dCt = −C2
t dt, C0 = 1/β ⇒ Ct = 1

t + β
. (6.2)
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We briefly analyze the model, equation 6.1, by considering the limit of
no observation noise. That is, we assume g±

t → ±∞ when Ht = H+ and
�++ → 0, where 〈W+

t W+
t 〉 = �++

t · t, and analogous relations hold when
Ht = H−. As a result, when Ht = H+, then u+

t → 1 and u−
t → 0, which we

demonstrate in section A.6. Plugging the expressions u+
t = 1 and u−

t = 0
into equation 6.1b for w+

t , we find

dw+
t = −

[
1

t + β

]
w+

t dt. (6.3)

Next, we write equation 6.1b for w−
t in the form

u−
t dw−

t = − [
u−

t w−
t + u−

t w+
t − w+

t

] [ 1
t + β

+ u+
t (w+

t − w−
t )

]
dt,

so by plugging in u+
t = 1 and u−

t = 0, we find 0 = w+
t [ 1

t+β
+ w+

t − w−
t ],

which, when w+
t �= 0, simplifies to

w−
t = w+

t + 1
t + β

. (6.4)

An analogous pair of equations holds when Ht = H− and thus u−
t → 1

and u+
t → 0. Solving equations 6.3 and 6.4 and their Ht = H− counterparts

iteratively, we find that in the limit of no observation noise (e.g., g±
t → ±∞

when Ht = H±),

w±
t = w0β + mt

t + β
, w∓

t = w0β + mt + 1
t + β

, (6.5)

where Ht = H± and w0 := w j(0) for H(0) = H j, so w0 constitutes the initial
estimate of the change rate of the environment. Here, mt is the number of
change points in the time series Ht during the time interval [0, t]. Equation
6.5 can be reexpressed in the form of a rate-based plasticity rule,

dw±
t = [

δ(u+
t − u−

t ) − w±
t

] · Ct dt, (6.6)

where δ(u) is the Dirac delta distribution, along with equation 6.2 for the
concentration decay of the agent Ct . Note that the nonnegative term δ(u+

t −
u−

t ) in equation 6.6 results in long-term potentiation (LTP) of both synaptic
weights, w±

t , whenever the neural activities, u±
t , are both high, that is,

when their values cross at u±
t = 0.5. During such changes, the weights w±

t
are incremented. Outside of these transient switching epochs, there is long-
term depression (LTD) of the synaptic weights w±

t modeled by the term
(−w±

t ).
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Figure 7: Neural network model with plasticity, inferring the current state Ht
and rates ε± of environmental change. (A) Schematic showing the synaptic
weight w± from neural population u± �→ u∓ evolving through long-term poten-
tiation (LTP) and long-term depression (LTD) to match the environment’s rate
of change, ε± := ε. (B) When the neural populations exchange dominance, their
activity levels u± are both transiently high. As a result, both synaptic weights,
w±, increase via LTP. When only one population is active, both weights decay
via LTD, as described by equation 6.7b. (C) Inference of the rate, ε, via long-
term plasticity of the weights for ε = 0.01, 0.05, 0.1. Though the signal-to-noise
ratio is finite (see section A.9), the weights in the network described by equa-
tion 6.7 converge to the actual rate, ε. (D) Schematic showing the evolution of
weights w±

t when rates are asymmetric, ε+ > ε−, so that w+
∞ > w−

∞. The net-
work is described by equation 6.9. (E) Only the weight w±

t decays through LTD
when population u±

t is active, and only the weight w±
t is potentiated through

LTP when dominance switches from u±
t to u∓

t , as in equation 6.9. (F) Network
weights w±

t converge to the asymmetric rates, ε±. See section 7.9 for details
about the simulations.

We schematize in Figure 7A and simulate in Figures 7B and 7C the
resulting plastic neural population network:

du±
t = u±

t

[
I±t dt + dW±

t

]+ [
w∓

t u∓
t − w±

t u±
t

]
dt (6.7a)

dw±
t = [

δ(u+
t − u−

t ) − w±
t

] · Ct dt. (6.7b)

The constant 1/2 has been absorbed into the population input, so that
I±t = g±

t + 1/2. It is important to note that equation 6.7 performs optimal
inference only in the limit of no observation noise. Perturbing away from
this case, we expect the performance to be suboptimal. However, as can be
seen in Figure 7C, the correct change rate is approximated reasonably well.

Many previous neural population models of evidence accumulation as-
sume that neural activity represents log probabilities or log likelihoods
(Bogacz et al., 2006; McMillen & Holmes, 2006; Veliz-Cuba et al., 2016). In
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our model the rate variables, u±
t , represent the probability that the envi-

ronment is in state H±. This particular form of the population model leads
dynamical equations that are consistent with an accepted rate-correlation-
based plasticity rule (Miller, 1994; Pfister & Gerstner, 2006). Using log prob-
abilities would lead to models that contain exponential functions of the rate
(Veliz-Cuba et al., 2016), which are less common. In addition, since probabil-
ities can assume a finite range of values, we required that u±

t ∈ [0, 1]. Using
log probabilities would require that we use a semi-infinite range, (−∞, 0]
or that we truncate. Note also that the inputs I±t and noise dW±

t are gain-
modulated using the population rates u±

t . Gain-modulating circuits have
been identified in many sensory areas (Salinas & Abbott, 1996), and recent
studies suggest evidence-accumulating circuits may also modulate input
in a history-dependent way (Wyart, De Gardelle, Scholl, & Summerfield,
2012).

Equation 6.7 thus models evidence accumulation in a symmetrically
changing environment when the change rate, ε, is not known a priori. The
model is based on the recursive equation for the joint probability of the
environmental state, H±, and change-point count, a, derived in section 3.1.
We obtained a tractable model by first passing to the continuum limit and
then applying a moment closure approximation to reduce the dimension
of the resulting equations. Obtaining the low-dimensional approximation
in equation 5.16 was crucial to obtaining a neural population model that
approximates state inference. We next extend this model to the case of
asymmetric rates of change.

6.2 Asymmetric Environment. The continuum limit of the inference
process in an asymmetric environment, equation 5.11, provides several
pieces of information we can use to identify an approximate neural popu-
lation model. First, under the assumption of large signal-to-noise ratios, the
synaptic weights should evolve to reflect the number of detected change-
points, rescaled by the amount of time spent in each state

w+
t = w+

0 β+ + m+
t

t+ + β+ , w−
t = w−

0 β− + m−
t

t− + β− , (6.8)

where w±
0 := w±(0) are the network’s initial estimates of the change rates ε±,

m±
t is the true number of change points H± �→ H∓ during the time interval

[0, t], and t± is the total length of time spent in the state H±.5 Second, the
flux term in equation 5.11 indicates that a memory process is needed to store
the estimated time t± spent in each state H±. This can be accomplished by

5We use the notation H± for the two states here, for convenience and consistency
with equation 6.7. Similarly, we use ε± and t± rather than the numerical notation of the
asymmetric case in section 5.1.
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modifying equation 6.2 for the plasticity agent, so that each C±
t decays only

when the neural population of origin, u±
t , is active. Thus, we obtain the pair

of equations

dC±
t = −H(u±

t − θ )
[
C±

t

]2
.

Expressing equation 6.8 as a system of equations for the synaptic weights,
w±

t , yields

dw±
t = H(u±

t−τ − θ )
[
δ(u+

t − u−
t ) − w±

t

] · C±
t dt. (6.9)

Here the function H(u±(t − τ ) − θ ) for θ ≥ 0.5, and τ > 0 enforces the re-
quirement that the population u±

t must have a high rate of activity prior to
the LTP event. Thus, to learn asymmetric weights, there should be a small
delay τ accounting for the time it takes for the presynaptic firing rate to trig-
ger the plasticity process (Gütig, Aharonov, Rotter, & Sompolinsky, 2003).
We demonstrate the performance of the network whose weights evolve
according to equation 6.9 in Figures 7D and 7E. The network with weights
evolving according to equation 6.9 can still infer symmetric transition rates
ε± = ε, but it will do so at half the rate of the network, equation 6.7. This is
due to the fact that equation 6.9 counts the change points and dwell times
of each state H± separately.

We have thus shown that the recursive update equations for the state
probability in a dynamic environment lead to plausible neural network
models that approximate the same inference. Previous neural network
models of decision making have tended to interpret population rates as
a representation of posterior probability (Bogacz et al., 2006; Beck et al.,
2008). We have shown that the synaptic weight between populations can
represent the change rate of the environment. As a result, standard rate-
correlation models of plasticity can be used to implement the change rate
inference process.

7 Discussion

Evidence integration models have a long history in neuroscience (Ratcliff &
McKoon, 2008). These normative models conform with behavioral observa-
tions across species (Brunton et al., 2013), and have been used to explain the
neural activity that underpins decisions (Gold & Shadlen, 2007). However,
animals make decisions in an environment that is seldom static (Portugues
& Engert, 2009). The relevance of available information, the accessibility,
and the payoff of different choices can all fluctuate. It is thus important to
extend evidence accumulation models to such cases.

We have shown how ideal observers accumulate evidence to make de-
cisions when there are multiple, discrete choices, and the correct choice
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changes in time. We assumed that the rates of transition between envi-
ronmental states are initially unknown to the observer. An ideal observer
must therefore integrate information from measurements to concurrently
estimate both the transition rates and the current state of the environment.
Importantly, these two inference processes are coupled: knowledge of the
rate allows the observer to appropriately discount older information to infer
the current state, while knowledge of transitions between states is necessary
to infer the rate.

Inference when all transition rates are identical is straightforward to
implement in resulting models. An ideal observer only needs to track the
probability of the environmental state and the total change-point count re-
gardless of the states between which the change occurred. However, when
the transition rates are asymmetric, the resulting models are more com-
plex. In this case, an ideal observer must estimate a matrix of change-point
counts, distinguished by the starting and ending states. The number of
possible matrices grows polynomially with the number of observations.
This computation is difficult to implement, and we do not suggest that
animals make inferences about environmental variability in this way. How-
ever, understanding the ideal inference process allowed us to identify its
most important features. In turn, we derived tractable approximations and
plausible neural implementations, whose performance compared well with
that of an ideal observer (see Figures 6D–6F). We believe humans and other
animals do generally implement approximate strategies when they need to
infer such rates (Lange & Dukas, 2009). Ideal observer models allow us to
understand what inferences can be made with the available information,
which assumptions of the observer are important (e.g., assuming an incor-
rect transition rate does not always have a large impact on performance),
and how such inferences could be approximated in networks of the brain
and other biological computers.

In many naturally occurring decisions like foraging, mate selection,
and home site choice, animals simply need to identify the best alternative
rather than the rate of environmental change (Johnson, Blumstein, Fowler, &
Haselton, 2013). Therefore, rapid approximations, or a guess of the environ-
mental change rate may provide better initial performance than learning the
rate, which could be slow. Moreover, it appears that when measurements
are noisy, rates cannot be learned precisely even in the limit of infinite obser-
vations. Thus, learning the rate may improve performance only when noise
is too high for single measurements to determine the correct alternative but
sufficiently low to make rate inference possible. It is within this range of
parameters that we expect to be able to distinguish the performance of our
normative model from that of different approximations. We plan to carry out
such a systematic comparison of model performance in future work. There is
evidence that humans adjust their rate of evidence discounting based on the
actual change rate of the environment (Glaze et al., 2015). However, further
psychophysical studies are needed to identify whether subjects use heuristic
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strategies to learn or something close to the normative models we derived
here.

A number of related models have been developed previously (Wilson
et al., 2010; Adams & MacKay, 2007). Our model is somewhat different,
as a finite number of choices implies that the current environmental state
is dependent on the previous state. As a result, we found it was more
efficient to implement an update equation that estimated the current envi-
ronmental state and the change points rather than the time in the current
state.

Several of the assumptions we have made in this study could be mod-
ified to extend our analysis to more general situations. For instance, we
have assumed that the observer’s eventual choice does not affect the envi-
ronment. However, in many natural situations, changes in the environment
are a consequence of the observer’s actions (Cisek & Pastor-Bernier, 2014).
In more realistic situations, it is likely that is a sequence of actions leads to an
ultimate decision, and each action can influence the information available
to the observer. An animal making a foraging decision in a group collects
more evidence once it moves toward a particular food patch, but it may
also draw other members with it, changing the subsequent availability of
food there (Petit, Gautrais, Leca, Theraulaz, & Deneubourg, 2009). Thus, in-
cluding a sequence of actions and their impact on the available information
and the environment would be necessary in a realistic model. Another pos-
sibility is that changes to the environment are non-Markovian or involve
multiple timescales. Extending our ideal observer models to estimate such
change statistics might require derivation of multistep update equations. In
such cases, we expect the truncations we have applied in this work would
be useful for identifying tractable approximations of the optimal inference
process.

Optimal models of evidence accumulation are useful as baselines to com-
pare to performance in psychophysical experiments and starting points for
identifying plausible neuronal network implementations. Our core contri-
bution here has been to present a general model of evidence accumulation
in a dynamic environment when an observer has no prior knowledge of
the rate of change. An unavoidable feature of these models is that the num-
ber of variables the observer must track grows as more observations are
made, and growth is more rapid in asymmetric environments with multi-
ple environmental states. This motivated our development of continuum
approximations and low-dimensional moment equations for the optimal
models, which suggest more plausible neural computations. We hope this
work will foster future theoretical studies that will extend this framework,
as well as experiments that could validate the models here. To fully under-
stand the neural mechanisms of evidence accumulation, we must account
for the wide variety of conditions that organisms encounter when making
decisions.
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Appendix: Analytical Calculations and Numerical Methods

A.1 Two-State System with Unknown Symmetric Rate. We show how
to derive equation 3.1 from the main text. Bayes’ rule and the law of total
probability first yield

Pn(Hn, an) = 1
P(ξ1:n)

∑
Hn−1=H±

n−2∑
an−1=0

P(ξ1:n|Hn, Hn−1, an, an−1)

× P(Hn, Hn−1, an, an−1).

Using the conditional independence of observations,

P(ξ1:n|Hn, Hn−1, an, an−1) = P(ξn|Hn)P(ξ1:n−1|Hn−1, an−1),

we find that

Pn(Hn, an) = 1
P(ξ1:n)

∑
Hn−1=H±

n−2∑
an−1=0

P(ξn|Hn)P(ξ1:n−1|Hn−1, an−1)

× P(Hn, Hn−1, an, an−1).

Furthermore, we can use the definition of conditional probability to write

P(Hn, Hn−1, an, an−1) = P(Hn, an|Hn−1, an−1)P(Hn−1, an−1),

and Bayes’ rule also implies

P(ξ1:n−1|Hn−1, an−1)P(Hn−1, an−1) = Pn−1(Hn−1, an−1)P(ξ1:n−1).

Hence, we derive equation 3.1 from the main text,

Pn(Hn, an) = P(ξ1:n−1)

P(ξ1:n)
P(ξn|Hn)

∑
Hn−1=H±

n−2∑
an−1=0

Pn−1(Hn−1, an−1)

× P(Hn, an|Hn−1, an−1).

A.2 Numerical Methods for Free Response Protocol. The free response
protocol is simulated by evolving the update equation 3.14 and subse-
quently computing the log-likelihood ratio Ln := log(Rn) using equation
3.16 at each time step n. Each point along the curves in Figure 3C corre-
sponds to an average waiting time and average performance corresponding
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to a threshold value θ over 100,000 simulations. For each value of θ , the sim-
ulation is terminated when |Ln| > θ and the choice is given by the sign of Ln.
To avoid excessively long simulations, we removed any that lasted longer
than n = 5000, but we found changing this upper bound did not affect av-
erages considerably. There were 400 values of θ chosen, discretizing the
interval from θ = 0 to θ = 3.89.

A.3 Continuum Limit for Two States with Asymmetric Rates. We be-
gin by considering equation 4.8a, which provides an update of the probabil-
ity of being in state H1 after n observations, given the specific change-point
matrix a:

Pn(H1, a) =F1
n,�t

[(
1 − a21 + 1

1 + a21 + a11

)
Pn−1

(
H1, a − δ11)

+ a12

1 + a12 + a22 Pn−1

(
H2, a − δ12)] , (A.1)

where we have defined F1
n,�t = P(ξ1:n−1 )

P(ξ1:n )
f 1
�t (ξn). Subsequently, we divide by

Pn−1(H
1, a) and take the logarithm to find

�x1
n(a)= lnF1

n,�t + ln
[(

1 − a21 + 1
1 + a21 + a11

)
ex1

n−1(a−δ11 )−x1
n−1(a)

+ a12

1 + a12 + a22 ex2
n−1(a−δ12 )−x1

n−1(a)

]
.

Now, as we are taking the continuum limit, we consider P(Ht+�t = H±|Ht =
H∓) = εi j�t + o(�t), where 0 ≤ εi j < ∞. Given a R

2×2 transition rate ma-
trix with off-diagonal entries εi j�t + o(�t) and diagonal entries 1 − εi j�t +
o(�t), the expected change-point and non-change-point counts after n
time steps will be 〈ai j

�t〉 = �tε12ε21n/(ε12 + ε21) and 〈aii
�t〉 = εi jn/(ε12 + ε21).

Thus, while the change-point counts ai j
�t scale with �t, the non-change-

point counts do not. In the continuum limit, we will choose a time t := n�t
and take �t → 0 while keeping t constant, so the number of time steps
diverges like n = t/(�t) for a fixed time t. While the expected change-point
counts 〈ai j

�t〉 thus remain fixed, the non-change-point counts 〈aii
�t〉 will di-

verge as (�t)−1, suggesting we should rescale non-change-point counts
to the absolute dwell time ti

�t = �taii
�t . The expected value of the dwell

times is then finite in this limit lim�t→0〈ti
�t〉 = εi jt/(ε12 + ε21). Perform-

ing this change of variables, we define the change-point matrix as involv-
ing change-point counts ai j on the off-diagonal and dwell times along the
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diagonal: At =
(

t1 a12
t

a21
t t2

)
so an increment of non-change-point count aii

now takes the form At + �tδii. As such, we can now expand

exi(a−δii ) = exi(At−�tδii ) = exi(At ) − �texi(At )
∂xi(At )

∂ti
+ O

(
(�t)2)

via application of the chain rule and noting dti/daii = �t. Note that we
cannot perform such an expansion in �t to xi(At − δi j), since perturbations
to the matrix At in this case are O(1). Truncating equation A.1 to terms of
O(�t) and incorporating the Poisson-delta prior equation 5.10, we find the
discrete update equation becomes

�x1
n(At )= lnF1

n,�t + �t

·
[

a12
t + α2 − 1

t2 + β2
ex2

n−1(At−δ12 )−x1
n−1(At ) − a21

t + α1

t1 + β1
− ∂x1

n−1(At )

∂t1

]
.

Finally, on taking the continuum limit �t → 0, we find that

dx1
t (At )= [

g1
t dt + dW1

t

]
+
[

a12
t + α2 − 1

t2 + β2
ex2

t (At−δ12 )−x1
t (At ) − a21

t + α1

t1 + β1
− ∂x1

t (At )

∂t1

]
dt,

where the statistics of the drift g1
t and noise dW1

t are analogous to those
given after equation 5.6, only the transition rates of Ht from H j �→ Hi are
now εi j. Due to the flux term

∂x1
t (At )

∂t1 and continuum values for t j ∈ R
∗, this

is a stochastic partial differential equation (SPDE). An analogous SPDE can
be derived for x2

t (At ) in the same way.

A.4 Continuum Limit with Multiple States and Symmetric Rates. The
derivation parallels that with two states. To obtain the continuum limit, we
use the generalized version of equation 3.1:

Pn(Hn, an) = P(ξ1:n−1)

P(ξ1:n)
P(ξn|Hn)

∑
Hn−1

∞∑
an−1=0

Pn−1(Hn−1, an−1)

× P(Hn, an|Hn−1, an−1). (A.2)

Assuming again a gamma prior on the transition rate, ε ∼ Gamma(α, β),
and following the derivations of equations 3.18 and 5.4, we obtain
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P(Hn, an|Hn−1, an−1)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 − �t
an + α

tn−1 + β
, & : Hn = Hn−1 & an = an−1

�t
an + α − 1

(N − 1)(tn−1 + β)
, & : Hn �= Hn−1 & an = an−1 + 1

0, & : otherwise.

(A.3)

Using equation A.2 in equation A.3 yields

Pn(Hi, a)= P(ξ1:n−1)

P(ξ1:n)
f i
�t (ξn)

[(
1 − �t

a + α

tn−1 + β

)
Pn−1(H

i, a)

+ �t
a + α − 1

(N − 1)(tn−1 + β)

∑
j �=i

Pn−1(H
j, a − 1)

⎤⎦ .

Dividing by Pn−1(H
i, a), taking logarithms, and denoting xi

tn
(a) :=

ln Pn(Hi, a) we obtain

�xi
tn
(a) ∝ ln f i

�t (ξn)

+ ln

⎡⎣1 − �t
a + α

tn−1 + β
+ �t

a + α − 1
(N − 1)(tn−1 + β)

∑
j �=i

e
x j

tn−1
(a−1)−xi

tn−1
(a)

⎤⎦.

Using the approximation ln(1 + z) ≈ z valid for small z yields

�xi
tn
(a) ∝ ln f i

�t (ξn)

+�t

⎛⎝ a + α − 1
(N − 1)(tn−1 + β)

∑
j �=i

e
x j

tn−1
(a−1)−xi

tn−1
(a) − a + α

tn−1 + β

⎞⎠ .

Similar to the N = 2 case, we may then take the continuum limit to yield
equation 5.12.

A.5 Consistency of the Moment Hierarchy Equations. We begin by
taking the SDE given by equation 2.2 for N = 2 states, and the known rate
ε and changing variables to P̄±

t = ex±
t , so

dP̄±
t = P̄±

t

[
g±

t dt + dW±]+ ε
[
P̄∓

t − P̄±
t

]
dt.
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Furthermore, note that in the limit t → ∞, the O(1) terms and O(t−1) terms
vanish in equation 5.16:

dP
±
t = P

±
t

[(
g±

t + 1
2

)
dt + dW±

]
+ [

Ā∓
t − Ā±

t

]
dt (A.4a)

dĀ±
t = Ā±

t

[(
g±

t + 1
2

)
dt + dW±

]
+ (

Ā∓
t − Ā±

t

) (
Ā∓

t + Ā±
t

)
dt. (A.4b)

Therefore, in the event that Ā±
t → εP̄±

t in the long time limit (t → ∞), we
find the truncated system, equation A.4, becomes

dP̄±
t = P̄±

t

[(
g±

t + 1
2

)
dt + dW±

]
+ ε · [P̄∓

t − P̄±
t

]
dt (A.5a)

εdP̄±
t = εP̄±

t

[(
g±

t + 1
2

)
dt + dW±

]
+ ε2 · (P̄∓

t − P̄±
t

) (
P̄∓

t + P̄±
t

)
dt.

(A.5b)

Dividing by ε and noting that P̄+
t + P̄−

t = 1, equation A.5 becomes

dP̄±
t = P̄±

t

[(
g±

t + 1
2

)
dt + dW±

]
+ ε · [P̄∓

t − P̄±
t

]
dt,

which is consistent with equation A.5, and indicates the truncated moment
hierarchy is consistent with the case of known rates and two choices (N = 2)
in the SDE, equation 2.2.

A.6 Noise-Free Limit of the Neural Population Model. Consider the
neural population (see equation 6.1a) for the evolution of u−

t in the event of
environmental state Ht = H+ and no observation noise f ±(ξ |H+) = δ(ξ −
ξ±). As a result, the drift terms diverge g±

t := lim�t→0
1
�t E[ln f ±

�t (ξ )|H+]
→ ±∞ and the covariance matrix �

i j
t := lim�t→0

1
�t Cov[ln f i

�t (ξ ), ln f j
�t (ξ )|

H+] → 0. Thus, the dominant terms on the right-hand side of equation 6.1a
for u−

t come from the input so du−
t = −u−

t |g−|dt, and the population activity
immediately decays to u−

t = 0. As a result, since u+
t + ut− = 1, we expect

u+
t = 1, when Ht = H+.

A.7 Performance of the Neural Population Model. In Figure 8, we
compare the performance (percentage of correct responses) of the full SDE
model, equation 5.7, to the moment closure approximation, equation 5.16,
and the neural population model, equation 6.7, where we have made a
weak noise approximation. As in Figure 3A, we employ the interrogation
protocol, where the observer reports the predicted state of the environment
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Figure 8: The performance of the neural population model, equation 6.7, in
comparison to the full SDE model, equation 5.7, and the moment closure approx-
imation, equation 5.16. Performance is tested under the interrogation paradigm
and defined as the percentage of correct responses at the interrogation time.
Here ε = 0.05 and SNR= 1. The black curve represents the performance of the
full SDE model given by equation 5.7, an ideal observer who takes measure-
ments continuously to infer the change rate. The blue dashed curve represents
the performance of the moment closure model, equation 5.16, where we have
truncated as shown in section 5.2. Finally, the performance of the neural popu-
lation model, equation 6.7, is represented by the red dotted curve. Simulation
parameters are given in section 7.9.

at a fixed time. In both the full model (black solid line) and the moment
closure model (blue dashed line), performance increases with time. On
the other hand, there is a slight decrease in the performance of the neural
population model (red dotted line) with time, suggesting that its estimate
of the change rate may be corrupted by noise in a way that is not cap-
tured by our truncation. Regardless, all three models have relatively similar
performance.

A.8 Neural Populations Corresponding to Log Probabilities. In Veliz-
Cuba et al. (2016), we derived a neural population model for optimal ev-
idence accumulation when the environmental change rate is known. In
contrast to our population rate model, this set of equations described neu-
ral population rates in terms of the log probability of an environmental state,
rather than the probability. For comparison with Veliz-Cuba et al. (2016) and
other previous neural population models of evidence accumulation in static
environments (Bogacz et al., 2006; McMillen & Holmes, 2006), we map our
equations to an equivalent system where the population rates correspond
to log probabilities. To do so, we make the change of variables u±

t = ex±
t so

that du±
t = ex±

t dx±
t = u±

t dx±
t . As in section 5.1, Itô’s change of coordinates
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rules (Gardiner, 2004) imply our population model is equivalent to

dx±
t = I±t dt + dW±

t + [w∓
t ex∓

t −x±
t − w±

t ]dt,

dw±
t = [δ(x+

t − x−
t ) − w±

t ] · Ctdt.

Although the delta distribution δ
(
x+

t − x−
t

)
should technically be rescaled to

account for its composition with ex, we ignore this transformation (Keener,
1988), since the increment produced from the delta distribution models the
change-point counting process. Thus, each event where x+

t = x−
t (equiva-

lently u+
t = u−

t ) should be counted the same in the log-probability equations
as in the probability equations.

A.9 Numerical Simulations of SDE Models. Stochastic differential
equation (SDE) models of evidence accumulation in symmetric environ-
ments changing between two states are simulated using a standard Euler-
Maruyama integration algorithm (Higham, 2001). Equation 5.7 describes
the evolution of an infinite number of SDEs over the change point vector
a ∈ Z≥0, state vector Ht ∈ {H+, H−}, and time t ∈ [0, T], so we truncate this
space to a ∈ {0, 1, 2, . . . , 1000}, which is sufficient for transition rates ε and
total simulation times T not too large. We compared our results to cases with
longer state vectors a ∈ {0, 1, 2, . . . , amax}, and the changes were negligible.
Simulations shown in Figure 6 had a transition rate of ε = 0.1 and total run
time of T = 1000 with time step dt = 10−3. Observations were sampled from

a normal distribution f ±(ξ ) = e−(ξ∓μ)2/(2σ2 )√
2πσ 2

with mean μ = 0.5 and variance
σ 2 = 1, so the signal-to-noise ratio was 2μ/σ = 1. Initial conditions were
chosen so that P±

0 = 0.5 and P0(a) = αae−α

a! where α = 1 and β = 5. A similar
approach was used to numerically simulate the neural population model,
equation 6.7, and its variants to produce Figure 7 (μ = 1 and σ = 0.1) and
Figure 8 (μ = 0.5 and σ 2 = 1, for consistency with the full equation 5.7 and
equation 5.16.
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