Department of Applied Mathematics PROBABILITY AND STATISTICS PRELIMINARY EXAMINATION January 2022

Instr	uctions:

Do two of three problems in each section (Stat and Prob).	Prob
Place an X on the lines next to the problem numbers	1
that you are NOT submitting for grading.	2
	3.
Please do not write your name anywhere on this exam.	Stat
You will be identified only by your student number.	4
Write this number on each page submitted for grading.	5
Show all relevant work.	6
	Total
Student Number	

Probability Section

1. Probability: Problem 1

Consider a random vector (X,Y) taking values in $(0,\infty)\times(0,\infty)$ with the joint probability density function

$$f(x,y) = e^{-(x+y)} [1 + \alpha(2e^{-x} - 1)(2e^{-y} - 1)],$$

where $\alpha \in [-1, 1]$ is a given constant.

- (a) What is the probability density function of Y?
- (b) What is the probability density function of X given Y?
- (c) Are X and Y independent?
- (d) Compute the correlation coefficient between X and Y.

2. Probability: Problem 2

A continuous-time Markov chain X_t is used to model the state of a financial market, which alternates between "bull" (the good state) and "bear" (the bad state). A statistical analysis shows that "bull" turns into "bear" with a rate $\lambda > 0$, while "bear" turns into "bull" with a different rate $\eta > 0$. Suppose that $X_0 = bull$.

- (a) Write down the infinitesimal generator (or rate matrix) of the continuous-time Markov chain.
- (b) Let T be the time spent for the market to change to bear and go back to bull. Find the probability density function of T.

A passively managed mutual fund adjusts its portfolio only when the market state changes. It charges a management fee Z_i in the event of the i^{th} market state change, where $\{Z_i\}_{i\in\mathbb{N}}$ are i.i.d. Uniform(0, 100) that are independent of the Markov chain X.

- (c) For any t > 0, let N_t denote the total number of state changes of the market up to time t and C_t denote the total management fee accumulated up to time t. Show that $\mathbb{E}[C_t] = \mathbb{E}[Z_1]\mathbb{E}[N_t]$.
- (d) For any t > 0, compute $\mathbb{E}[C_t \mid X_t = bull]$.

3. Probability: Problem 3

Let $\{X_i\}_{i\in\mathbb{N}}$ be i.i.d. random variables with $\mathbb{P}(X_i=1)=p$ and $\mathbb{P}(X_i=-1)=1-p$ for some $p\in(0,1)$. Consider a discrete-time process M defined by

$$M_0 := 0$$
 and $M_t := \sum_{i=1}^t X_i \quad \forall t \in \mathbb{N}.$

Let τ be the first time M reaches either -1 or 3.

- (a) If we only focus on the process M up to time τ , we may assume without loss of generality that $M_s := M_\tau$ for $s \ge \tau$. Then, the evolution of M up to time τ can be described using a Markov chain with finite states. Write down the transition matrix P of this Markov chain. Which states are recurrent? Which states are transient?
- (b) Find $\mathbb{E}[\tau]$.
- (c) Your answer in (b) should be a finite number. Hence, we can apply Wald's equation and get $\mathbb{E}[M_{\tau}] = \mathbb{E}[X_1]\mathbb{E}[\tau]$. From this, find the probability that M reaches 3 before it reaches -1.
- (d) In the case where $\mathbb{E}[M_{\tau}] = 0$, we re-scale the process M as follows: for any $n \in \mathbb{N}$, define

$$W_t^{(n)} := \frac{1}{\sqrt{2^n}} M_{2^n t}, \quad \forall t \in \mathcal{D}_n := \left\{ \frac{k}{2^n} : k \in \mathbb{N} \cup \{0\} \right\}.$$

Assume that the limiting process

$$W_t := \lim_{n \to \infty} W_t^{(n)}, \quad \forall t \in \bigcup_{n \in \mathbb{N}} \mathcal{D}_n = \left\{ \frac{k}{2^m} : k \in \mathbb{N} \cup \{0\}, \ m \in \mathbb{N} \right\}$$

is well-defined. For any fixed $t \in \bigcup_{n \in \mathbb{N}} \mathcal{D}_n$, find the distribution of W_t .

(Comment: A Brownian motion emerges as the continuous extension of W_t to all $t \ge 0$).

Statistics Section

4. Statistics: Problem 4

Let X_1, X_2, \ldots, X_n be a random sample from a Uniform $(\theta, 2\theta)$ distribution, where $\theta > 0$.

- (a) Find the method of moments (MOM) estimator of θ , $\hat{\theta}_{MOM}$. (Recall that MOM estimators are obtained by equating the sample moments with theoretical moments, and solving for θ).
- (b) Find the MLE of θ , $\hat{\theta}_{MLE}$, and find a constant k such that $E_{\theta}(k\hat{\theta}_{MLE}) = \theta$
- (c) Which of these two estimators can be improved using sufficiency, and how?

5. Statistics: Problem 5

Let $X_1, X_2, ..., X_n$ be a random sample from the continuous distribution with probability density function (pdf)

$$f(x;\theta) = \frac{2\theta(1-x)}{(2x-x^2)^{1-\theta}} I_{(0,1)}(x).$$

Here, $\theta > 0$ and $I_{(0,1)}(x)$ is the indicator function that takes on the value 1 when 0 < x < 1 and is 0 otherwise.

- (a) Find the distribution of $Y_i = -\ln(2X_i X_i^2)$.
- (b) Find the maximum likelihood estimator (MLE) for θ . Show that it is an asymptotically unbiased estimator for θ .
- (c) Find the uniformly minimum variance unbiased estimator (UMVUE) for θ .
- (d) Is the UMVUE an efficient estimator of θ ? Justify.

6. Statistics: Problem 6

Let $T_1, T_2, ..., T_n$ be iid, continuous, non-negative random variables (representing lifetimes for example) from a distribution with pdf $f(t) = f(t;\theta)$ and cdf $F(t) = F(t;\theta)$. Let $C_1, C_2, ..., C_n$ be iid continuous random variables from a distribution with pdf g(t) and cdf G(t), with fixed, known parameters. Suppose we observe $(X_1, \Delta_1), (X_2, \Delta_2), ..., (X_n, \Delta_n)$ where

$$X_i = \min(T_i, C_i), \quad \text{for } i = 1, 2, \dots, n,$$

and Δ_i is the indicator random variable taking the value 1 if $T_i \leq C_i$ and is 0 otherwise.

Assume that the X_i and C_i are independent, for each i.

(a) Write down $h(\vec{X}, \vec{\Delta})$, the joint density of $\{(X_1, \Delta_1), (X_2, \Delta_2), \dots, (X_n, \Delta_n)\}$.

(b) The "hazard function" is defined as:

$$h(t) = \lim_{u \to 0} \frac{P(t \le T < t + u | T \ge t)}{u} = \frac{f(t)}{1 - F(t)}.$$

Consider the "joint" hazard function,

$$h(x,\delta) = \lim_{u \to 0} \frac{P(x \le X < x + u, \Delta = \delta | X \ge x)}{u}.$$

Give an interpretation of this function specifically when $\delta = 1$.

- (c) Suppose now that the lifetimes T_1, T_2, \ldots, T_n are iid exponential random variables with rate λ . Find the MLE (maximum likelihood estimator) of λ based on the observations $(X_1, \Delta_1), (X_2, \Delta_2), \ldots, (X_n, \Delta_n)$.
- (d) Estimate the Cramér-Rao lower bound for the variance of all unbiased estimators of λ based on $(X_1, \Delta_1), (X_2, \Delta_2), \dots, (X_n, \Delta_n)$.