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INTRODUCTION OF SPECTRAL METHODS VIA ORTHOGONAL FUNCTIONS
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Approximate u(x) ~ Ea axdx(x); Key questions:

PERIODIC PROBLEMS:

NON-PERIODIC PROBLEMS:

TRIGONOMETRIC EXPANSIONS
(equivalent to FD limit...)

ORTHOGONAL POLYNOMIALS

FUNCTION CLASS TO CHOOSE
$x(x), k=0,1,2,... FROM

HOW TO DETERMINE THE
EXPANSION COEFFICIENTS a, .

Next topics to be discussed:

Requirements: Main techniques: - Whatare orthogonal polynomials?
N
1. EO ak dx(x) must converge fast 1. Tau Arise in contexts such as
for smooth functions - Gaussian integration formulas
; - Singular Sturm-Liouville eigen-problems
. 2. Galerkin iati
2. Given a,, there must be a fast way to - Approximation theory
deten;snine b, such that FR— .
d N i
SCX ade()) = % brds(x | 3. i
a2 P Kbk (X) ! Collocation (PS) _ Why are they any good?

3. It must be fast to convert between
coefficients a, and values of the sum
at some set of nodes X, , i=0,1,...N

FD viewpoint that again will offer the best insight , and source for method enhancements.
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WHY WOULD WE EXPECT EXPANSIONS IN CHEBYSHEV (OR LEGENDRE)
POLYNOMIALS TO BE ESPECIALLY SUITABLE?

- Truncated Chebyshev expansions come very close to the optimal polynomial for approximating a
function.

- The error in a fast convergent Chebyshev expansion is dominated by the first omitted term - so
nearly uniform across the domain.

- If we put our grid points at the extrema of Ty(x) (i.e. at xx=-cos "—A;( k=0,1, ..., N), then the

interpolating polynomial becomes a very close approximation to the truncated Chebyshev
éxpansion.

- We can then very quickly convert between node values and Chebyshev expansion coefficients (a
FCT - Fast Cosine Transform)..

FIRST DERIVATIVE - ONE-SIDED APPROXIMATIONS

Magnitude of weights shown
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RECALL FROM PREVIOUS LECTURE:
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- Weights on equi-spaced grids can be calculated easily by Padé algorithm
- Well-defined limit exists as order tends to infinity
- Limit equivalent to periodic pset | method

Magnitudes of weights for increasing orders:

ANY REMEDY?

Cluster points towards the ends of the interval |

If we distribute points like x, = oos%‘ , k=0,1,...,N (orlike zeros or extrema of ANY Jacobi
polynomial), then

09=0 (on[-1,1)) and a(x)=C
Exactly the same convergence rate everywhere across the interval.

lllustration with Lagrange's interpolation formula:

_$ CX=X0) s X = X)X = Xpt) ¢ e (X = XN)

Pu(x) ,Z:', L - X O R o= X s k= Xn)
N=10

Equi-spaced

Chebyshev

RUNGE PHENOMENON
Extensive error analysis available

Errors |a(x)|"¥ where a(x):
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Results of equi-spaced interpolation on {—1,1] in the case of
' (=) N'= 20 sind () N =40.

ax)=C-e ¥ |

$0) = ~2(1 =) In(1 =x) -3 (1+ 3} In(1 +X)

Function that is interpolated affect only the
value of the constant C!

Generation of FD formulas on general grids

Exémples of FD formulas:

Foo= [ —3Rx—hy + 0fx) + 1 fx+h 1/h+ O)

. [35fx-2h) - 2Rx—h) + OFx) + ZRx+h) — efx+2m]/h +  O(h*)
elc.

GENERAL CASE:

GIVEN: x,,x,, ..., X, grifi points (non-repeated, otherwise arbitrary)
3 point x = £ atwhich the approximations are wanted
m highest order of derivative of interest

FIND:  weights cf»‘j such that the approximations

>

, .
e © B CK X)) k=0 m , i=k ki

are all optimal.
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ALGORITHM: NOTES:

1. Non-initiated quantities assumed
equal to zero

Only 4 operations / weight

j=0t0 il 3:  Numerically stable
B =B -x)
for k = 0 to min (i,m) 4.
o = @=®etsy - kel I-x)
for k == 0 to min (i,m)
ey = alkelipr - (i - Ok 0)/B

Case m=0 fast
method for polynomial interpolation

References:
B. Fornberg, of finite di formulas on ily spaced grids, Math. Comput., 51 (1988), 699-706.
B. Fornberg, Calculation of weights in finite difference formulas, SIAM Review, 40 (1988), 685-691.

EQUIVALENCE BETWEEN SPECTRAL COLLOCATION (PS METHODS)
AND FINITE DIFFERENCES

NOTE: Finite difference formulas can be designed also for non-uniform grids.

- If we place our grid points at the Chebyshev extrema and calculate, at each grid point, our
derivatives with FD formulas that extend over all the grid points, we have exactly recovered the
Chebyshev PS method.

if we place our grid points at the Legendre extrema and calculate, at each grid point, our
derivatives with FD formulas that extend over all the grid points, we have exactly recovered the
Legendre PS method.

Same for any Jacobi polynomial...
- However we place our nodes, we get a PS method. There is no need to start with any

orthogonal polynomial class at all! The FD app h very much g the traditional
approach of expanding in some class of ical orthogonal poly

- Quadratic clustering of nodes towards the end of an interval is purely a means of defeating
\ the Runge Phenomenon - and a quite desperate action to take. It should be used ONLY if the
boundary truly represents the end of the world - and absolutely no extra inf is

Two alternatives for calculating derivatives on a Chebyshev-type grid

Using FFT 2. Using Differentiation Matrix

At each grid point, approximate %
by FD stencil that covers rest of interval

Turn point data into expansion

coefficients g axTx(X) ,

Express (55 akTu(x) as b T

Vo Vo
Return from coefficients to node values Vﬂ = b V1
Vn Vn

Total cost O(n log n) operations

Total cost O(n 2) operations.

Still usually faster for moderate sizes of n.

1 it.
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POLAR AND SPHERICAL COORDINATE SYSTEMS

0<r<1, 0<6<2n
-1<r<1, 0<6<n

Traditionally:
Much better:

On a unit circle:

Can use periodicity
in either case

No longer any
reason to clus-
ter at the cen-
ter.

On a unit sphere:

~%/2)

Would be VERY BAD to consider -n <6 <n together with end conditions.

Utilize that data is periodic in both ¢ and 6-directions, and use
periodic, equi-spaced Fourier-PS.

EXAMPLE : Axi-symmetric eigenvalue problem in unit circle

Bessel's equation: Method 1: 'PSon[0,1]
wo ol _n:,_ _ n=0 w(0)=0
ua Ul -TFu= - {n:eo u(0)=0
n=01, .. Grid:
u(0) bounded, u(1)=0 re=(1-cos ¥y2 , k=0,1,...N
(From separation of variables,
Laplace's equation) Method 2: 'PSon[-1,1]
Exact ei I Are k=1.2 n even u() even
xact eigenvalues Anx, k=1,2,... n odd up odd
satisfy Jn(/Rnk) =0
Grid:

re = sinf% , k=01,..N

Test problem: n=7, k=1, A71 =~ 1229 .

Relative error ™"
in eigenvalue
A71~ 1229
1E-05
1E-10
1E-15
1E-20
+ } t } t
4 8 12 18 20
N level of discretization;
N+1 computational nodes




Spectral Elements
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2:D:
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Typically:

- Chebyshev- or Legendre grids
(stretched if in 2-D),

- Grid points at ends of interval,

- Domains coupled via characteristics

Concerns:

- Grid clustering appears excessive and unnecessary,
- Equations may not have characteristics,
- Complexity in 2-D and 3-D corners

.2-D TE Maxwell
JE, OH, E, E, Electric field
&(x, ) ) tx =3 yz —6(x,y) Ex H Magnetic field
OE, 0H, . -
= == — VK Permettivity, Permeability
&6,y ot ox ;(x’J’) E, :, < Electric and magnetic resistivity
OH, JE, E,
HEDZ = By e OGN,

Grid structure:

In strips  BPS

In background, space-time-steggered
6th order implicit (compact) FD:

o0 00
"R ENR

Test case with two perfectly electrically conducting cylinders
The dotted contours show the zero level

Propagation of plane wave in free space,
using same composit grid method




Test case with two dielectric media Accuracy comparison between different methods

o and different resolutions
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To achieve 3-PPW, we use a 144 x 36 grid in S~ and a 144 X 27 grid in S*

Solutions at t = 2 for the dielectric problem. Errors are seen more clearly in Figure 7.3.

PPW Fictitious point (FP) Characteristic upwind (CU)
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Errors at t = 2 for the dielectric problem. As an indication of the scale, the mazimum
error in the case of CU-4 is about 0.001; the mazimum of the solution is about 0.23.

Yee needs about 56 PPW to match the BPS methods with 4 PPW

CONCLUSIONS

Periodic PS:

Alternative approaches:
Collocate with trigonometric functions - take the derivative of the interpolant
Limit of equi-spaced FD formulas of orders / stencil width tending to infinity

Performance:

Superior computational efficiency for both linear and mildly nonlinear cases (e.g. nonlinear
waves, turbulence etc.)

Non-Periodic PS:

Alternative ag' proaches:
Collocate with orthogonal polynomials
- ., Global FD approximation based on end-clustered grid

Performance:
Accuracy superior to FEM and low order FD approximations, but severely degraded compared
to the periodic case
Time stepping stability in general hurt by grid clustering

Both cases:

Combine with MOL (Methods of Lines) for time stepping - most ODE solvers effective.




