Program in Applied Mathematics PROBABILITY AND STATISTICS PRELIMINARY EXAMINATION January 2013

Notice. Do four of the following five problems. Place an X on the line	1
opposite the number of the problem that you are NOT submitting for	2
grading. Please do not write your name anywhere on this exam. You	3
will be identified only by your student number, given below and on	4
each page submitted for grading.	5
Show all relevant work!	TOTAL.

STUDENT ID NUMBER: _

- 1. Consider i.i.d. random variables X_1, X_2, X_3, \ldots with finite mean μ and variance σ^2 . Parts (a) and (b) of this problem are unrelated.
 - (a) Explain why $\mathbb{P}\left(\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{\gamma n} X_i = \mu \gamma\right) = 1$, for each integer $\gamma \ge 1$.
 - (b) Show that if A and B are events such that $\mathbb{P}(A) = \mathbb{P}(B) = 1$ then $\mathbb{P}(A \cap B) = 1$.
 - (c) Use parts (a)-(b) to justify mathematically that if $\alpha, \beta \ge 1$ are given integers then there exists a constant c > 0 such that

$$\mathbb{P}\left(\lim_{n \to \infty} \frac{\sum_{i=1}^{\alpha n} X_i}{\sum_{j=1}^{\beta n} X_j} = c\right) = 1$$

and find c explicitly.

- 2. Consider a coin that comes up heads with probability p and tails with probability (1-p), where $0 is a known parameter. For each integer <math>k \ge 1$, let T_k denote the random number of tosses to observe k consecutive heads or k consecutive tails for the first time. For instance, if the first few tosses of the coin are t, h, h, t, t, t, ... then $T_1 = 1, T_2 = 3$ and $T_3 = 6$. Find a formula that relates $\mathbb{E}(T_k)$ to $\mathbb{E}(T_{k-1})$ and use it to determine $\mathbb{E}(T_k)$ explicitly for each $k \ge 1$.
- 3. Suppose Y_1, Y_2, \ldots are iid random variables that are uniform on $(0, \theta)$, with $\theta > 0$ unknown.
 - (a) Find a minimal sufficient statistic $T \equiv T(Y_1, \ldots, Y_n)$ for θ .
 - (b) Suppose that θ has the Pareto distribution with fixed, known parameters $\gamma > 0$ and $\lambda > 0$. The density $\pi(\cdot)$ of θ is $\pi(\theta) = (\lambda \gamma^{\lambda})/(\theta^{\lambda+1})$ for $\theta \ge \gamma$, and is 0 otherwise. Find the posterior distribution of θ given observations y_1, \ldots, y_n . What is the posterior mean, and how does it compare to your answer from part (a)?

4. Let (X, Y) be jointly distributed

$$f_{\theta}(x,y) = \exp\left(-\frac{x}{\theta} - \theta y\right), \qquad x, y \ge 0$$

for $\theta > 0$.

- (a) Find the Fisher information $I(\theta)$ for estimating θ based on a single observation (x, y).
- (b) Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be an iid sample. Find a two-dimensional sufficient statistic for θ .
- (c) Derive the maximum likelihood estimator (MLE), $\hat{\theta}_n$ for θ based on $(X_1, Y_1), \ldots, (X_n, Y_n)$. Give an intuitive explanation for the functional form of this MLE.
- (d) Find a representation of the exact distribution of $\hat{\theta}_n^2/\theta^2$. For example, $N(0,1)/\sqrt{(1/m)\chi_m^2}$; do *not* compute the density!
- 5. In what follows, Markov processes are assumed to be time-homogeneous and irreducible. Consider a Markov process $X = (X_t)_{t \ge 0}$ with state space $S = \{1, 2, 3\}$ and rate-matrix:

$$Q := \begin{bmatrix} \cdot & \alpha_1 & \alpha_2 \\ \beta_1 \alpha_1 / \beta_2 & \cdot & \alpha_3 \\ \beta_1 \alpha_2 / \beta_3 & \beta_2 \alpha_3 / \beta_3 & \cdot \end{bmatrix},$$
(1)

where $\alpha_i \ge 0$ and $\beta_i > 0$ for i = 1, 2, 3 and the terms in the diagonal are appropriately chosen so that each row adds up to zero.

- (a) Determine the stationary distribution π of X and explain why it is unique. Furthermore, explain why X is time-reversible if X_0 has distribution π .
- (b) Conversely, show that if a stationary Markov process over the state space $\{1, 2, 3\}$ is time-reversible then its rate-matrix must be of the form stated in equation (1).
- (c) Certain mutation models in Molecular Evolution use time-reversible stationary Markov processes over the state space $\{A, C, G, T\}$ to model substitutions of a DNA base at a given position in this sequence. Based on the findings in parts (a) (b) claim the most general form of the rate

Based on the findings in parts (a)-(b), claim the most general form of the ratematrix of a time-reversible stationary Markov processes over the state space $\{1, 2, 3, 4\}$. You do not need to justify your answer!