Program in Applied Mathematics PROBABILITY AND STATISTICS PRELIMINARY EXAMINATION January 2010

<u>Notice</u> : Do four of the following five problems. Place an X on the line	1
opposite the number of the problem that you are NOT submitting	2
for grading. Please do not write your name anywhere on this exam.	3
You will be identified only by your student number, given below and	4
on each page submitted for grading. Show all relevant work.	5
	Total

Student Number _____

1. There are k + 1 coins in a box labeled 0 through k. Coin i, when flipped, will result in "heads" with probability i/k, for i = 0, 1, ..., k. A coin is random selected from the box and repeatedly flipped. ESTIMATE all of the following probabilities for large k.

(*Hint:* You may find it useful at some point in your solution to think about the Beta probability distribution!)

- (a) If the first n flips are all heads, find the conditional probability that the (n + 1)st flip is also heads?
- (b) If the first n flips resulted in r heads and n r tails, show that the probability that the (n + 1)st flip results in heads is (r + 1)/(n + 2).
- 2. Let U be a uniform random variable on the interval (0, 1). Let c be a constant such that 0 < c < 1. Let V be a continuous random variable with some distribution on (0, 1) that is independent of U.
 - (a) Show that $\min\left(\frac{U}{c}, \frac{1-U}{1-c}\right)$ has a uniform(0,1) distribution.
 - (b) Find

$$P\left(\min\left(\frac{U}{V},\frac{1-U}{1-V}\right) < c\right).$$

- 3. Let X_1, X_2, \ldots, X_n be a random sample from the normal distribution with mean μ and variance 1. Suppose that we want to estimate $\tau(\mu) = P(X_1 > 0)$. For the following, you may leave your answers in terms of $\Phi(\cdot)$, the cdf for the standard normal distribution.
 - (a) Show that $X_1 X_2$ and $X_1 \overline{X}$ are independent of \overline{X} .
 - (b) Give an unbiased estimator of $\tau(\mu)$.

- (c) Find the UMVUE (uniformly minimum variance unbiased estimator) of $\tau(\mu)$.
- (d) Find the MLE (maximum likelihood estimator) of $\tau(\mu)$.
- 4. Let X_1, X_2, \ldots, X_n be a random sample from the uniform distribution on the interval $(\theta, \theta + 1)$. Suppose that we wish to test the hypothesis $H_0: \theta = 0$ versus $H_1: \theta > 0$ using the test

reject
$$H_0$$
 if $X_{(1)} > 1$ or $X_{(n)} > c$

where c is a constant to be determined.

- (a) Find c such that the test will have level of significance α .
- (b) Find the power function for your test.
- (c) Is your test the UMP (uniformly most powerful) test? Explain.
- 5. Starting at time 0, satellites are launched at times of a Poisson process with rate λ . Suppose that each satellite, once launched, has a lifetime, independent of all others and of the launch process, that has cdf F and mean μ . Let X(t) be the number of launched and working satellites at time t.
 - (a) Find the distribution of X(t).
 - (b) Let $t \to \infty$ to show that the limiting distribution is $Poisson(\lambda \mu)$.
 - *Hint 1: Given that n satellites have launched, consider writing the surviving satellites*
 - $\begin{array}{l} \text{Hint 1: Given that it saterities have trainered, constact writing the satering stressing stressin$