Program in Applied Mathematics PROBABILITY AND STATISTICS PRELIMINARY EXAMINATION January 2014

<u>Notice</u> : Do four of the following five problems. Place an X on the line	1
opposite the number of the problem that you are NOT submitting	2
for grading. Please do not write your name anywhere on this exam.	3
You will be identified only by your student number, given below and	4
on each page submitted for grading. Show <u>all</u> relevant work.	5
	Total

Student Number _____

1. Consider $U \sim Uniform(0,1)$ and let R be a continuous random variable with probability density function $f(r) = re^{-r^2/2}$, for r > 0. Define:

$$X := a + b \cdot R \cos(2\pi U)$$

$$Y := c + d \cdot R \sin(2\pi U)$$

where a, b, c, d are constants such that $b \cdot d \neq 0$.

Assuming that R and U are independent, respond:

- (a) Are X and Y independent?
- (b) What are the marginal distributions of X and Y?
- (c) Let $V \sim Uniform(0,1)$ be independent of (U,R). Determine a function of V that has the same distribution as R, and explain how you could use it to simulate (X,Y) using the random vector (U,V).
- 2. Let X_1, X_2, \ldots denote an i.i.d. sequence of Bernoulli(p) random variables and consider the binary sequence defined as $Y_i := \Phi(X_i, X_{i+1})$, for $i \ge 1$, where $\Phi : \{0, 1\}^2 \to \{0, 1\}$ is the indicator function of (1, 1) i.e. $\Phi(u, v) = 1$ when (u, v) = (1, 1) and $\Phi(u, v) = 0$ otherwise. For $n \ge 1$, determine:
 - (a) the expectation of $\sum_{i=1}^{n} Y_i$, and
 - (b) the variance of $\sum_{i=1}^{n} Y_i$.

Next, define q_n as the probability that $\sum_{i=1}^n Y_i = 0$. Determine:

(c) a recursion and initial conditions that uniquely determine the sequence $(q_n)_{n\geq 1}$.

3. Consider i.i.d. random variables X_1, \ldots, X_n generated from the Maxwell density:

$$f_{\theta}(x) = \sqrt{\frac{2}{\pi}} \frac{x^2}{\theta^3} e^{-\frac{1}{2}\frac{x^2}{\theta^2}}, \qquad x > 0, \ \theta > 0.$$

Note this family satisfies the "nice" regularity properties that are useful for examining maximum likelihood estimators. This density describes the distribution of speeds of molecules in thermal equilibrium.

- (a) Derive the score function for one observation and use it to find $E(X^2)$.
- (b) Find the maximum likelihood estimator for θ , θ_n .
- (c) Find the asymptotic distribution of $\hat{\theta}_n$.
- (d) Find the UMVUE for estimating $3\theta^2$. Does this estimator achieve the Cramér-Rao lower bound?
- 4. Let X_1, \ldots, X_n be i.i.d. *Exponential* random variables with rate $\theta > 0$, i.e.

$$f_{\theta}(x) = \theta e^{-\theta x}, \qquad x > 0.$$

The goal in this problem is to develop a likelihood ratio test for the one-sided alternative $H_0: \theta = \theta_0$ vs. $H_a: \theta > \theta_0$.

- (a) Find $\sup_{\theta \ge \theta_0} f_{\theta}(x_1, \dots, x_n)$. HINT: Your answer will depend on a relationship between \overline{X} and θ_0 .
- (b) Write down the likelihood ratio Λ_n ; is it increasing or decreasing in \overline{X} ?
- (c) What is the form of the critical region for the likelihood ratio test in terms of \overline{X} ? You do <u>not</u> need to find the exact region.
- 5. Consider a cab-stand at an airport where taxis and small groups of customers arrive with rate $\lambda > 0$ and $\mu > 0$, respectively, with $\lambda < \mu$. Suppose that taxis wait no matter how many other taxis are present and depart as soon as a new group solicits them. Moreover, new customers will immediately seek alternative transportation if no taxi is available by the time they arrive.

Let X_t denote the number of taxis at the cab-stand at time t.

Assuming that $X = (X_t)_{t \ge 0}$ is a time-homogeneous Markov process, determine:

- (a) the rate matrix of X;
- (b) the stationary distribution π of X;
- (c) the average number of taxis waiting at the cab-stand; and
- (d) the asymptotic fraction of arriving customers that will take a taxi.

To receive full credit you must simplify your answers in parts (c)-(d).