Program in Applied Mathematics PROBABILITY AND STATISTICS PRELIMINARY EXAMINATION August 2008

1. _____ 2. ____

3. _____

4. _____

Notice: Do four of the following five problems. Place an X on the line opposite the number of the problem that you are **NOT** submitting for grading. Please do not write your name anywhere on this exam. You will be identified only by your student number, given below and 5. ____ Total ____ on each page submitted for grading. Show all relevant work.

Student Number _

- 1. Let X_1, \ldots, X_n be a random sample from $Binomial(m, \theta)$ where m is known.
 - (a) Show that $T = \sum_{i=1}^{n} X_i$ is complete and sufficient.
 - (b) Using the Lehmann-Scheffe theorem or otherwise, find the uniformly minimum variance unbiased estimator (UMVUE) for $P(X \leq 1)$.
- 2. Suppose that c_1, c_2, \ldots, c_n are known positive constants and that X_i has a gamma distribution with

 $\mathsf{E}[X_i] = 2\theta c_i$ and $Var[X_i] = 2(\theta c_i)^2$

for i = 1, 2, ..., n and $\theta > 0$. Assume that $X_1, X_2, ..., X_n$ are independent.

- (a) Compute the Cramér-Rao lower bound (CRLB) for the variance of all unbiased estimators of θ .
- (b) Find the maximum likelihood estimator for θ . Call it $\hat{\theta}_{ML}$.
- (c) Is $\hat{\theta}_{ML}$ unbiased? Does it achieve the CRLB?
- (d) Find the UMVUE of θ . (Hint: Don't make this too much work.)
- (e) Consider the class of all <u>unbiased</u> estimators for θ of the form $\hat{\theta} = \sum_{i=1}^{n} d_i X_i$. Find d_1, d_2, \ldots, d_n so that $\hat{\theta}$ and minimizes the mean-squared error $\mathsf{E}[(\theta - \hat{\theta})^2]$ (Hint: Don't make this too much work.)
- 3. Let X_1, X_2, X_3 be a random sample from the $N(\mu, 1)$ distribution and let Y_1, Y_2, Y_3 be an independent random sample from a N(0, 1) distribution. Suppose that we are unable to observe the individual X's. Consider the random variables defined as $W_i = X_i + Y_i$ for i = 1, 2, 3 and $W_4 = X_1 + X_2$.

Let $\mu_1 > 0$ be a known constant.

(a) Find the best (most powerful) test of size α of $\mu = 0$ versus $\mu = \mu_1$, based only on observing W_1 , W_2 , and W_3 .

- (b) Find the best (most powerful) test of size α of $\mu = 0$ versus $\mu = \mu_1$, based on observing W_1 , W_2 , W_3 , and W_4 .
- (c) Is there a uniformly most powerful test of $\mu = 0$ versus $\mu > 0$ based on W_1 , W_2 , and W_3 ? Explain.

4. A subset of 4 dots is selected from a 4 by 3 rectangular array of dots depicted below.

- (a) What is the probability that no dot from the first row is selected?
- (b) Find the expected number of rows with no selected dots.
- (c) Find the variance of the number of rows with no selected dots.
- 5. Let N(t) be a Poisson counting process with rate λ . Let G(t) be a Gamma process, with parameters α and β , which is defined as follows. G(t) has stationary independent increments, with G(0) = 0 and $G(s + t) G(s) \sim \Gamma(\alpha t, \beta)$, where $X \sim \Gamma(\alpha, \beta)$ is a non-negative random variable with density $f(x) = \frac{1}{\Gamma(\alpha)} \frac{1}{\beta} (x/\beta)^{\alpha-1} e^{-x/\beta}$.

Define a counting process M(t) by M(t) = N(G(t)).

- (a) Show that M(t) has stationary and independent increments.
- (b) Find $\mathsf{E}[M(s+t) M(s)]$ and Var[M(s+t) M(s)].
- (c) Show that

$$P(M(s+t) - M(s) = k) = \frac{\Gamma(k + \alpha t)(\lambda \beta)^k}{\Gamma(\alpha t)k!(\lambda \beta + 1)^{k + \alpha t}}.$$