
Comet Mission: 1998P/Willis

Due Thursday, December 7 at 11:59 p.m. on D2L

You must read all instructions on the course webpage in the Projects section,
in addition to these instructions (beginning to end!). Failure to do so may result
in a loss of points, or possibly no credit for the lab.

1 Introduction

Due to their peculiar appearance in the night sky, comets have been admired and studied
for more than 2200 years. It is thought that comets have been largely unperturbed since the
formation of the solar system. Thus, scientists use comets to get a glimpse at the conditions
of the early solar system. It is also theorized that comets carried a significant portion of
water and complex molecules to primordial Earth.

See Figure 1 for a diagram of the large-scale structure of a comet. The most noticeable
features of a comet are a loosely packed nucleus, which is comprised of dust, ice, and small
rocks; a coma comprised of dust and other molecules; and sometimes dust and ion tails.

In recent years there have been a couple high-profile comet exploration missions: NASA’s
Deep Impact and ESA’s Rosetta. These missions aimed to (more-or-less) directly study the
composition of the nucleus of comets. The Deep Impact mission sent a massive (370 kg)
impactor into comet 9P/Temple’s nucleus and studied the ejected debris; the Rosetta mission
landed a (100 kg) lander on the surface of comet 67P/Churyumov-Gerasimenko!

In this lab, you will study various properties of a comet and its gravitational potential
field. You will then analyze sending a lander to the surface of the nucleus and an orbiter
collecting coma dust while orbiting the nucleus. You must also use the MKS system of units
(e.g. m, kg, s, N, J, ...); you don’t want to repeat the mistakes made on the Mars Climate
Orbiter!
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Figure 1: Large-scale structure of a comet. Source: http://wisp.physics.wisc.edu/

astro104/lecture26/F17_20.jpg.

2 Comet properties

Telescope observations indicate that the nucleus of comet 1998P/Willis is a solid ellipsoid
with principal axes a = 3025 m, b = 2520 m, and c = 6050 m:

x2

a2
+
y2

b2
+
z2

c2
≤ 1.

From previous comet missions, we expect the mass density ρcomet to be approximately
constant and ρcomet = 400 kg/m3.

1. Use the Mathematica function ContourPlot3D to visualize the nucleus. You might con-
sider using the options BoxRatios->{a/c,b/c,1}, Mesh->None, ContourStytle->{Gray}.
Be sure to label the axes.

2. Set up and evaluate triple integrals to find the following quantities. You should
consider using NIntegrate. In each case, there may exist simple expressions for the
desired quantity, but you must use Calculus 3 techniques. Remember to report your
answers in the MKS system of units.

(a) The mass of the comet’s nucleus, mcomet.
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(b) The moment of inertia about each coordinate axis (i.e. Ix, Iy, Iz).

(c) The surface area of the comet’s nucleus, SAcomet (use a double integral for this).

3 Multipole expansion

In order to safely land a spacecraft on the surface of the comet’s nucleus, you need an
accurate formula for the gravitational potential V around the nucleus. Let x = 〈x, y, z〉 be
the Cartesian coordinates of space and r = 〈ξ, η, ζ〉 be Cartesian integration variables. The
gravitational potential of a solid body is given by

V (x) = −
∫∫∫

Ω

G

|x− r|
dm(r) = −

∫∫∫
Ω

G

|x− r|
ρ(r)dV (r),

where r is the integration variable (not r from cylindrical coordinates!), Ω represents the solid
body, and G = 6.67408 × 10−11 Nm2/kg2 is the universal gravitational constant (in MKS,
V has units J/kg). Note that the gravitational potential is different from the gravitational
potential energy. We can compute the potential energy of an object of mass m in the field
produced by the potential V via U = mV .

Writing the above formula in terms of x, y, z and the integration variables ξ, η, ζ, we have

V (x, y, z) = −
∫∫∫

Ω

G√
(x− ξ)2 + (y − η)2 + (z − ζ)2

ρ(ξ, η, ζ)dV (ξ, η, ζ).

The notation dV = dV (ξ, η, ζ) is used to make it clear that ξ, η, and ζ are integration
variables; the above formula is still just a normal triple integral.

For the comet, this integral cannot be fully evaluated symbolically. However, we can use
NIntegrate to find a good approximate value for a fixed (x, y, z).

3. Define a function using NIntegrate to compute the (true) gravitational potential around
the comet. You may want to use the following code snippet:

V[x_?NumericQ, y_?NumericQ, z_?NumericQ] := NIntegrate[...];

With this function, we can evaluate the potential for any given point (x, y, z), but we cannot
take x, y, or z derivatives of this function. For example, to find the force on a particle of
mass m due to the nucleus, we would use F = −m∇V . So, we need another method of
computing V .
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An alternative is to use the multipole expansion to find an approximation Vm(x) to
V (x). The basic idea of the multipole expansion is to expand the true potential as an infinite
series. One can then truncate the series, resulting in an approximation of the true potential,
much like one could do with a Taylor series. A complete derivation of the multipole expansion
is beyond the scope of this project, but we can use it nonetheless.

For the comet, the multipole expansion is given by

V (x) = − G

|x|
mcomet −

G

|x|3

∫∫∫
Ω

|r|2 3 cos2 θ − 1

2
ρcomet(r)dV (r) + · · · ,

where r is again the integration variable, and θ = θ(x; r) is the angle between x and r.
It turns out that the first two terms are symbolically integrable, and so we can define the
approximation

Vm(x, y, z) = − G√
x2 + y2 + z2

mcomet

− G

(x2 + y2 + z2)3/2

∫∫∫
Ω

(ξ2 + η2 + ζ2)
3 cos2(θ(x, y, z; ξ, η, ζ))− 1

2
ρcomet(ξ, η, ζ)dV (ξ, η, ζ).

4. Compute Vm(x, y, z) in Mathematica using Integrate, and plot V (0, 0, z) and Vm(0, 0, z)
over z ∈ [c, 2c]. Be sure to label the axes (with MKS units) and provide a legend for the
plot. Note that Vm(x) should be a good approximation of V (x) for x outside the nucleus
(but not inside).

4 Landing on the comet

Once you have the (approximate) gravitational potential, Vm(x), the astrodynamicists on
your team can design the orbit of the orbiter and the landing trajectory of the lander. Let’s
say they design the trajectory of the lander to be

rlander(t) = 〈 − 7000 + 0.001t+ 3× 10−6t2,

− 5000 + 0.001t+ 2× 10−6t2,

10000− 0.05t− 2× 10−6t2〉,

where t ≥ 0 is the time in seconds after releasing the lander from the orbiter and rlander is
measured in meters. The lander will maintain this trajectory by firing maneuvering thrusters.

5. Find the time tland when the lander lands on the surface of the comet. Use this to plot
the path of the lander along with the nucleus, a green sphere at the release location, and
a white sphere at the landing site.
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6. What is the initial velocity of the lander? The mass of the lander is mlander = 105 kg.
What is the initial force on the lander due to the comet’s gravity (use Vm)?

7. Next you should determine if the landing speed is safe. The lander has harpoons that will
attempt to secure the lander to the soft surface of the nucleus, but they will only work
if the lander’s landing speed is less than 0.5 m/s. If the lander impacts with too high a
speed, it may bounce off the nucleus and become lost in space.

(a) What is the velocity of the lander at impact if it follows the path rlander(t)? Does the
lander make a safe landing in this case?

(b) Compute the work done on the lander by the comet’s gravity in a few different ways.
Note that the work done by gravity will be the same if the lander uses its thrusters or
falls freely under the influence of gravity. First, directly compute the work done using
a line integral of the force on the lander along the path of the lander; you should use
Vm for this. Second, use conservation of energy with Vm, and check that it agrees
with the first method. Pages 785-786 of the textbook discuss conservation of energy.

(c) Use the above calculations to determine the work done by the lander’s thrusters in
slowing its descent when it follows the path rlander(t).

(d) Now consider what would happen if the lander didn’t use its thrusters to control its
descent. Instead, it would start at the original release point in orbit with the same
initial speed and land in the same spot, but would free-fall to the nucleus. Compute
its free-fall landing speed using conservation of energy with Vm. Does the lander make
a safe landing in this case?

5 Orbiting in the coma

The astrodynamicists on your team also designed the orbit of the orbiter:

rorbiter(t) = 〈 − 1769.42− 5230.58 cos(0.0001t)− 5362.31 sin(0.0001t),

1233.56− 6233.56 cos(0.0001t) + 4499.51 sin(0.0001t),

4187.62 + 5812.38 cos(0.0001t)〉.

Again t is in seconds and rorbiter is measured in meters.

8. Add the path of the orbiter (over one period) to your plot of the comet and lander
trajectory.

While the lander is studying the surface of the nucleus, the orbiter will collect dust in
the coma. The orbiter has a forward looking collector/analyzer with area Adet = 0.04 m2

that will capture and analyze dust that falls into it. The mass density of dust in the coma
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nearby the nucleus is approximately ρdust = 2 × 10−6 kg/m3. The velocity field of the dust
is given by

vdust(x, y, z) = 1.7〈e−4×10−8x2

, e−4×10−8y2 , e−1.6×10−9z2〉m/s.

Assume the mass flux of dust is constant across the surface of the collector. Note that
the amount of mass collected depends on the relative velocity of the orbiter and dust,
vorbiter − vdust, and also the angle between the normal to the collector and the dust velocity.
The following integral in t will approximate the amount of dust collected in one orbit:

mcollect = Adet

∫ Torbit

0

max {0, (vorbiter(t)− vdust(rorbiter(t))) ·Torbiter(t)} ρdust(rorbiter(t))dt,

where Torbit is the period of one orbit, vdust(rorbiter(t)) is the dust velocity along the path of
the orbiter, Torbiter(t) is the unit tangent vector of the orbiter’s path, and ρdust(rorbiter(t)) is
the density of dust along the orbiter’s path.

9. Compute the mass collected in a single orbit. The mass should be about a few grams.
You will probably want to use NIntegrate.
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