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Abstract—We study synchronization of Kuramoto os-
cillators in strongly modular networks in which the struc-
ture of the network inside each community is averaged.
We find that the dynamics of the interacting communities
can be described as an ensemble of coupled planar oscil-
lators. In the limit of a large number of communities, we
find a low dimensional description of the level of synchro-
nization between the communities. In this limit, we de-
scribe bifurcations between incoherence, local synchrony,
and global synchrony. We compare the predictions of this
simplified model with simulations of heterogeneous net-
works in which the internal structure of each community
is preserved and find excellent agreement. Finally, we in-
vestigate synchronization in networks where several layers
of communities within communities may be present.

1. Introduction

Large networks of coupled oscillators are found in
many applications of science and engineering, including
synchronized flashing of fireflies [1], cardiac pacemaker
cells [2], oscillations of pedestrian bridges [3], and circa-
dian rhythms in mammals [4]. The Kuramoto model [5]
has become a paradigm for modeling and studying emer-
gence of collective behavior in the form of synchro-
nization. In the Kuramoto model each oscillator is de-
scribed by a phase angleθn that evolves aṡθn = ωn +

K
∑N

m=1 Anm sin(θm−θn),whereωn is the intrinsic frequency
of oscillatorn, K is the global coupling strength,Anm en-
codes the network topology, andn,m = 1, . . . ,N.

The path to synchrony in typical non-modular networks
is characterized by incoherence for smallK, followed by
the emergence of a single synchronized cluster whenK sur-
passes a critical valueKc [6]. However, when the network
structure is modular, synchrony can occur hierarchically:
first locally within each community, and then globally as
communities synchronize with one another. Several studies
on synchronization in modular networks exist [7, 8, 9, 10],
but few analytic results for large networks of heterogeneous
oscillators with many communities exist.

In this paper we study a system of equations previously
explored in Refs. [8, 10, 11] using the dimensionality re-
duction techniques of Ott and Antonsen [11]. We find an-
alytical expressions for local and global order parameters
describing synchronization within communities and on the
whole network, respectively, and completely characterize

the phase space of the system.
This paper is organized as follows. In Sec. 2 we sum-

marize the results from Ref. [10] where network structure
within communities is averaged. In Sec. 3 we compare
the results of the averaged system to numerical simulations
where the structure of each community is preserved. In
Sec. 4 we show that results from Sec. 2 generalize to sys-
tems with multiple levels of community structure by study-
ing the case of three levels. In Sec. 5 we conclude with a
brief discussion.

2. Hierarchical Synchrony in Two-level Hierarchical
Networks

We consider a system ofC communities, labeledσ =
1, . . . ,C, each containingNσ oscillators. Oscillatorn in
communityσ has phaseθσn and evolves according to [8, 11]

θ̇σn = ω
σ
n +

C∑

σ′=1

ησ′
Kσσ′

Nσ′

Nσ′∑

m=1

sin(θσ
′

m − θσn ), (1)

whereωσn is its intrinsic frequency,Kσσ′ is the coupling
between oscillators in communitiesσ andσ′, andησ is the
fraction of oscillators in communityσ.

For analytic tractability, we make the following sim-
plifications. First, we assume all communities are of the
same size, i.e. Nσ = N and ησ = C−1. In addition,
we assume that (i) the coupling strength between oscilla-
tors within the same community is much larger than the
coupling strength between oscillators in different commu-
nities and (ii) the intrinsic frequency for an oscillator is
drawn from a distribution specific to its own community.
To ensure condition (i) for a large number of communi-
ties, we letKσσ′

= Ck if σ = σ′, andK otherwise, where
k and K are of the same order. Finally, to ensure condi-
tion (ii) we assume that the frequencyωσn is drawn from
a distributiongσ(ω). We will assume that this distribu-
tion is Lorentzian with uniform spreadδ and community-
specific meanΩσ: gσ(ω) = π−1δ/[δ2

+ (ω−Ωσ)2]. Further-
more, the meansΩσ are drawn from their own distribution
G(Ω) which is Lorentzian with spread∆ and mean zero:
G(Ω) = π−1

∆/(∆2
+ Ω

2). Parametersδ,∆ = 1 are used for
all figures presented. A discussion of how some of these
assumptions can be relaxed can be found in Ref. [10].

Finally, to characterize the degree of local and global
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Figure 1: Phase space for Eq. (1) withδ,∆ = 1. Regions
A, B, C, and D (described in the text) are denoted in red,
yellow, green, and blue, respectively, with bifurcations (i)-
(iv) indicated by solid and dashed curves.

synchrony, we define the complex order parameters

zσ = rσeiψσ =
1
N

N∑

m=1

eiθσm , Z = ReiΨ
=

1
C

C∑

σ=1

zσ, (2)

such thatrσ measures the degree of local synchrony in
communityσ and R measures the degree of global syn-
chrony over the entire network. To measure the average
degree of local synchrony we introducer = 1

C

∑
σ rσ.

The phase space of this system as a function ofK, k was
found in [10] in the limitsN,C → ∞ and is shown in Fig-
ure 1. For smallK, k (A: red) both the average local degree
of synchronyr and global degree of synchronyR are zero.
If k is increased andK is kept sufficiently small (B: yellow)
local synchrony is non-zero but no global synchrony exists.
Finally, for sufficiently largeK (C: green and D: blue) both
local and global synchrony are non-zero. As we will dis-
cuss, these regions differ in how communities synchronize
with one another. Bifurcation curves between these differ-
ent states are labelled (i)–(iv) and will be discussed below.
We now summarize some results from Ref. [10] on local
and global synchrony.

2.1. Local synchrony

To classify local synchrony we consider the continuum
limit N → ∞ and introduce the disributionfσ(θ, ω, t) that
describes the density of oscillators with phase and fre-
quencyθ andω at timet. After a dimensionality reduction
(described in detail in Refs. [10, 11]), we find thatrσ and
ψσ evolve according to the 2C-dimensional planar oscilla-
tor system

ṙσ = −rσδ +
(
k − K

C

)
rσ

1− r2
σ

2
+ K

1− r2
σ

2
R cos(Ψ − ψσ) (3)

ψ̇σ = Ωσ + K
1+ r2

σ

2rσ
R sin(Ψ − ψσ). (4)

In regions A and B, whereR = 0, the communities de-
couple and the steady-state degree of local synchrony for
each community is given by

rσ =


0 if k − K/C ≤ 2δ,√

1− 2δ
k−K/C otherwise,

(5)

and the onset of local synchrony is given by bifurcation (i)
k − K/C = 2δ.

Now we analyze regions C and D. Given a steady-state
R value (to be discussed later) it can be shown [10] that
in region C all communities lock and their degree of local
synchronyrσ is given implicitly by

rσδ =

(
k − K

C

)
rσ

1− r2
σ

2

+KR
1− r2

σ

2

√

1−
4Ω2

σr2
σ

K2R2(r2
σ + 1)2

. (6)

In region D only a fraction of the the communities lock,
which are precisely those communities with sufficiently
small mean frequency (in magnitude) given by

|Ωσ| ≤ Ω̃ ≡ KR

1−
δ2

(k − K
C − δ)2


−1/2

, (7)

and have a degree of local synchrony given by Eq. (6). The
drifting communities turn out to have solutions whererσ
oscillates with approximate mean

√
1− 2δ/(k − K/C). Bi-

furcation (ii) is given byk−K/C = 2δ, which can be found
by sending̃Ω→ ∞ in Eq. (7).

2.2. Global synchrony

To classify global synchrony we consider the continuum
limit C → ∞ and introduce the distributionF(ψ,Ω, r, t)
that describes the density of communities with phase, mean
frequency, and degree of local synchronyψ, Ω, andr at
time t. After a dimensionality reduction (described in detail
in Ref. [10]), we find thatR evolves according to

Ṙ = −∆ + K
4

R(1+ r̂2)

(
1− R2

r̂2

)
, (8)

where r̂ solves Eq. (6) forΩ = −i∆, while Ψ̇ = 0. The
steady-state degree of global synchrony is given by

R =


0 if K ≤ 4∆

r̂2+1 ,

r̂
√

1− 4∆
K(r̂2+1) otherwise,

(9)

which can be solved consistently with ˆr. Sending ˆr →√
4∆/K − 1+ yields an onset of global synchrony given by

k = δK
K−2∆ −

K
2 corresponding to bifurcations (iii) and (iv).

We now consider the implications of our analysis on the
hierarchy of local and global synchrony. Starting in region
A, the onset of local and global synchrony will occur sep-
arately if bifurcation (i) is reached first, otherwise bifur-
cation (iii) is reached first and they occur simultaneously.
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Figure 2: Degree of global and local synchrony (blue cir-
cles and red triangle) along paths (a)k = 3K/2 and (b)
k = K/2 from simulation withN,C = 1000. Theoretical
predictions are plotted in dashed black.

Given a pathk = mK whereK is increased from zero, if
m > mc =

2δ
∆−δ+

√
∆2+δ2+6δ∆

then the relative ratio of local
to global coupling is strong enough to produce hierarchical
synchrony, wherer > 0 beforeR > 0. On the other hand,
if m < mc global effects dominate at onset andr > 0,R > 0
occur simultaneously. We plot the steady-state values of
R and r from simulations (blue circles and red triangles)
and theory (dashed black curves) resulting from increasing
K while k = mK for N,C = 1000 in Fig. 2 form = 3/2
and 1/2 [subfigures (a) and (b), respectively]. We observe
a hierarchical separation of the onset of local and global
synchrony form = 3/2 but not form = 1/2.

3. Numerical Experiments

In this Section, we test the usefulness of the theoreti-
cal results in Section 2 in predicting behavior of non-trivial
networks. We consider a system given by

θ̇σn = ω
σ
n +

K̃
N

C∑

σ′=1

N∑

m=1

Aσσ′

nm sin(θm − θn), (10)

whereAσσ′

nm encodes the network structure between oscilla-
torsn andm in communitiesσ andσ′, respectively, and̃K
is the global coupling strength. We consider the case where
the network in communityσ is an Erdős-Rényi random net-
work. In order to attain modularity, we assume that when
σ = σ′, Aσσ′

nm is 1 with probabilityp1 ∼ 1 and 0 otherwise,
and that whenσ , σ′, Aσσ′

nm is 1 with probabilityp2 ≪ 1
and 0 otherwise. Using the mean degrees〈d〉1,2 = N p1,2 we
can estimate effectivek,K values ask = 〈d〉1K̃/N = K̃ p1

andK = C〈d〉2K̃/N = CK̃ p2.
In Fig. 3 we plot the degree of global and local syn-

chrony from simulating Eq. (10) on Erdős-Rényi networks
(blue circles and red triangles) compared to theoretical pre-
dictions from the community-averaged case (dashed black)
using the corresponding values ofk andK estimated in the
previous paragraph. Parameters areN = 200, C = 50,
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Figure 3: Degree of global and local synchrony (blue cir-
cles and red triangle) for Erdős-Rényi network simulations
with N = 200,C = 50, p1 = 0.95, andp2 = 0.0126 (a)
and 0.038 (b), respectively. Theoretical predictions from
the averaged system are plotted in dashed black.

p1 = 0.95, andp2 = 0.0126 and 0.038 [subplots (a) and
(b), respectively]. The agreement between the theoretical
prediction from the community-averaged system and ac-
tual simulation of the Erdős-Rényi networks is excellent.

4. Hierarchical Synchrony in Multiple-Levels

We now consider a system with three levels of commu-
nity structure: a network of oscillators withC communities
where each community containsS sub-communities, and
each sub-community containsN oscillators that evolve ac-
cording to

θ̇n,γ,σ = ωn,γ,σ +
1
C

C∑

σ′=1

1
S

S∑

γ′=1

Kσσ′

γγ′

N

N∑

m=1

sin(θm,γ′,σ′ − θn,γ,σ),

whereθn,γ,σ andωn,γ,σ denote the phase and frequency of
oscillatorn in sub-communityγ of communityσ andKσσ′

γγ′

denotes the coupling strength between oscillators in sub-
communityγ of communityσ and sub-communityγ′ in
communityσ′. To ensure multi-level community structure
we assume thatKσσ′

γγ′ = S CK1 for γ = γ′, σ = σ′, CK2

for γ , γ′, σ = σ′, and K3 otherwise. In analogy with
the two-level system, the frequenciesωn,γ,σ are drawn from
the Lorentziangσγ (ω) = π−1δ/[δ2

+ (ω − Ωγσ1 )2], Ωγσ1 is
drawn from the LorentzianGσ(Ω) = π−1

∆/[∆2
+(Ω−Ωσ2 )2],

andΩσ2 is drawn from the LorentziañG(Ω) = π−1
∆̃/(∆̃2

+

Ω̃
2). To measure the degrees of local, mid-level, and global

synchrony, we use the order parameters

zγσ1 =
1
N

N∑

n=1

eiθn,γ,σ , zσ2 =
1
S

S∑

γ=1

zγσ1 , z3 =
1
C

C∑

σ=1

zσ2 ,

whose magnitudesrγσ1 , rσ2 , andr3 measure the degrees of
synchrony and have phasesψγσ1 , ψσ2 , andψ3. We measure
the average local and mid-level degrees of synchrony by
r1 =

1
S C

∑
γ,σ rγσ1 andr2 =

1
C

∑
σ rσ2 .
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Figure 4: Degree of global, mid-level, and local synchrony (blue circles, red triangle, and green crosses) for three com-
munity levels withN = 500,S = 200,C = 120. Coupling is described by pathsK2 = aK3, K1 = bK2 for a, b = 3

2 ,
3
2 (a),

3
2 ,

1
2 (b), 1

2 ,
3
2 (c), and1

2 ,
1
2 (d).

We investigate the hierarchy of local, mid-level, and
global synchrony by moving through pathsK2 = aK3,
K1 = bK2 as we increaseK3 from zero. In Fig. 4 we plot
the resultingr3, r2, andr1 (blue circles, red triangles, and
green crosses, respectively) fora, b = 3

2 ,
3
2 (a), 3

2 ,
1
2 (b),

1
2 ,

3
2 (c), and1

2 ,
1
2 (d). Onsets of local, mid-level, and global

synchrony, denotedk1, k2, andk3, respectively, are indi-
cated by arrows. Fora, b = 3

2 ,
3
2 the onsets of each level

of synchrony are separated, while fora, b = 1
2 ,

1
2 all occur

simultaneously. Fora, b = 3
2 ,

1
2 mid-level and global syn-

chrony occur simultaneously and are separated from local
onset while fora, b = 1

2 ,
3
2 local and mid-level synchrony

occur simultaneously and are separated from global onset.

5. Discussion

We have presented analytical results describing local and
global synchrony in modular networks where the network
structure within each community is averaged. Furthermore,
we have shown via numerical simulations that these analyt-
ical results predict very well the dynamics of non-trivial
networks with community-wise Erdős-Rényi topologies.
Importantly, analytical results indicate whether the path
to synchrony occurs hierarchically or not. The effect of
stronger heterogeneity on hierarchical synchrony in modu-
lar networks remains an open area of research. Finally, we
have investigated hierarchical synchrony in networks with
several layers of community structure and have found that
depending on the relative ratios of the coupling strengths,
synchrony of different layers can occur either hierarchically
or simultaneously as in the two-layer case.
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