Department of Applied Mathematics PROBABILITY AND STATISTICS PRELIMINARY EXAMINATION January 2020

Instructions:

Do two of three problems in each section (Prob and Stat).	Prob
Place an \mathbf{X} on the lines next to the problem numbers	1
that you are NOT submitting for grading.	2
	3
Do not write your name anywhere on this exam.	Stat
You will be identified only by your student number.	4
Write this number on each page submitted for grading.	5
Show all relevant work!	6
	Total

Student Number _____

Probability Section

Problem 1.

Let X and Y be continuous random variables with $Y \ge 0$ and joint p.d.f. f(x, y), for $x \in \mathbb{R}$ and $y \ge 0$. Consider the random variable $Z := Y/(1 + X^2)$.

(a) Show that

$$E(Z) = \int_{-\infty}^{+\infty} \int_0^\infty \frac{y f(x,y)}{1+x^2} \, dy \, dx,$$

using the conditional expectation E(Z|X) and the conditional p.d.f. f(y|x). You <u>must</u> use these two concepts to get full credit for this part!

Next, you will be guided to deduce the above expression using more basic principles.

- (b) Determine the c.d.f. of Z in terms of f(x, y).
- (c) Deduce the p.d.f. of Z.
- (d) Using part (c), determine E(Z), and show the new identity is equivalent to the one in part (a).

Problem 2.

A machine is subject to a failure rate f > 0 and—upon failure—requires an exponential amount of time with rate r > 0 to be repaired.

(a) Specify the rate matrix Q of the natural continuous-time Markov process associated with the functioning of the machine. Use state 0 to denote that the machine is working, and state 1 to denote that it is being repaired.

- (b) What's the probability that after a very long time the machine is working? Explain!
- (c) If the machine is currently working, what's the probability it continues doing so without interruptions during the next t units of time? Explain!
- (d) If the machine is currently working, what's the probability that it is working t units of time later? Justify!

Problem 3.

Let r_0, r_1, r_2, \ldots be real numbers such that $r_i > 0$, and $\sum_{i=0}^{\infty} r_i = 1$.

Consider a discrete-time homogeneous Markov chain $X = (X_n)_{n\geq 0}$ with state space $S = \{0, 1, 2, ...\}$ and probability transitions $p(0, i) = r_i$ for $i \geq 0$, and p(i, i) = p(i, i - 1) = 1/2 for i > 0. In what follows, T_0 denotes the *return time to state* 0 i.e. $T_0 := \min\{n \geq 1 \text{ such that } X_n = 0\}$.

- (a) Is this chain irreducible? Explain!
- (b) Determine $\mathbb{E}(T_0 \mid X_0 = i)$ for i > 0. Hint. $\sum_{k=1}^{\infty} k(1-x)^{k-1} = \frac{1}{(1-x)^2}$ when |x| < 1.
- (c) Conclude that the chain has a stationary distribution if and only if $\sum_{i=0}^{\infty} i \cdot r_i < +\infty$.
- (d) Which states are recurrent if any? Explain!

Statistics Section

Problem 4.

1. Let X_1, X_2, \ldots, X_n be a random sample from the exponential distribution with rate λ . Imagine that these are lifetimes of widgets and that we get to observe the first m widget failures $X_{(1)}, X_{(2)}, \ldots, X_{(m)}$ for some $m \leq n$. (Here, $X_{(1)}$ is the minimum value of the X's, $X_{(2)}$ is the next smallest, etcetera.) For notational simplicity, we will define $Y_i = X_{(i)}$ for $i = 1, 2, \ldots, m$.

Let f and F denote the p.d.f. and c.d.f., respectively, for the exponential rate λ distribution.

(a) Give a heuristic explanation (or otherwise prove) that the joint p.d.f. for Y_1, Y_2, \ldots, Y_m is

$$f(y_1, y_2, \dots, y_m) = \frac{n!}{(n-m)!} \left[F(y_1) \right]^0 f(y_1) f(y_2) \cdots f(y_m) \left[1 - F(y_m) \right]^{n-m} I_{\{0 < y_1 < y_2 < \dots < y_m\}}$$

- (b) Find the MLE (maximum likelihood estimator) of $1/\lambda$, the mean of the underlying exponential distribution.
- (c) Show that $S := (n-m)Y_m + \sum_{i=1}^m Y_i$ is complete and sufficient for λ .

(d) It is well known that Y_1 , as the minimum of n exponentials with rate λ , has again an exponential distribution but with rate $n\lambda$. One can show that Y_2 has the same distribution as $E_1 + E_2$, where E_1 and E_2 are independent with $E_1 \sim exp(rate = n\lambda)$ and $E_2 \sim exp(rate = (n-1)\lambda)$, and, in general,

$$Y_i \stackrel{d}{=} E_1 + E_2 + \dots + E_i$$

where E_1, E_2, \ldots, E_i are independent and $E_i \sim exp(rate = (n - i + 1)\lambda)$. (Do <u>not</u> show this!)

Find the distribution of S.

(e) Finally, find the UMVUE (uniformly minimum variance unbiased estimator) of $1/\lambda$.

Problem 5.

Let X_1, X_2, \ldots, X_n be a random sample from the uniform distribution on the interval $(0, \theta)$ for some $\theta > 0$ and Y_1, Y_2, \ldots, Y_m a random sample from the uniform distribution on $(0, \lambda)$ for some $\lambda > 0$. Assume that the X's and Y's are mutually independent.

- (a) Find the probability density function for $W = W(\vec{X}, \vec{Y}) = X_{(n)}/Y_{(m)}$, where $X_{(n)} = \max(X_1, X_2, \dots, X_n)$ and $Y_{(m)} = \max(Y_1, Y_2, \dots, Y_m)$.
- (b) Consider deriving a test for

 $H_0: \theta \leq \lambda$ versus $H_1: \theta > \lambda$

based on the statistic W from part (a).

- i. Restate the p.d.f. for W and the hypotheses in terms of the parameter $\rho := \theta/\lambda$.
- ii. Which of the following critical regions is appropriate? (Choose one.)

$$C = \{ (\vec{x}, \vec{y}) : W(\vec{x}, \vec{y}) < c \}$$

or

$$C = \{ (\vec{x}, \vec{y}) : W(\vec{x}, \vec{y}) > c \}$$

- iii. Give a fully simplified expression for $P(W \in C; \rho)$ for your chosen critical region C.
- iv. For n = 1, m = 2, find the value of c to give a size $\alpha = 0.05$ and clearly state your test. (i.e. Reject H_0 in favor of H_1 if ...)

Problem 6.

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with pdf $f(x; \theta)$. Assume the distribution satisfies the "regularity conditions" needed for the Cramér-Rao lower bound to be applicable.

Let $L(\theta)$ be a likelihood for this model and let $\ell(\theta)$ be the log-likelihood.

(a) Find the asymptotic distribution of $\frac{\partial}{\partial \theta} \ell(\theta)$. Your answer should be in terms of the Fisher information.

(b) Suppose that X_1, X_2, \ldots, X_n is a random sample from the distribution with pdf

$$f(x;\theta) = \theta x^{\theta-1} I_{(0,1)}(x).$$

Use part (a) to derive an approximate $100(1-\alpha)\%$ confidence interval for θ assuming n is large. (c) Derive an exact $100(1-\alpha)\%$ confidence interval for θ in terms of a chi-squared critical value.