Program in Applied Mathematics PROBABILITY AND STATISTICS PRELIMINARY EXAMINATION January 2017

<u>Notice</u> : Do four of the following five problems. Place an X on the line	1
opposite the number of the problem that you are NOT submitting	2
for grading. Please do not write your name anywhere on this exam.	3
You will be identified only by your student number, given below and	4
on each page submitted for grading. Show <u>all</u> relevant work.	5
	Total

Student Number _

- 1. If Z_1, Z_2, Z_3, \ldots are i.i.d. Normal(0, 1) then the random variable $S_d := \sum_{i=1}^d Z_i^2$, with $d \ge 1$, is said to have a chi-squared distribution with *d*-degrees of freedom; in short, we write $S_d \sim \chi^2(d)$. Let $f_d(t)$ denote the p.d.f. of S_d .
 - (a) Deduce f_1 .

(b) For
$$0 < k < d$$
, explain why $f_d = (f_k * f_{d-k})$ i.e. $f_d(t) = \int_{-\infty}^{+\infty} f_k(s) \cdot f_{d-k}(t-s) \, ds$.

- (c) Show that $f_{2n}(t) = \frac{t^{n-1}e^{-t/2}}{(n-1)!2^n}$, for all $t \ge 0$ and integer n > 0.
- (d) Recall that $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ for x > 0. Show that $f_{2n+1}(t) = \frac{t^{n-1/2} e^{-t/2}}{\Gamma(n+1/2) 2^{n+1/2}}$, for all $t \ge 0$ and integer n > 0.
- 2. In this problem, all random variables are assumed to be \mathbb{N} -valued i.e. take non-negative integer values. The *total variation distance* between two random variables X and Y is

$$d(X,Y) := \frac{1}{2} \sum_{k=0}^{\infty} |P(X=k) - P(Y=k)|$$

(In effect, this is really a distance between their distributions.)

Consider the set $B := \{k \in \mathbb{N} \text{ such that } P(X = k) \ge P(Y = k)\}$. Show that:

- (a) $d(X,Y) = P(X \in B) P(Y \in B)$.
- (b) $|P(X \in A) P(Y \in A)| \le P(X \in AB) P(Y \in AB) + P(Y \in AB^c) P(X \in AB^c),$ for all $A \subset \mathbb{N}$, where B^c is the complement of the set B and $AB^c = (A \cap B^c).$
- (c) Use (a)-(b) to conclude that: $d(X,Y) = \max_{A \subset \mathbb{N}} |\mathcal{P}(X \in A) \mathcal{P}(Y \in A)|.$

Recall that Bernoulli(p) = Binomial(1, p). It can be shown (take these two facts for granted) that $d(Bernoulli(p), Poisson(p)) = p(1 - e^{-p})$ and that, if X_1, \ldots, X_n are independent and $Y_1 \ldots, Y_n$ are independent then $d(\sum_{i=1}^n X_i, \sum_{i=1}^n Y_i) \leq \sum_{i=1}^n d(X_i, Y_i)$. The final goal of this problem is to show the celebrated Poisson approximation of the Binomial:

Theorem. If $X \sim Binomial(n, p)$ and $Y \sim Poisson(np)$ then, for each $A \subset \mathbb{N}$, $|P(X \in A) - P(Y \in A)| \leq np^2$.

(d) Show the theorem!

3. Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with normal distribution $N(\mu, \sigma^2)$. Suppose σ is known, and we want to test the hypothesis

$$H_0: \mu = \mu_0$$
 against $H_1: \mu \neq \mu_0$.

- (a) Find the maximum likelihood estimator (MLE) for μ .
- (b) Find the generalized likelihood ratio (GLR) for the test. Call it Λ .
- (c) Suppose we reject H_0 when $-2 \ln \Lambda$ is larger than a given constant C > 0. Write down the critical region of the test in terms of the MLE in (a).
- (d) What kind of distribution (exact, not asymptotic) does $-2 \ln \Lambda$ follow given that H_0 is true?
- 4. Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with the probability density function

$$f(x;\theta) = \frac{1}{\theta^2} x e^{-\frac{x}{\theta}} I_{(0,\infty)}(x),$$

where $\theta > 0$ and $I_{(0,\infty)}(x)$ is the indicator function that takes the value 1 when $x \in (0,\infty)$ and 0 otherwise.

- (a) Find a one-dimensional sufficient statistic for the model, and find an unbiased estimator for θ^n based on this sufficient statistic.
- (b) Find the Cramér-Rao lower bound for the variance of all unbiased estimators of θ^n .
- (c) Find the variance of the estimator you found in (a). Does it attain the Cramér-Rao lower bound?
- 5. Let $0 < \lambda, \mu < +\infty$. Imagine a bank with a single teller. Assume customers arrive according to a homogenous Poisson point process with rate λ , and the teller requires an exponential amount of time with mean $1/\mu$ to serve each customer. Upon being served, however, customers are forced back at the end of the line with probability $0 \le b < 1$, and otherwise leave the bank entirely.

Let X_t denote the number of people in the bank (i.e. in line or being served) at time t. Clearly, $X = (X_t)_{t\geq 0}$ is a time-homogeneous Markov process. Based on this, respond:

- (a) What condition must (λ, μ, b) satisfy in order for X to have a stationary distribution?
- (b) Determine the stationary distribution π when the above condition is satisfied.
- (c) In equilibrium, what fraction of the time is the teller busy with customers?