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The Question

How to maximize the growth rate of one’s wealth
when precise covariance structure of the
underlying assets is not known?

The Set-up

Let E ⊂ Rd be an open connected set, and Sd be
the set of d× d symmetric matrices.
•X : price process of d assets taking values in E.
•θ,Θ : E 7→ (0,∞) are functions in C0,α

loc (E),
and satisfy θ < Θ in E.

•C: set of functions c : E 7→ Sd s.t. for any x ∈ E,
θ(x)Id ≤ c(x) ≤ Θ(x)Id.

Remark. Each c ∈ C represents a possible covari-
ance structure that might materialize. The (Knigh-
tian) uncertainty is captured by θ and Θ.

• (Lc(·)f)(x):= 1
2
∑d
i,j=1 cij(x) ∂2f

∂xi∂xj
(x)

= 1
2Tr[c(x)D2f (x)].

•Qc: the solution to the (generalized) martingale
problem on E for the operator Lc(·).

• Πc:= {P | P�loc Qc, X doesn’t explode P-a.s.}
• Π:= ⋃

c∈C Πc.
•π ∈ V (admissible trading strategy): predictable
process s.t. the following holds for all c ∈ C:

(i) π is X-integrable under Qc;
(ii) V π

t := 1 +
∫ t

0 π
′
sdXs > 0 Qc-a.s., for all t ≥ 0.

•Asymptotic growth rate of V π under P:
g(π; P)
:= sup

{
γ ∈ R

∣∣∣∣ P- lim inf
t→∞

(log V π
t /t) ≥ γ P-a.s.

}
.

(≈ sup
{
γ ∈ R | V π

t ≥ eγt as t large P-a.s.
}
)

Our Goal

Choose an π∗ ∈ V s.t. V π∗ attains the rate
sup
π∈V

inf
P∈Π

g(π;P)

uniformly over all P in Π (or at least in a large
enough subset Π∗ of Π).

When c ∈ C is fixed...

For any D ⊂ E and λ ∈ R, we consider
Hc
λ(D) := {η ∈ C2(D) | Lc(·)η + λη = 0, η > 0},

and define the principal eigenvalue for Lc(·) on D as
λ∗,c(D) := sup{λ ∈ R | Hc

λ(D) 6= ∅}.

In [3], the authors take η∗,c ∈ Hc
λ∗,c(E)(E) and define

Π∗,c :=
P ∈ Πc

∣∣∣∣∣∣ P- lim inf
t→∞

log η∗,c(Xt)
t

≥ 0 P-a.s.
 .

They show that
• Π∗,c is large enough to include all the probabilities
in Πc under which X is stable.

•λ∗,c(E) = sup
π∈V

inf
P∈Π∗,c

g(π;P) = inf
P∈Π∗,c

sup
π∈V

g(π;P).

•π∗,ct := eλ
∗,c(E)t∇η∗,c(Xt) ∈ V satisfies
g(π∗,c;P) ≥ λ∗,c(E), ∀ P ∈ Π∗,c.

When c ∈ C is NOT fixed...

Recall Pucci’s operator: given 0 < λ ≤ Λ,
M+

λ,Λ(M) := sup
A∈A(λ,Λ)

Tr(AM), ∀ M ∈ Sd,

whereA(λ,Λ) denotes the set of matrices in Sd with
eigenvalues lying in [λ,Λ].

Define the operator F : E × Sd 7→ R by

F (x,M) := 1
2

sup
A∈A(θ(x),Θ(x))

Tr(AM).

For any D ⊂ E and λ ∈ R, we consider
Hλ(D) := {η ∈ C2(D) | F (x,D2η)+λη ≤ 0, η > 0},
and define the principal eigenvalue for F on D as

λ∗(D) := sup{λ ∈ R | Hλ(D) 6= ∅}.

Now, by using the arguments in [3] and the relation
λ∗(E) = infc∈C λ∗,c(E), we obtain

Main Result

Take η∗ ∈ Hλ∗(E)(E). Define
π∗t := eλ

∗(E)t∇η∗(Xt) ∀ t ≥ 0,
and set

Π∗ :=
P ∈ Π

∣∣∣∣∣∣ P- lim inf
t→∞

log η∗(Xt)
t

≥ 0 P-a.s.
 .

Then, we have
• Π∗ is large enough to include all the
probabilities in Π under which X is stable.

•λ∗(E) = sup
π∈V

inf
P∈Π∗

g(π;P) = inf
P∈Π∗

sup
π∈V

g(π;P).
•π∗ ∈ V and g(π∗;P) ≥ λ∗(E) for all P ∈ Π∗.

Proving “λ∗(E) = infc∈C λ∗,c(E)”

Assume: there exist {En}n∈N of bounded open
convex subsets of E s.t. ∂En is of C2,α, Ēn ⊂ En+1
∀ n ∈ N, and E = ⋃∞

n=1En.

Sketch of proof:
1.On each En, show the existence of a positive
viscosity solution ηn (by using [5]) to

F (x,D2η) + λ∗(En)η ≤ 0.
2.Show that ηn is actually smooth (using [6]).
3.Show λ∗(En) = infc∈C λ∗,c(En).

(i)≤: Use a maximum principle related to F .
(ii)≥: Use the theory of continuous selection in [1] to

construct {cm}m∈N ⊂ C s.t.
λ∗(En) ≥ lim inf

m→∞
λ∗,cm(En).

4.Show λ∗(E) = λ0 := limn→∞ λ
∗(En).

(i)≤: obvious from definitions.
(ii)≥: Prove a Harnack inequality for F , and use it to show

ηn converges uniformly on E to some η∗ ∈ Hλ0(E).
5.Since λ∗,c(E) = infn∈N λ∗,c(En) for each c ∈ C
(by [4]), we have
inf
c∈C

λ∗,c(E) = inf
c∈C

inf
n∈N

λ∗,c(En) = inf
n∈N

inf
c∈C

λ∗,c(En)
= inf

n∈N
λ∗(En) = λ∗(E).

Conclusions and Outlook

Among an appropriate class C of covariance struc-
tures, we characterize the largest possible robust
asymptotic growth rate as the principle eigenvalue
λ∗(E) of the fully nonlinear elliptic operator F , and
identify the optimal trading strategy in terms of
λ∗(E) and the associated eigenfunction.

The covariance uncertainty we consider is similar to
the “Knightian uncertainty” formulated in [2], in the
sense that the constraint on covariance is Marko-
vian. The latter, however, is more general as it al-
lows the covariance itself to be non-Markovian. It
is of interest to generalize our results to the case
with non-Markovian covariances, which would lead
to eigenvalue problems for path-dependent PDEs.

For Further Information

•Yu-Jui Huang is available at jayhuang@umich.edu
•Preprint of our paper can be downloaded from
www.arxiv.org/abs/1107.2988

•This poster can be downloaded from
http://www-personal.umich.edu/∼jayhuang
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