The Question

How to maximize the growth rate of one’s wealth
when precise covariance structure of the
underlying assets is not known?’

The Set-up

Let E C R? be an open connected set, and S? be
the set of d X d symmetric matrices.

« X : price process of d assets taking values in E.

-0,0 : E — (0, 00) are functions in C:*(E)
and satisty 8 < © in F.

- C: set of functions ¢ : F — S%s.t. for any z € E,

0(x)l; < clx) < O(x)ly.

)

Remark. Each ¢ € C represents a possible covari-
ance structure that might materialize. The (Knigh-
tian) uncertainty is captured by 6 and ©.
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= Q¢ the solution to the (generalized) martingale
problem on E for the operator L.

1= {P | P <o Q°, X doesn’t explode P-a.s.}

= 11:= Uecece 11¢.

- w € V (admissible trading strategy): predictable
process s.t. the following holds for all ¢ € C:

(i) m is X-integrable under Q¢

(i) V" =1+ [y mdX, > 0 Qas., for all t > 0.

« Asymptotic growth rate of V™ under PP:
g(m; P)
= sup {fy cR | P-lim inf(log V;" /t) > = P—a.s.} .
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(= sup{y € R| V] > " as t large P-as.})
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Our Goal

Choose an 7* € V s.t. VT attains the rate

sup inf g(; P)

uniformly over all P in II (or at least in a large
enough subset IT* of II).

When c € C is fixed...

For any D C E and A € R, we consider
HS(D) = {n € C¥D) | Ly + =0, n > 0}
and define the principal eigenvalue for L) on D as

N(D) =sup{\ e R | HY(D) # 0}.

[n 3], the authors take ™ € Hy.. 5 (E) and define
log n™“(X4)
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[T5¢ .= {]P c II° | P-liminf

They show that

= [1%¢ is large enough to include all the probabilities
in I1° under which X is stable.

= \(E) = sup inf g(m;P) = inf sup g(m;P).
Tey V
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¢ = MBI (X)) €V satisfies
g(m™ Py > \(E), VP e Il™

When c € C is NOT fixed...

Recall Pucci’s operator: given 0 < A < A,

My A(M) = sup Tr(AM), VM S
Ae A(NN)

where A(\, A) denotes the set of matrices in S¢ with
eigenvalues lying in [\, Al.

Define the operator F': ' x S — R by

F(x, M) := ! sup  Tr(AM).
2 Ac A(6(z),0(x))

For any D C E and A € R, we consider

H\(D) = {n € CY(D) | F(z, D"n)+An <0, n > 0},

and define the principal eigenvalue for /' on D as

N(D) :=sup{A € R| H\(D) # 0}.

Now, by using the arguments in 3] and the relation
N(E) = inf.ce A(F), we obtain

> () P—a.s.} .

Main Result

Take n* € Hy«g)(&). Define
ﬂ_;k . 6)\*(E)tV77*(Xt) v > O7

and set

[T = {IP’ c 1T | P- lim inf

log 77*(Xt)

> () IP’—a.s.} .
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Then, we have

« [1* is large enough to include all the
probabilities in II under which X is stable.

« \N*(E) =sup inf g(m;P) = inf sup g(m;P).
V

WEV ]P)EH* PEH* e

- * €V and g(7* P) > X\ (F) for all P € IT*.

Proving “A*(F) = inf.cc A*°(FE)”

Assume: there exist {F),},en of bounded open
convex subsets of E s.t. OF, is of C*% E, C E,.;
VneN and E =U7", F,.

Sketch of proof:

1.On each FE,,, show the existence of a positive
viscosity solution 7, (by using [5]) to

F(x,D™n) + X (E,)n < 0.

2. Show that n, is actually smooth (using [6]).
3. Show \*(E),) = inf.ce AV E,).
(i) <: Use a maximum principle related to F.

(i) >: Use the theory of continuous selection in [1] to
construct {¢;, }men C C s.t.

N (E,) > liminf A5 (E),).

4. Show N(E) = Ag = lim,, o0 N(E,).
(i) <: obvious from definitions.

(i) >: Prove a Harnack inequality for F', and use it to show
n, converges uniformly on E to some n* € H) (F).

5.Since A*(F) = inf,,en AY(E),) for each ¢ € C
(by 4]), we have

inf \*(F) = inf inf A™(FE,) = inf inf \*°(E),)

ceC ceC neN neN ceC

= %211;1)\ (E,) = N (B).

Robust Maximization of Asymptotic Growth under Covariance Uncertainty

Conclusions and Outlook

Among an appropriate class C of covariance struc-
tures, we characterize the largest possible robust
asymptotic growth rate as the principle eigenvalue
N*(E) of the fully nonlinear elliptic operator F’, and
identify the optimal trading strategy in terms of
N*(F) and the associated eigenfunction.

The covariance uncertainty we consider is similar to
the “Knightian uncertainty” formulated in |2|, in the
sense that the constraint on covariance is Marko-
vian. The latter, however, is more general as it al-
lows the covariance itself to be non-Markovian. It
is of interest to generalize our results to the case
with non-Markovian covariances, which would lead
to eigenvalue problems for path-dependent PDEs.

For Further Information

= Yu-Jui Huang is available at jayhuang@umich.edu

= Preprint of our paper can be downloaded from
www.arxiv.org/abs/1107.2988

= This poster can be downloaded from
http://www-personal.umich.edu/~jayhuang
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