
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 144.122.201.150

This content was downloaded on 12/05/2016 at 19:45

Please note that terms and conditions apply.

Persistent search in single and multiple confined domains: a velocity-jump process model

View the table of contents for this issue, or go to the journal homepage for more

J. Stat. Mech. (2016) 053201

(http://iopscience.iop.org/1742-5468/2016/5/053201)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-5468/2016/5
http://iopscience.iop.org/1742-5468
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. S
tat. M

ech. (2016) 053201

Persistent search in single and multiple 
confined domains: a velocity-jump 
process model

Daniel B Poll and Zachary P Kilpatrick

Department of Mathematics, University of Houston, Houston, TX, USA
E-mail: zpkilpat@math.uh.edu

Received 16 February 2016
Accepted for publication 26 March 2016  
Published 11 May 2016

Online at stacks.iop.org/JSTAT/2016/053201
doi:10.1088/1742-5468/2016/05/053201

Abstract.  We analyze velocity-jump process models of persistent search for 
a single target on a bounded domain. The searcher proceeds along ballistic 
trajectories and is absorbed upon collision with the target boundary. When 
reaching the domain boundary, the searcher chooses a random direction for 
its new trajectory. For circular domains and targets, we can approximate the 
mean first passage time (MFPT) using a Markov chain approximation of the 
search process. Our analysis and numerical simulations reveal that the time 
to find the target decreases for targets closer to the domain boundary. When 
there is a small probability of direction-switching within the domain, we find 
the time to find the target decreases slightly with the turning probability. We 
also extend our exit time analysis to the case of partitioned domains, where 
there is a single target within one of multiple disjoint subdomains. Given an 

average time of transition between domains T⟨ ⟩, we find that the optimal rate 

of transition that minimizes the time to find the target obeys T1min / ⟨ ⟩β ∝ .
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1.  Introduction

Organisms frequently search to find targets whose position is unknown to them. For 
example, animals search for food or mates in ways that balance both speed and low 
energy expenditure [1–3]. In addition, the dynamics of biomolecules can be modeled as 
a search process. Recently, experiments and modeling studies have identified biochemi-
cal processes whose kinetics involve the search for a reaction partner, due to the small 
number of reactive molecules [4–6]. Regardless of the context of searches, it is often 
desirable to minimize the amount of time needed to find the target, and this is the most 
common measure of search eciency [7].

There are two particularly well studied models of random search processes: passive 
diusion and intermittent search. Passive diusion to a small target in a confined domain 
is a common model of molecular transport at the biomolecular scale [8, 9]. A distinct 
advantage of this framework is that the average time to find the target can be form
ulated as the solution to a mean first passage time (MFPT) problem [10–12]. However, 
this model is not appropriate in all situations. In particular, foraging organisms and bio-
molecules that move ballistically often employ an intermittent search strategy, wherein 
diusive search periods are punctuated by rapid displacement phases during which no 
search occurs [13]. Such intermittent strategies can be optimized to obtain a minimal 
MFPT by balancing time spent in the moving and searching phases [14].

In contrast to such previous work, one could also consider strategies wherein search 
is persistent and ballistic. The searcher then proceeds according to a velocity-jump 
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process, moving ballistically and then switching direction at random times [15, 16]. The 
diusion limits of velocity-jump processes are described by linear transport systems, 
specific cases of the Boltzmann equation [17, 18]. Recently, this model has been used 
to analyze the statistics of foraging insect movement [19, 20]. Presuming an animal 
can detect targets while moving ballistically [21], search and travel can be modeled as 
a single process. One well studied experimental paradigm wherein an animal searches 
persistently is the Morris water navigation task, in which a rodent must locate a plat-
form in a circular pool [22]. Visual search in psychophysics tasks is another example 
of persistent search, where the focal point of gaze moves ballistically in search of a 
visual target [23, 24]. Thus, concrete quantitative models are needed to understand the 
dynamics of persistent search and identify optimal strategies.

We analyze an idealized model of persistent search, which considers movements of 
the searcher to be ballistic trajectories with constant speed. For simplicity, we consider 
two-dimensional circular domains with reflecting boundaries along with circular targets 
with absorbing boundaries. Initially, we develop an asymptotic theory for approxi-
mating the time to find the target when the searcher only turns when encountering 
the domain boundary. This allows us to understand how the placement of the target 
impacts the average time to locate it. We extend our analysis to the case where the 
searcher turns on the domain interior with finite probability, showing this decreases the 
MFPT for low-probability of turning. Lastly, we introduce a model of persistent search 
on multiple disjoint domains. When the transit time between subdomains is nonzero, 
there is an optimal rate of transition between domains that balances domain cover-
age with the time penalty for traveling between domains. In all cases, we identify how 
search and domain parameters impact the MFPT.

2. Velocity-jump process model of persistent search

Consider the following model for the stochastically evolving position tx( ) of a persistent 
searcher. We construct a model of a particle searching for a hidden target in a bounded, 

circular domain Ω of radius R, i.e. { }( ) ⩽Ω = ∈ +Rx y x y R: , :2 2 2 . The hidden target 

is also defined by a circular region with radius r:

{ }( ) ( ) ( ) ⩽Ω = ∈Ω − + −x y x x y y r: , : ,T 0
2

0
2

where x y,0 0( ) denotes the centroid of the target domain. Note, we will restrict 

x y R r0
2

0
2 ⩽+ − , so the entire target is contained in the domain Ω. Furthermore, due 

to the rotation symmetry of the circular domain, we exclusively consider targets with 
coordinates along the right horizontal radius, x y R, , 00 0( ) ( )= ε . All other cases can be 
reduced to this form by an axial rotation.

The searcher’s position evolves according to a velocity-jump process [15]. On 
the interior of the domain tx( ) \∈Ω ∂Ω, the searcher moves ballistically with velocity 

vv cos , sin( ) ( )φ φ φ=  with constant speed v and angle 0, 2[ )φ π∈ . Transitions in the 

velocity angle φ are governed by a continuous-time Markov process with turning rate λ. 
In the limit R →∞, the distribution of ballistic path-lengths is p v t e v t( ) λ⋅ ∆ = λ− ⋅∆ . Note 

http://dx.doi.org/10.1088/1742-5468/2016/05/053201
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that as →λ ∞, p v t v t( ) → ( )δ⋅ ∆ ⋅ ∆  and the searcher will exhibit Brownian motion [15]. 
In the other extreme, 0→λ , the searcher’s probability of turning in finite time decreases 
to zero, maintaining its initial velocity v( )φ  until encountering the boundary ∂Ω.

On the domain boundary ∈∂Ωtx( ) , the searcher uses a separate rule for turning. 
For simplicity, we denote the searcher’s position on the boundary according to its 
angle θ on the circular domain boundary t Rx cos , sin( ) ( )θ θ= . It then selects a new 
heading direction by drawing a random variable θ′ for the new boundary location it 
will move towards (figure 1(A)). This random variable is chosen from the probability 
density function f ( )θ θ− ′ , an even symmetric function of the argument θ θ− ′. In part

icular, this is a probability density function over θ′, so that f d 1
0

2
( )∫ θ θ θ− =′ ′

π
 for all 

0, 2[ )θ π∈ . A search ends once the target has been hit, which occurs when the searcher 
encounters the absorbing target boundary ∂ΩT (figure 1(B)).

An alternate description of searcher motion is studied in section 4.2, where we con-
sider spiral paths of motion into and out of the domain center. The MFPT for both 
spiral path and random ballistic path strategies are compared therein. Furthermore, we 
will consider extensions of this single domain model in section 5, when we incorporate 
movements of the searcher between multiple subdomains. In this case, movement on 
the subdomain interiors will proceed as before, but encounters with the boundary can 
lead to switches between subdomains.

3. Purely ballistic search in single domains

We begin by analyzing the model in the case of no turning on the domain interior 
( 0→λ ). The searcher proceeds from one point on the domain boundary to another 

Figure 1.  Velocity-jump process model of a persistent searcher in a confined domain. 
(A) In the absence of interior turning ( →λ 0), the searcher moves ballistically 
between locations on the boundary ∂Ω. A subsequent boundary location θ′ is 
selected based on the current one θ by drawing from the probability density function 

( )θ θ− ′f . (B) In the case of interior turning (λ> 0), the searcher’s trajectories are 
no longer wholly determined by the deflection angles at the boundary. The search 
concludes when the target domain ΩT is encountered.

http://dx.doi.org/10.1088/1742-5468/2016/05/053201
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along straight trajectories, unless it encounters the target domain ΩT. For a trajectory 
from the domain location θ to θ′, there is probability a ,( )θ θ′  of passing through the tar-
get domain ΩT. This means a ,( )θ θ′  is an indicator function, equaling 1 if the trajectory 
from θ to θ′ passes through the target and 0 otherwise. Marginalizing over all possible 
paths, we can compute average probability of passing through ΩT, which we define as 
ā. To compute ā, we integrate:

a a f
1

4
, d d .

2 0

2

0

2

¯ ( ) ( )∫ ∫π
θ θ θ θ θ θ= −′ ′ ′

π π
� (1)

The boundary conditions of the velocity-jump process on ∂Ω imply that a( )θ θ− ′  is 
weighted by the probability of sampling θ′ given θ, defined to be f ,( )θ θ′ . The domain 
is radially symmetric, and we assume a uniformly random initial conditions x 0( ) along 
the boundary ∂Ω. Subsequent angles θ could be non-uniformly distributed on the 
boundary, in the case of o-center targets, but this does not substantially impact our 
approximations.

Typically, the limiting quantity in search problems is the average search time [13]. 
We start by computing the average time of a single path from one boundary location 
to another. Without loss of generality, we rescale our domain and target sizes (R and r) 
so the constant search velocity is v  =  1 in new coordinates. Thus, we need only find the 
average distance of a path by calculating the chord length of a circle of radius R from 
angle θ to θ′, given by Rch , 2 sin mod , 2 2( ) ( ( )/ )θ θ θ θ π= −′ ′ . Assuming uniform distribu-
tions of angle locations θ, the average chord length of each path will be

( )∫π=
π

⎜ ⎟
⎛
⎝

⎞
⎠

R z
f z zch sin

2
d ,

0

2

� (2)

where we have applied the change of variables zθ θ− ′� .

3.1. Small and centered targets

We can utilize equations (1) and (2) to help us determine the average time it will take 
until the searcher reaches the target domain ΩT. Our approximation assumes the tar-
get absorption probability a is fixed across all steps of the search trajectory. Implicit 
in this assumption is the notion that either (a) the distribution of boundary locations 
θ is the same for all steps of the search trajectory or (b) the target-hitting probability 
is identical across all boundary locations θ. Both of these assumptions hold in the case 
of centered targets, due to circular symmetry of the domain and target. For o-center 
targets, in the limit of small target sizes r R� , the distribution of boundary locations 
over θ will remain near uniform after each path between boundary points. With this in 
mind, we can compute the average time to hit the target by treating absorption into 

the target as a Markov process. Let h a a1j
j¯( ¯)= −  denote the probability of hitting the 

escape domain ΩT on the jth path across the domain, and let d j Rchj = ⋅ +  denote the 
average distance of all paths to the target that end on the jth pass. We can compute 
the MFPT for the absorption of the searcher into the target using the weighted sum:

h d a a j R
a

R1 ch ch
1

1 .
j

j j

j

j

0 0

¯ ( ) ( ) ⎜ ⎟
⎛
⎝

⎞
⎠∑ ∑= = − ⋅ + = − +

=

∞

=

∞

T� (3)
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Note, we have assumed r R�  small, and this equation is exact in the limit r 0→ . To 
exactly compute the MFPT for any value of r, we could marginalize over all path 
lengths from a point on the boundary of the domain ∂Ω to the boundary of the tar-
get, ∂ΩT to determine the last term in equation (3). Note, the time to find the target 
increases as the likelihood of finding it in a single path a decreases. Furthermore, 
increasing the size of the domain R increases the time to find the target via ch and ā. 
We can gain further insight by studying the eects of target size on the probability a .

By fixing the target in the center of the domain, the probability of hitting the target 
is the same for any boundary location, so a ,( )θ θ′  only depends on the dierence θ θ− ′ 
between the angles of a path’s endpoints. In particular, the searcher is absorbed in a 
region of arc length 2α, so a 1( )θ θ− =′  if ⩽θ θ α| − |′  and a 0( )θ θ− =′  otherwise (figure 
2(A)). We also assume a new search direction is chosen uniformly from a symmetric 

region oriented toward the center, f
1

2
( )θ θ− =′

γ
 if ⩽θ π θ γ| + − |′  and f 0( )θ θ− =′  

otherwise. This simplifies the average hitting probability a as follows

( ) ( )∫ ∫ ∫ ∫π
θ θ θ θ θ θ

πγ
θ
α
γ

= − − = =′ ′ ′
π π π

π α

π α

−

+
a a f z

1

2
d d

1

4
d d

0

2

0

2

0

2

for γ α> . Since the target is small (r R� ), we expect α γ� . The arclength 2α can be 

found using trigonometry to be r R2 sin 1( / )− , so that γ= −a r R2 sin / /1 ( ) .
Furthermore, the average chord length ch is computed by marginalizing against the 

probability density function of paths from θ to θ′, yielding

( )
( )

∫ ∫ ∫π
θ θ

θ θ θ θ
γ

θ
θ

γ
γ

=
−

− = =
′

′ ′
π π

π γ

π γ

−

+
⎜ ⎟
⎛
⎝

⎞
⎠R f

R R
ch

1

2
2 sin

2
d d sin

2
d

4 sin /2
.

0

2

0

2

�

(4)

Fixing the target in the center of the domain Ω and choosing a uniform distribution for 
the density f ( )θ θ− ′  produces an approximate MFPT as

Figure 2.  Ballistic search for a small target in the domain center. (A) The set of 
trajectories that hit the target from the boundary are contained in the arclength 
α2 , where ( / )α = − r Rsin 1 . (B) MFPTs for dierent forms of the probability density 
( )θ θ− ′f  computed using equation (3). Results for uniform densities ( ) [ ]γ γ= −f z unif ,  

are shown as well as for the nonconstant function ( ) ( / )/=f z zsin 2 2. The domain 
radius is R  =  1. Each circle is the MFPT from 106 numerical simulations of the 
process in section 2 with λ = 0.

http://dx.doi.org/10.1088/1742-5468/2016/05/053201
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T
( )

( )
γ
γ

γ
= − +−

⎛
⎝
⎜

⎞
⎠
⎟

R

r R
R

4 sin /2

2 sin /
1 ,c 1� (5)

which matches well with numerical simulations of the velocity-jump process (figure 
2(B)). For a smaller search arclength γ, the MFPT decreases, since there is a higher 
probability of heading toward the target ΩT from the boundary ∂Ω.

We also demonstrate that equation  (5) is monotone in each parameter by tak-
ing partial derivatives. First, we show the MFPT decreases with the target radius r. 
Dierentiating equation (5) with respect to r yields

γ∂
∂
= −

− ⋅
<

−r

R

R r r R

2 sin /2

sin /
0,c

2 2 1 2

T ( )

[ ( )]

so larger targets are found faster. Second, note that

γ
γ γ γ γ

γ
∂
∂
= −

−
−

R

r R

Rcos /2

sin /

2 cos /2 2 sin /2
,c

1 2

T ( )
( )

[ ( ) ( )]

so when γ π= , we have

T

γ π
∂
∂

=
γ π=

R4
,c

2

and the MFPT decreases as γ is decreased from π (figure 2(B)). Finally, we can show 
that the MFPT increases as the domain radius R is increased by dierentiating

γ
γ

γ
∂
∂
= − +

+ −

− ⋅
+

−

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥R

r R r r R

R r r R

4 sin /2
2 sin /2

sin /

sin /
1,c

2 2 1

2 2 1 2

T ( )
( )

( )

[ ( )]

so if we plug in γ π= , we find

T ( )

[ ( )] ( )π π
∂
∂

= − +
+ −

− ⋅
> − + >

γ π=

−

− −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥R

r R r r R

R r r R r R
1

4
2

sin /

sin /
1

4 2

sin /
1,c

2 2 1

2 2 1 2 1

since R  >  r, so π>− r R1/sin / 2/1 ( ) .
Now, considering the searcher may have an increased likelihood of searching toward 

the domain interior, we examine f sin 2 4( ) (( )/ )/θ θ θ θ− = −′ ′ , which peaks at θ θ π− =′ , 
the center of the domain. The average probability of hitting the target is then

( ) [ ( )]∫ ∫ ∫π
θ= = = =

π π

π α

π α

−

+
−a a z

z
z

z
z r R

r

R

1

8
sin

2
d d

1

4
sin

2
d sin sin / .

0

2

0

2
1

Furthermore, the average chord length is

∫ ∫ ∫π
θ θ

θ θ
π

=
−

= =
′
′

π π π
⎜ ⎟
⎛
⎝

⎞
⎠R

R z
z

R
ch

1

8
2 sin

2
d d

2
sin

2
d

2
.

0

2

0

2
2

0

2
2
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Applying equation (3) for the MFPT, we have

R R

r
R

2
1 .c ⎜ ⎟

⎛
⎝

⎞
⎠

π
= − +T� (6)

As before, equation  (6) is monotone decreasing in r since 
r

R

r2
c

2

2= −π∂
∂
T

, whereas it is 

increasing in R since 1
R

R

r 2
c = + −π π∂

∂
T

 and R  >  r (figure 2(B)). Thus, our approximation 

using the expansion in equation (3) shows us explicitly that the MFPT decreases with 
target size r and increases with domain size R. In addition, we note the MFPT approx
imations can be further truncated to the asymptotic form rc /=T C  (with constant C ) 
in the r R�  limit, which still provides the appropriate form observed in figure 2(B).

3.2. O-center targets

We now study the time to hit o-center targets ( x y R, , 00 0( ) ( )= ε ) where ε  ∈  [0, 1]. 
Interestingly, we find the MFPT decreases as the target nears the domain boundary 
∂Ω (as ε increases). In this case, the discrepancy between the largest and smallest angle 
from the boundary containing the target grows with ε (figure 3(A)). Nevertheless, we 
can marginalize and frame the target finding problem in terms of a Markov chain with 
constant probability of absorption, across realizations. However, due to the asymmetry 
introduced by placing the target away from the center, the indicator function a ,( )θ θ′  
now depends on both variables independently. The angle containing the target can be 
derived by applying the law of sines to the triangle with: (a) one leg being the radius 
R from the center to the boundary angle θ; (b) another leg being the segment from the 
domain center to the target center, having length Rε ; and (c) the segment connecting 
(a) and (b). The angle ψ of the triangle emanating from the boundary is then given by

L R R

sin sin sin
,

( )
( )

θ
θ ψ ψ θ
= =

+
ε

� (7)

where L( )θ  is the length of the leg described by (c). Solving the system equation (7), we 

find that sin sin 1 2 cos2 2 2 2/( )ψ θ θ= − +ε ε ε  and L R 1 2 cos 2( )θ θ= − +ε ε . As before, 
we use the leg length L( )θ  to compute the target angle α θ θ= − r Lsin /1( ) ( ( )) from the angle 
θ on the boundary. For boundary search direction distribution f unif ,( ) [ ]θ θ π π− = −′ , 
the average probability of finding the target with each path is approximated

a
r

R

r

R

1

4
2 sin

1 2 cos
d d

1
sin

1 2 cos
d .

2 0

2

0

2
1

2

0

2
1

2

( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫ ∫

∫

π θ
θ θ

π θ
θ

=
− +

=
− +

′
π π

π

−

−

ε
ε ε

ε ε

�

(8)

Equation (8) converges to ( ) ( ) π= −a r R0 2 sin / /1  in the limit 0→ε . In the limit of small 
targets r R� , the average chord length is approximately same as in the center target 
case, equation (4). Thus, we can use Rch 4 /π= . Plugging these equations (4) and (8) 
into the asymptotic approximation equation (3) yields our asymptotic approximation 
(figure 3(B)).
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For small ε, we can show the hitting probability a ( )ε  increases with ε, implying the 
MFPT decrease with 0 1< �ε  (figure 3(B)). Note, a ( )ε  is an even function, due to the 
circular symmetry of Ω. Therefore, the 2( )εO  term is the first term in a regular pertur-
bation beyond a 0( ). Taking the second derivative at 0=ε  yields

⎡
⎣⎢

⎤
⎦⎥a r

R

1
1 3 2 cos 2

2 1

d

2 1

.

r

R

r

R

r

R

r

R

2

2
0 0

2

3/2 3/2

2

2

2

2

2

2

( )
( ) ( )

¯( ) ( )

∫π
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Since r  <  R, ″ >a 0 0¯ ( ) , so the probability a ( )ε  will increase with ε when 0 1< �ε . 
Furthermore, we can write the asymptotic approximation

a
r

R

r

R

2
sin

2 1

.
r

R

1
2

3 2
4

2

2( )
( ) ( )/π π
= +

−
+−ε

ε
εO

In sum, we have shown that a binomial expansion in hitting probabilities per path 
provide a reasonably accurate approximation of the MFPT for a purely ballistic search 
process. In the next section, we extend these results to account for the case of a searcher 
that makes turns on the interior of the domain Ω.

4.  Interior turning in single domains

4.1. Turning via velocity-jumps

We now explore how turning on the interior of the domain Ω aects the average time 
to find the target. Thus far, we have only considered searchers that turn on the bound-
ary ∂Ω. Interior turning is now incorporated according to a velocity-jump process. 

Figure 3.  MFPT decreases with the eccentricity ε of the target. (A) O-center 
targets are shifted to location ( ) ( )= εx y R, , 00 0 . The target angle α1 is smaller on 
the far side of the boundary than on the close side α2. (B) MFPT as a function 
of the eccentricity ε comparing theory (solid line) in equation  (3) using hitting 
probability ¯( )εa  given by equation (8) to numerical simulations (circles). The angle 
of search from the boundary is drawn from the density function ( ) [ ]π π= −f z unif , .
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For infinitesimal timesteps td , the probability of a velocity-direction change between 
t and t td+  is tdλ ⋅ . Velocity changes are sampled from a uniform distribution so that 

the probability of selecting a new velocity with angle 0, 2[ )φ π∈  is Pr
1

2
( )φ =

π
. For an 

unbounded domain (R →∞), this would lead to trajectories made of ballistic step-

lengths x over the distribution p x e x( ) λ= λ−  for normalized velocity =v 1∥ ∥ .
For low turning probability 1λ� , we asymptotically approximate the hitting prob-

ability for a single path between boundary points ā( )λ . Such paths are no longer nec-
essarily comprised of a single straight segment; paths can be made up of two or more 
straight segments. However, we only focus on the change in hitting probability arising 
due to incorporating paths made of two straight segments. To begin, note the probabil-
ity of not turning (number of turns n  =  0) along a segment of length l is given

n l xPr 0 1 e d e ,
l

x l

0
( ) ∫λ= | = − =λ λ− − ⋅

� (10)

so a searcher heading towards the target will not turn with approximate probability 
e R r( )λ− − . Thus, the likelihood that the searcher is absorbed into the target by following 
a single segment from the boundary is

π
| = = | − = λ− −

−
n n R r

r R
Pr hit 0 Pr 0 e

2 sin /
,R r

1

( ) ( )
( )( )� (11)

where we assume f z unif ,( ) [ ]π π= − .
Next, we approximate the likelihood that the searcher is absorbed into the target 

by following two segments connected by a single turn. The likelihood of making at least 
one turn before hitting the boundary is given by subtracting the survival probability 
over the average chord length ch from 1:

n xPr 0 ch e d 1 e .x

0

ch
ch( ) ∫λ> | = = −λ λ− − ⋅� (12)

Note also that the likelihood of more than one turn is 2( )λO  when 1λ� , since

n x x y x xPr 1 , e d 1 e ,
j

x
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j
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1 2

1

2
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2
2
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⎠∫∏ ∏λ λ λ> | = = − ≈ +λ λ

=

−

=

− O

where x1 and x2 are the maximal lengths of each segment. Therefore, we approximate 
the probability of there being a single turn by equation (12).

Once a single turn has been made, the probability of selecting a new direction which 
results in hitting the target is given by marginalizing across all possible locations of turns

N

N
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where α = − r Rsin /1 ( ) and the total normalization is given by integrating over the 

probability density e xλ λ− : x xe d d e d dx R r x2

0

2 cos

0 0( )/
∫ ∫ ∫ ∫λ θ θ= +
α

π θ λ α λ− − −N . Note that 

the angle of trajectories that will hit the target is larger for turns that occur closer to 
the target (figure 4(A)). This may account for the slight increase in hitting probability 
due to turning (figure 4(C)).

Therefore, the total likelihood of hitting the target along a single path between 
boundary points can be linearly approximated by (a) subtracting the probability due 
to turning away from the target given by equations (10) and (11) and (b) adding the 
probability due to turning towards the target as computed in equations (12) and (13):

λ
π

= + − ⋅λ λ− −
−

−a
r R

r Re
2 sin /

1 e , .R r
1

ch H¯( )
( )

( ) ( )( )� (14)

This provides a new estimate for the probability of hitting in a single path, which we 
plot in figure 4(C).

Furthermore, we can compute the average length of a single path between bound-
ary points. This will no longer be given by the average chord length ch. Rather, our 
approximation will average in the paths consisting of two segments. Utilizing the prob-
abilities of turning and not turning computed in equation (10) and (12), we can then 
appropriately weight the average lengths of one and two segment paths. First, note 
that paths with no turns will have a new average length given by

l
1

2 cos e d0
0 0

2
2 cos¯ ( )

/

∫ θ θ=
π

λ θ−

N� (15)

with normalization constant e d0
0

2 2 cos/
∫ θ=
π λ θ−N . Paths with a single turn will have 

length specified by their initial search angle θ, first segment length x, and new angle 

φ following a turn. Given paths that start at (x, y)  =  (R, 0), the turning point will be 
x y R x x, cos , sin0 0( ) ( )θ θ= −  and the new intersection point with the boundary will be

x y R x R x

x R R x

, sin sin sin cos sin sin ,

cos sin sin sin sin sin .

c c
2 2

2 2

(
)

( ) ( ( )) ( ( ) )

( ( ) ) ( ( ) )

φ φ θ φ φ θ φ φ

φ θ φ φ φ θ φ φ

= − + + − + −

+ − + − + −

For small targets (r R� ), the eect of absorptions by the target will have a small eect 
on the average path length, so we marginalize over all three variables θ, x, and φ:

l x x x y y xe d d dx
c c1

1 0

2

0

2 cos

0

2

0
2

0
2¯ ( ) ( )

/ ⎡
⎣

⎤
⎦∫ ∫ ∫

λ
φ θ= + − + −

π θ π
λ−

N
� (16)

with normalization constant 2 1 e d1
0

2 2 cos/
∫π θ= −
π λ θ−N . Combining equation (16) with 

the average chord length, given no turns equation (15), we have the following estimate 
for the average path length
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l l le 1 e ,ch
0

ch
1

¯( ) ¯ ( ) ¯λ = + −λ λ− −� (17)

shown in figure 4(D).
Incorporating equations (14) and (17) into equation (3), the formula for the MFPT, 

we can account for the eects of interior turning:

l
a

R
1

1 .c( ) ¯( )
¯( )

⎛
⎝
⎜

⎞
⎠
⎟λ λ

λ
= − +T� (18)

The main contribution to the reduction of the MFPT is due to a slight increase in the 
hitting probability ā( )λ  as shown in figure 4(C). However, increasing turning λ does not 
significantly impact the time to find the target (figure 4(B)). Even for larger values of 
λ, the MFPT remains relatively unchanged as opposed to the case 0λ = .

4.2. Spiral searches

We now turn our attention to an alternate strategy for locating a hidden target—spiral 
searches. Both insects and mammals may utilize spiral patterned trajectories as search 

Figure 4.  MFPT decreases when the searcher turns in the interior (λ> 0). (A) To 
approximate the hitting probability ¯( )λa  over a single path, we account for the new 
probability of hitting after turning ( )/α θ πl, . (B) MFPT decreases as a function of 
λ, as demonstrated both by the theory (solid curve) in equation (14) and numerical 
simulations (circles). (C) Hitting probability for a single path between boundary 
points increases slightly with λ according to theory equation (14) and numerical 
simulations. (D) Average path length also increases slightly with λ, as computed 
in equation (17). Note ( ) [ ]π π= −f z unif , .
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paths to locate a target [25, 26]. This can be more ecient and even optimal, since 
it can reduce the time spent in previously visited patches of the environment [27]. 
However, spiral search may lead to unnecessarily long times needed to find the target 
if the spacing between rotations is too large or too small [28].

We consider search trajectories described by an Archimedean spiral 
b

2
( )ρ φ φ=

π
 

within the circular domain Ω. Here b is the closest distance between points along the 
same radius, eectively the width of the spiral. Were the radius of the target r known 
to the searcher, the optimal coecient could be chosen b  =  2r. This leads to no overlap 
in the environment searched while also ensuring that the target will be hit in a single 
search path. In cases where b  <  2r, the target is sure to be hit (figure 5(A)), but the 
searcher overlaps previously searched regions. If b  >  2r, the searcher may not hit the 
target during a single search path, since it will only hit targets with centers up to a dis-
tance r away from its path (figure 5(B)). For uniformly randomly located targets, there 

will be a probability of approximately 
r

b

2α =  the target will be hit on a single uniformly 

randomly initiated spiral path. Unwrapping the spiral search path would reveal the 
searcher passes over an approximately rectangular strip of width b, but it can only spot 
targets whose centers are within a strip 2r about its path. This approximation worsens 
as the domain shrinks or the target size grows.

Any spiral search path that begins at angle 1φ  on the interior and ends at 2φ  on the 
periphery has length:

∫ ∫ ∫φ φ ρ φ ρ φ φ
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(19)

For instance, in the case that R b�  and the search path has an interior end point at 

01φ =  and periphery end point R
b2
2φ = π

, we have

S R b
R R

b

b R

b

R

b

R

b
0, 2

2

4
1

4
ln

4
1

2
,

2 2

2

2 2

2

2

( / )π
π

π
π π π

= + + + + ≈

so the circular domain can be approximately partitioned by the search path to form a 
rectangle of width b and length R b2/π .

We can apply the formula in equation (19) to approximate the MFPT to find the 
target. Uniformly randomly choosing a location on the boundary 0, 2[ )θ π∈ , we con-
sider a circular target of radius r at a location R, 0( )ε  where R R r0 ⩽ ⩽ −ε . For b r2⩽ , 

the time to find the target can be computed as S R R,s b b

2 2( )( ) = π πε εT . Note, the MFPT 

will decrease as b is increased to 2r as less time is wasted examining previously explored 

regions. On the other hand, the searcher may choose a spiral width b  >  2r, so 
r

b

2α =  

approximates the probability of hitting the target in a single spiral. The MFPT to find 
the target is calculated by computing hj, the likelihood of hitting the target after j full 
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spirals and dj the associated path length. The searcher starts at the periphery (at angle 

R
b2
2θ = π ) and the target center is at angular location R

b1
2θ = π ε , so after j full spiral 

paths the probability of locating the target is h 1j
j( )α α= −  with path-length:

d jS
S j

S j
0,

, even

0, odd
.j 2

1 2

1
( ) ( )  

( )  
⎧
⎨
⎩

θ
θ θ
θ

= +

Assembling these terms into an infinite sum, the average search path length is

h d
S S S, 1 0,

2

1 0,
,s

j

j j
b

R

b b

R

b

0

2 2 2 2( ) ( )( )
( )

( ) ( )
∑

α

α

α

α
= =

+ −

−
+

−π π π π

=

∞

εT

ε ε

� (20)

assuming the target is always fixed at location R, 0( )ε .
So far, we have assumed the target location R, 0( )ε  to be fixed across realizations. 

However, targets may tend to appear randomly at any location in the domain Ω. Using 

Figure 5.  Spiral search strategies. (A) When the spiral width b  <  2r, the searcher 
finds the target in a single path. (B) When the spiral width b  >  2r, the searcher 
may miss the target, so a new spiral path begins at (0, 0). (C) MFPT to find 
the target is non-monotonic in the spiral width b, with a minimum at b  =  2r the 
diameter of the target, as given by equations  (21) and (23). (D) MFPT always 
decreases with target radius r. With an ideal spiral width b  =  2r, search takes less 
time than ballistic search, but search times can be longer than for ballistic search. 
The probability of starting at angle θ on the boundary is uniform over [ )θ π∈ 0, 2  
as is the probability of drawing a search direction from the center. Domain has 
radius R  =  1.
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rotation symmetry, we project target locations to to R, 0( )ε  such that R R r0,[ ]∈ −ε . 

Marginalizing in the case b  <  2r we find S R R,s b b

2 2( )( ) = π πε εT  and:
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When b  >  2r, we average equation (20) over the uniform density of R R r0,[ ]∈ −ε  so
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We compare the theoretical approximations to the results from numerical simulations 
in figures 5(C) and (D). As a function of b, the MFPT given by equations (21) and (23) 
are non-monotonic with a minimum at b  =  2r (figure 5(C)).

5. Ballistic search for multiple subdomains

Thus far, we have focused on search problems in a single bounded domain, but often 
organisms forage or search for shelter in patchy domains without searching between 
patches [29, 30]. If patches are close together, an organism may frequently move 
between them to maximize search coverage of the environment. However, if patches 
are further apart, the organism may search single patches more thoroughly before 
moving on to search elsewhere. In light of this, we extend our analysis to the case of 
multiple disconnected subdomains Ωj (j  =  1, ..., N ), where there is a mean travel time 
T⟨ ⟩ between subdomains. There is only one target, located in the center of single sub-
domain Ωk such that ⊂Ω ΩkT , so searching in non-target subdomains (Ωj, j k≠ ) will 
not yield a target hit. Thus, we introduce another free parameter β into the strategy 
of our searcher, the rate the searcher leaves its current subdomain �Ω Ωj l (l j≠ ). The 
searcher may only depart at subdomain boundaries ∂Ωj, and we assume it enters one 
of the other subdomains with equal probability 1/(N  −  1) (figure 6). In our analysis, 

http://dx.doi.org/10.1088/1742-5468/2016/05/053201


Persistent search in single and multiple confined domains: a velocity-jump process model

16doi:10.1088/1742-5468/2016/05/053201

J. S
tat. M

ech. (2016) 053201

we aim to identify the optimal strategy for searching the disconnected domain for the 
single target, especially as it relates to the domain-switching rate β.

We now compute the MFPT to find the target of radius r in a multiple subdo-
main environment �Ω ∪Ω ∪ ∪ΩN1 2  where each subdomain is a circle of identical 
radius R. Assuming the searcher chooses a uniformly distributed random search 
angle, the likelihood of hitting the target along a single ballistic path, when inside 
the subdomain Ωk is a r R2 sin 1¯ ( / )/π= − . If the searcher is not in the subdomain with 
the target, the likelihood of hitting the target is zero. The probability of transition-
ing out of the target subdomain Ωk before hitting the target 1 ζ−  (ζ: probability of 
hitting target) is then

( ¯) ( ) ( ¯)
¯ ( ¯)

⟹ ¯
¯ ( ¯)∑ζ β β

β
β
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− = − − =
−

+ −
=
+ −=
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a a
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a a
1 1 1

1

1 1
.

j

j j

0

1
� (24)

Once the searcher leaves the target subdomain, it may transition between several non-
target subdomains before returning. Note the probability of transitioning from a non-
target subdomain to another non-target subdomain is N N2 1( )/( )ξ = − − . Thus, the 
average number of non-target subdomains visited before returning to Ωk is

( ) ( )∑ ξ ξ+ − = −
=

∞

j N1 1 1.
j

j

0
� (25)

To determine the average amount of time spent searching, we need to compute the 
average time spent searching per visit to the target subdomain when finding the target
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Furthermore, the average amount of time spent in a single non-target subdomain 
before departing is

T ( ) ( )∑ β β
β

= + − =
=

∞

jch 1 1
ch

,n

j

j

0

so along with equation (25), the average time between trips to the target subdomain is

N 1 ch
.na

( )
β

=
−

T

We pair these times along with the probability of hitting the target on the jth visit to 
the target domain. For the time being, we focus on the case where T 0⟨ ⟩ = , so in the 
case where the searcher begins in the target subdomain, the time to find the target is
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If initial conditions are uniformly distributed across subdomains, the probability of 
starting in the target subdomain is 1/N, so the generalized MFPT is
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Figure 6.  Domain with N  =  3 disconnected subdomains with a single target in 
subdomain Ω3. The total rate of transition out of each subdomain is β, and there 
is an equal likelihood of transitioning to one of the other two subdomains. The 
searcher can only locate the target when it is in subdomain Ω3. Transitions between 
subdomains take time ⟨ ⟩T  on average.
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In the case of instantaneous transits between subdomains T 0⟨ ⟩ = , the best strategy 
is to transition at every boundary encounter, 1β = , allowing rapid coverage of the 
domain. This is due to the fact that the searcher has no knowledge of the location of 
target until it has been located, and transitions proceed randomly between subdomains.

Now, we introduce random transit times T (see caption of figure 7(A)), capturing 
the variability possible in organisms time to move from patch to patch. Considering 
nonzero transit times T 0⟨ ⟩>  and how this augments the MFPT equation  (26), we 
note that when the searcher begins in the target subdomain the additional time due to 
transit will be

jN T N T
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whereas when it begins in a non-target subdomain, the additional transit time is
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so the updated MFPT is
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Figure 7.  Minimizing the MFPT by varying the transition rate β. (A) In a dual 
subdomain (N  =  2) environment, the MFPT is non-monotonic in β, obtaining a 
minimum at the value given by equation  (28). Numerical simulations (circles) 
match well with the theory (solid line) given by equation  (27). As the average 
transit time ⟨ ⟩T  is increased, the optimal transition rate βmin decreases. ⟨ ⟩T  was 
distributed according to a uniform distribution of length 4, a standard normal 
distribution centered at 4, and an exponential distribution translated 4 time units 
with scaling parameter 3, giving mean transit times ⟨ ⟩ =T 2, 4, 7 respectively. 
(B) As the number of domains N is increased, so does the MFPT. However, 
the optimal transition rate βmin remains roughly the same. The target radius is 
r  =  0.04 and the search direction at the boundary is ( ) [ ]π π= −f z unif , . The mean 
transit time ⟨ ⟩T  was distributed normally with mean 4 and variance 1 for all 
domain curves.
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To identify the optimal switching rate minβ β=  that minimizes the MFPT βcT ( ), we 
dierentiate

d
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and note T ( ) ( ) ( )″ β β= − >N N2ch 1 / 0c
2 3  for 0β> . Thus, any critical points occurring 

when 0β>  are minima. To identify the minimum, we set 0c min( )β =′T  and solve for
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T a

1 ch

1
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¯
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β =
−

−
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Thus, the optimal switching rate minβ  is inversely proportional to T⟨ ⟩, so the switch-

ing rate should decrease as the transit time increases (figure 7(A)). This allows for a 
more thorough search of a single subdomain before transitioning. Interestingly, equa-
tion (28) is roughly constant in the variable N as it is increased (figure 7(B)). Thus, 
for a very large number of sub domains N 1� , the parameters that determine the best 
switching rate are the chord length ch, probability of hitting the target ā, and the 
transition time T⟨ ⟩.

6. Discussion

We have studied a velocity-jump process model of persistent search in bounded domains. 
Initially, we considered a searcher that only turned on the boundary of a single con-
nected domain. Paths of the searcher are partitioned into segments that link points on 
the boundary. To derive the average MFPT to find the target, we approximated the 
average probability of hitting the target in a single segment ā. Pairing this with our 
approximation of an average segment-length ch, we then marginalized over all pos-
sible search path lengths. Importantly, we modeled the search process as memoryless, 
so each search segment was assumed to have been drawn from the same distribution. 
Applying this to single domains, we found the time to find the target decreases for tar-
gets closer to the boundary. When searchers had a small probability of turning on the 
interior of the domain, the time to find the target decreases slightly, due to an increase 
in the hitting probability of a single segment. Lastly, in domains comprised of multiple 
disconnected subdomains, a key parameter in determining the optimal search strategy 
is the time it takes the searcher to move between subdomains. Ultimately, we found 
the searcher should move between domains less often when subdomain transitions take 
longer.

Our study provides an idealized model of an organism’s search for a target in a 
confined domain. This model could apply to animals foraging in a patchy environment 
[30] or looking for shelter in controlled experiments [31] as well as their natural habi-
tat [28]. Furthermore, the velocity-jump process can produce long spatial correlations  
[15, 16], similar to those often observed in statistical analyses of organismal motion 
[32, 33]. Our analysis revealed that low-probability ( 1λ� ) turning on the interior of 
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a bounded domain can lead to a decrease in the time to find the target. It would be 
interesting to develop theory for analyzing the case in which there is a high probability 
of turning ( 1λ� ). In this limit, the velocity-jump process can be approximated by a 
diusion process [18], so it may be possible to perturb around this limit to approximate 
the eects of lengthening the spatial correlations in random walk segments. Theory for 
diusion to a small target in planar domains is well understood, so we could leverage 
some of these previous results [10–12]. Searchers may also intermittently return to a 
reference point in the domain before continuing their search [33]. Such processes have 
been incorporated into one-dimensional diusion [34] and Levy flight [35] search mod-
els. Our model could be extended in this way by having the searcher return to a specific 
location on the boundary at random intervals. We suspect this would increase search 
times, but a detailed analysis would need to be performed in future work.

Also, the theory we developed for the case of multiple disconnected subdomains 
could be extended to other search processes. For instance, intermittent search processes 
with non-reactive and reactive phases are a better model of foraging processes in some 
situations [13]. In this case, we could still separate the search process into time spent 
in non-target and target domains. The main dierence would be that the likelihood of 
hitting the target within the target domain be computed in the case where the searcher 
is intermittently reactive. Similar extensions could be applied to diusive search. Time 
spent in each subdomain would then be characterized by finding the mean time for the 
searcher to complete a random walk that starts and ends at the boundary.
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