
J Comput Neurosci
DOI 10.1007/s10827-015-0588-y

Sensory feedback in a bump attractor model of path
integration

Daniel B. Poll1 ·Khanh Nguyen1 ·Zachary P. Kilpatrick1

Received: 15 July 2015 / Revised: 14 December 2015 / Accepted: 22 December 2015
© Springer Science+Business Media New York 2016

Abstract Mammalian spatial navigation systems utilize
several different sensory information channels. This infor-
mation is converted into a neural code that represents the
animal’s current position in space by engaging place cell,
grid cell, and head direction cell networks. In particular, sen-
sory landmark (allothetic) cues can be utilized in concert
with an animal’s knowledge of its own velocity (idiothetic)
cues to generate a more accurate representation of position
than path integration provides on its own (Battaglia et al.
The Journal of Neuroscience 24(19):4541–4550 (2004)).
We develop a computational model that merges path integra-
tion with feedback from external sensory cues that provide
a reliable representation of spatial position along an annu-
lar track. Starting with a continuous bump attractor model,
we explore the impact of synaptic spatial asymmetry and
heterogeneity, which disrupt the position code of the path
integration process. We use asymptotic analysis to reduce
the bump attractor model to a single scalar equation whose
potential represents the impact of asymmetry and hetero-
geneity. Such imperfections cause errors to build up when
the network performs path integration, but these errors can
be corrected by an external control signal representing the
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effects of sensory cues. We demonstrate that there is an
optimal strength and decay rate of the control signal when
cues appear either periodically or randomly. A similar anal-
ysis is performed when errors in path integration arise
from dynamic noise fluctuations. Again, there is an optimal
strength and decay of discrete control that minimizes the
path integration error.

Keywords Neural field · Sensory feedback · Spatial
navigation · Stochastic differential equation

1 Introduction

Animals have a remarkable ability to accurately navigate
over large distances (Geva-Sagiv et al. 2015). For instance,
birds can utilize neural systems that sense the earth’s mag-
netic field, orienting themselves geocentrically (Cochran
et al. 2004; Wu and Dickman 2012). This is in contrast to
the systems studied in mammalian species, who are typi-
cally shown to use path integration (Etienne et al. 1996;
McNaughton et al. 2006). Path integration models of spatial
navigation assume mammals have knowledge of their direc-
tion and speed of motion, which networks of the brain can
then integrate to encode the path of their idiothetic motion
(Samsonovich and McNaughton 1997). However, there are
a number of potential sources of error to this mechanism.
The nervous system itself is prone to a wide variety of
noise sources due to channel fluctuations, synaptic failures,
or even stochastic network-wide events (Faisal et al. 2008).
This could lead to faulty communication of velocity or head
direction signals, or it could corrupt the storage of the posi-
tion signal (Sreenivasan and Fiete 2011). Furthermore, the
network that integrates the velocity signal may be com-
prised of architecture that is heterogeneous, providing an
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imperfect summation of velocity inputs (Brody et al. 2003).
Any inaccuracy in the represented position or velocity will
be compounded over time, as the neural code continues to
trace the animal’s true path (Knierim et al. 1995; Valerio
and Taube 2012). Fortunately, path integration is not the sole
navigational technique of the mammalian brain; landmarks
detected by the sensory system help anchor and correct the
integrated velocity signal (Fig. 1a) (Etienne et al. 1996;
Collett and Graham 2004; Solstad et al. 2008).

Several experiments have demonstrated that mammals’
representation of space is sharpened in the presence of sen-
sory cues (Battaglia et al. 2004; Ulanovsky and Moss 2011;
Aikath et al. 2014; Zhang et al. 2014). Experiments typically
compare place fields of individuals cells - spatial locations
where the cell becomes active - in the presence and absence
of sensory landmarks (e.g., steel brush or ticking clock;
Fig. 1b). For instance, Battaglia et al. (2004) recorded from
hippocampal place cells in rats moving on an annular track.
When there were no sensory cues along the track, the mea-
sured place field of an individual cell could differ substan-
tially, depending on whether the rat was moving clockwise
or counterclockwise around the annulus. This suggests there
was some drift in animals’ neural representation of their
position. However, when several position cues were placed
along the track, the clockwise and counterclockwise place
fields of individual cells were strongly correlated. This sug-
gests the sensory cues tightened the navigation system’s fine
representation of the animal’s spatial position (Save et al.
2000). Similar effects have been observed in brown bats,
whose echolocation signals provide a brief burst of rich
sensory information, sharpening the animal’s place fields
(Ulanovsky and Moss 2011). Thus, sensory cues appear to
provide a correction mechanism for the many sources of
error that disrupt position representation and broaden place
fields.

We bring these two features of the mammalian navi-
gation system – path integration and sensory feedback –
together into a single model. Our main focus is the role
sensory feedback can play in correcting the path integra-
tion signal. Errors in the path integration signal will arise,
in our model, due to internal disruptions of an accurately
delivered velocity input. The model represents position
by utilizing a perturbation of a continuous bump attrac-
tor (Amari 1977; Zhang 1996). Bump states arise in these
models due to a combination of strong local excitation and
broadly tuned inhibitory feedback (Wang 1999). In transla-
tion symmetric networks, bumps can be formed with their
center of mass at any location. However, such well-balanced
architecture is unlikely to occur in actual networks of the
brain, which tend to be spatially heterogeneous (Brody
et al. 2003; Renart et al. 2003). Such symmetry-breaking
in bump attractor networks leads to system states that
drift toward a finite number of discrete attractors, so the
long term dynamics are weakly correlated with the input
signal (Zhang 1996; Itskov et al. 2011; Kilpatrick et al.
2013). Furthermore, any dynamic fluctuations in the volt-
age or synaptic signals of the network can lead to diffusive
wandering of the bump state that will also degrade its sig-
nal representation (Compte et al. 2000; Burak and Fiete
2012; Kilpatrick and Ermentrout 2013). Our study mainly
focuses on how external control can reduce the deleteri-
ous effects of both spatial heterogeneity and noise, ulti-
mately improving long term accuracy of the network’s path
integration.

Our model is intended to describe the neural activity
of place cell networks in the hippocampus (O’Keefe and
Burgess 1996). Based on a simplified version of the model
by Samsonovich and McNaughton (1997), neural activ-
ity bumps are propelled around the network by external
velocity inputs that introduce spatial asymmetry into the
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Fig. 1 Mammalian spatial navigation network with sensory feedback.
The animal utilizes its own velocity to update its remembered posi-
tion (path integration) and corrects this memory with sensory cues
that serve as position landmarks. a Schematic of the underlying neu-
ronal network demonstrates the place cell network receives direction
input from the animal’s velocity signal v(t). Its position estimate is

compared with the true position read-out from a sensory cue, and this
error is then used to generate a control input signal vc(t) back into the
place cell network. b Illustration of the experiments by Battaglia et al.
(2004), showing an annular track with various objects placed in the
environment to provide the animal with sensory cues
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balance of excitation and inhibition. A similar mechanism
was utilized by Burak and Fiete (2009) in a two-dimensional
model of grid cell activity. Thus, this framework is a well
accepted model of position encoding cells in hippocampus,
entorhinal cortex, and the vestibular system (Zhang 1996).
Since we are modeling motion along an annulus (Fig. 1b),
we have restricted the network to a one-dimensional peri-
odic domain. Sensory cues are assumed to provide a reliable
estimate of the animal’s true position. This position is then
compared with the place cell network’s estimate of position.
Any discrepancy in the position estimate is then translated
into a corrective velocity input, which is added to the base-
line velocity input (Fig. 1a). Even when the cues occur
discretely in space, this mechanism works well for reducing
the long term error in the position estimate.

In Section 2, we introduce the neural field model of
spatial navigation, which combines path integration and
sensory cue feedback. Next, we derive a low-dimensional
approximation for the dynamics of bump position in the
neural field model (Section 3). This reduction reveals the
relative influence of velocity inputs, sensory feedback, and
heterogeneity on the animal’s perceived position of its cur-
rent location. Ultimately, this allows us to calculate the
impact of various control strategies on the error between the
animal’s perceived position and true position (Section 4).
Our main finding is that there is an optimal control strength
at which the long term error of the network is minimized.
Our findings were similar in the case that errors arose due
to dynamic noise fluctuations (Section 4.2), rather than
synaptic heterogeneities (Section 4.1). In this case, the low-
dimensional approximation of the neural field is a stochas-
tic differential equation whose variance we can evaluate
explicitly.

2 Sensory control in velocity-integrating place cell
networks

We employ a neural field model of velocity integration that
sustains a bump attractor of neural activity in the absence
of any inputs. Amari (1977) pioneered the scalar neu-
ral field model as a reduction of the excitatory-inhibitory
model of Wilson and Cowan (1973), but the incorpora-
tion of velocity inputs that shift the bump around the
spatial domain is more recent. Originally developed as a
model of the head direction system (Zhang 1996), velocity-
integrating networks introduce an external input that alters
the shape of the recurrent architecture (McNaughton et al.
1991). As a result, a moving bump, rather than a sta-
tionary bump, becomes the stable solution to the model
equations. This model has since been extended to account
for place fields and grid cell fields in planar systems
(Samsonovich and McNaughton 1997; Burak and Fiete

2009). The fully general form of our neural field model is
given by

du(x, t) =
[
−u(x, t) +

∫ π

−π

w(x, y)f (u(y, t))dy

+ṽ(t)

∫ π

−π

wv(x − y)f (u(y, t))dy

]
dt

+εdW(x, t), (2.1)

where u(x, t) denotes the total synaptic activity at a position
x ∈ [−π, π ] at time t . The variable x labels the position of
neurons in the network as well as a corresponding location
in the environment, so the domain � = [−π, π ] is taken to
be periodic as it represents an annular track (Fig. 1b).

The function w(x, y) represents the synaptic connectiv-
ity between neurons, which we model as a translationally
symmetric unimodal function w0, modified by spatial het-
erogeneity wu with strength σ or odd asymmetry φ, so

w(x, y) := (1 + σwu(y))w0(x − y − φ) (2.2)

with weak heterogeneity and asymmetry σ, φ � 1. Note
that in the limit σ → 0 and φ → 0, we obtain w(x, y) =
w0(x − y), a distance-dependent even function. However,
in the fully general case (σ > 0 and/or φ > 0), it is
straightforward to see that the function w(x, y) need not be
distance-dependent or even symmetric. In particular, when
σ > 0, discrete attractors form in the network Eq. (2.1)
whereby bumps tend to drift away from their initial posi-
tion to a finite number of linearly stable locations (Zhang
1996; Itskov et al. 2011; Kilpatrick and Ermentrout 2013).
We consider this to be a major source of error in the net-
work, since near-perfect integration of the velocity inputs
could be achieved if w(x, y) = w0(x−y). For ease of analy-
sis, the translationally symmetric function is typically taken
to be a cosine w0(x) := cos x. We will allow wu to be more
general, by representing it as a series of N Fourier modes

wu(x) :=
N∑

n=1

αn cos(nx) + βn sin(nx);

〈αn〉 = 〈βn〉 = 0; 〈α2
n〉 = 〈β2

n〉 = σ 2
n . (2.3)

The coefficients αn, βn are random variables drawn from
the normal distribution with mean zero and variance σ 2

n .
Velocity inputs are represented by the shifting function

wv(x − y) := −w′
0(x − y) as in the original head direc-

tion system model (Zhang 1996) and recent grid cell models
(Burak and Fiete 2009). In the absence of any heterogeneity
or asymmetry, the sum w(x, y)+ ṽ(t) ·wv(x − y) would be
translation symmetric but not even-symmetric, in general.
This asymmetry produces a moving bump as the solution to
Eq. (2.1) that will move at a speed given by |ṽ(t)| (Fig. 2a).
Incorporating the heterogeneity, σ > 0, the system is no
longer translation symmetric, and a moving bump will not
move at the same speed as the velocity input |ṽ(t)| (Fig. 2b).
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Fig. 2 Velocity-integration with moving bump attractors in the neu-
ral field model Eq. (2.1) with a Heaviside firing rate function Eq. (2.8)
with threshold θ = 0 and a cosine base weight function w0(x) =
cos(x). a Bump of neural activity u(x, t) perfectly integrates velocity
inputs in the case of no heterogeneity (σ = 0) and no noise (ε = 0),
showing the animal’s true position (solid line) is perfectly tracked by
the center of mass of the bump (dashed). b In a heterogeneous network
(σ = 0.1 with wu = sin(x)), the bump initially moves too fast due to

a discrete attractor of the input-free system at x = π/2, so the bump’s
center of mass is mismatched with the true position of the animal. c
In the presence of spatiotemporal noise (ε = 0.2 with cosine correla-
tions C(x) = cos(x)), the bump wanders diffusively so the encoded
position tends to slowly distance itself from the true position. Here the
external velocity input is constant ṽ(t) = 0.1. Numerical simulations
are performed using an Euler timestep with dt = 0.1 and a trapezoidal
rule on the integral with dx ≈ 0.003

Thus, assuming a sensory mechanism for correcting the
place cell’s encoded position when a cue is encountered,
take the velocity input to be

ṽ(t) := v(t) + vc(t),

the sum of the animal’s true velocity v(t) and an exter-
nal control signal vc(t). This is meant to account for the
improved place representation observed when animals can
employ information about sensory landmarks (Battaglia
et al. 2004; Ulanovsky and Moss 2011; Aikath et al. 2014).
As shown in the schematic in Fig. 1a, we assume there is a
network that can access the place cell network’s perceived
position 
(t) via a readout of the center of mass of neural
activity (Deneve et al. 1999)


(t) =
∫ π

−π

xf (u(x, t))dx. (2.4)

The present positional error is then computed by comparing
the perceived position 
(t) to the animal’s actual position
given by a time integral of the velocity input


T (t) =
∫ t

0
v(s)ds,

so the error

r(t) = 
T (t) − 
(t), (2.5)

which will be positive (negative) if the estimated position is
to the left (right) of the true position. Note, we extend the
domain x ∈ [−π, π ] to compute Eq. (2.5) in cases where the
closest distance between 
T and 
 is across the boundary
cuts at x = ±π . The error r(t) is then translated either into
a continuous velocity control signal

vc(t) = λr(t) = λ · (
T (t) − 
(t)), (2.6)

or a discrete control signal given by

dvc

dt
= −vc(t)

τ
+ λ

Nc∑
k=1

r(tk)δ(t − tk), (2.7)

where sensory cues occur at times tk and λ and τ determine
the strength and time decay of control. As we will show, in
the case of continuous control Eq. (2.6), strengthening the
sensory feedback λ always leads to a reduction of the error.
This is not the case for discrete control Eq. (2.7), since the
previous sensory cue at tk < t becomes less relevant as t

increases toward tk+1. One of the main goals of this study is
to explore how the spacing between subsequent cues tk+1 −
tk determines how strong λ the control signal should be.

The nonlinearity f is a firing rate function taken to be
sigmoidal (Wilson and Cowan 1973)

f (u) := 1

1 + e−γ (u−θ)
,

where γ is the gain and θ is the firing threshold. For ease in
analysis, we will often consider the high gain limit γ → ∞
so that f becomes a Heaviside step function of the form

f (u) := H(u − θ) =
{

1 : u ≥ θ,

0 : u < θ.
(2.8)

Lastly, we also will consider the impact of the addi-
tive noise increment dW(x, t). Spatially extended Langevin
equations of the form Eq. (2.1) have become a common
model of the effects of fluctuations in large-scale neuronal
networks (Bressloff 2012). The noise term is a spatially
filtered spatiotemporal white noise process

dW(x, t) :=
∫ π

−π

F(x − y) dY (y, t)dy,

where F is the spatial filter and dY (x, t) is a spatially and
temporally white noise increment. With these definitions,



J Comput Neurosci

the mean and variance can be calculated as 〈dW(x, t)〉 =
0 and 〈dW(x, t) dW(y, s)〉 = C(x − y)δ(t − s)dtds,
where δ(t) is the Dirac delta function and C is the spatial
correlation given in terms of the filter F as

C(x − y) =
∫ π

−π

F(x − x′)F(y − x′)dx′.

As an example, consider F(x) = cos(x)+ sin(x). Then, the
spatial correlation C can be computed explicitly as
∫ π

−π

F(x − x′)F(y − x′)dx′

=
∫ π

−π

(
cos(x−x′) + sin(x−x′)

)(
cos(y−x′) + sin(y−x′)

)
dx′

=
∫ π

−π

[
cos2(x′) cos(x) cos(y) + sin2(x′) sin(x) sin(y)

]
dx′

= π
(

cos(x) cos(y) + sin(x) sin(y)
)

= π cos(x − y) =: C(x − y).

As we demonstrate, the control introduced to account for
the impact of synaptic spatial heterogeneity can also be uti-
lized to decrease errors brought about by spatiotemporal
noise (Fig. 2c).

We demonstrate the impact of discrete control Eq. (2.7)
on the dynamics of neural fields that imperfectly integrate
their velocity inputs, comparing to a perfectly integrating
network for reference (Fig. 3a). Integrating Eq. (2.7), we
find that the discrete perturbations to the velocity signal are
given by a series of exponentially decaying impulses

vc(t) = λ

Nc∑
k=1

r(tk)e
−(t−tk)/τH(t − tk). (2.9)

Furthermore, in the limit of the timestep tk+1 − tk between
subsequent cues tending to zero and τ → 0, Eq. (2.7) for
discrete control approaches Eq. (2.6) for continuous con-
trol. Assuming for demonstration that cues are spaced in
such a way that an animal utilizes one every 2 units of time

(tk+1 − tk = 2 for all k = 1, ..., Nc − 1), we demonstrate in
a single realization that a network with spatially heteroge-
neous coupling can recover its ability to correctly integrate
velocity (Fig. 3b). In a similar way, networks with additive
noise can have their velocity integration corrected by the
sensory feedback signal given by discrete control impulses,
Eq. (2.9), as shown in Fig. 3c. In the next section, we will
analyze the impact of heterogeneity and noise on the posi-
tion of the bump in a low-dimensional approximation of the
bump’s center of mass 
(t).

3 Analysis and low-dimensional reduction of bump
solutions

To understand the impact the sensory feedback signal has
on the statistics of bump position in Eq. (2.1), we derive a
low-dimensional approximation of the model that projects
the dynamics down to a single equation describing bump
position 
(t). Our analysis is adapted from recent studies
of stochastic neural field equations, assuming the impact
of perturbations to a translationally symmetric neural field
can be separated into slow timescale changes of the position
of bumps along with fast timescale changes to the profile
of bumps (Bressloff and Webber 2012; Kilpatrick and
Ermentrout 2013; Bressloff and Kilpatrick 2015). Such
analysis must begin by constructing the bump solutions of
the unperturbed system. In our case, we take the veloc-
ity inputs, heterogeneity, asymmetry, and noise all to be
perturbations to a translationally symmetric system (taking
v = σ = φ = ε = 0 in Eq. (2.1)). While it is possi-
ble to develop exact analytical results in the case wherein
we break the symmetry of this model, which we show, it is
also helpful to collect the effects of all the possible perturba-
tions to Eq. (2.1) into a single scalar equation. The resulting
analysis then clearly demonstrates the interaction of such
perturbations.

Fig. 3 Discrete control reduces error in imperfect velocity-integrating
networks. a Activity plot u(x, t) shows perfect velocity-integrating
network is unaffected by discrete control given by Eq. (2.7), since it
accumulates no errors. b Spatially heterogeneous network with σ =
0.1 and wu(x) = sin(x) is corrected by discrete control so that the rep-
resented position (dashed line) is much closer to the true position (solid

line) than in the uncorrected case (compare with Fig. 2b). c Network
perturbed by noise (ε = 0.2 and C(x) = cos(x)) has its represented
position corrected by discrete control (compare with Fig. 2c). Discrete
control Eq. (2.9) is given at intervals tk+1 − tk = 
t = 2 with strength
λ = 1 and decay timescale τ = 1. Other parameters and numerical
simulations are as in Fig. 2
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3.1 Stationary bump solutions to the translation
symmetric network

We begin by assuming the homogeneous connectivity func-
tion w0(x) in Eq. (2.2) satisfies evenness (w0(x) =
w0(−x)) and there is no heterogeneity (σ = 0) or asym-
metry (φ = 0) in w(x, y). In this case, it is possible to
show there is a stationary bump solution u(x, t) = U(x)

with U(x) > θ over an excited region x ∈ [a1, a2] (Amari
1977; Ermentrout 1998) in the absence of velocity inputs
(ṽ ≡ 0) in Eq. (2.1). Furthermore, the weight function is
translationally symmetric since

w0((x+s)−(y+s)) = w0(x−y+s−s) = w0(x−y), (3.1)

so there will be a continuum of bump locations associ-
ated with any single bump solution to Eq. (2.1). Stationary
bumps satisfy the equation

U(x) =
∫ π

−π

w0(x − y)f (U(y))dy. (3.2)

Note that U(x + s) will also be a solution for any s, since

U(x + s) =
∫ π

−π

w0(x − y)f (U(y + s))dy,

and a change of variables y + s �→ z yields

U(x + s) =
∫ π

−π

w0(x + s − z)f (U(z))dz,

and another change of variables x + s �→ x′ yields

U(x′) =
∫ π

−π

w0(x
′ − z)f (U(z))dz,

which is precisely Eq. (3.2). Now, taking the high gain limit
γ → ∞, we employ the Heaviside firing rate function
Eq. (2.8). Doing so allows us to generate an equation for the
bump width d = a2 − a1 as in Amari (1977). In this case,
Eq. (3.2) becomes

U(x) =
∫ a2

a1

w0(x − y)dy.

We then use the threshold crossing conditions U(a1) =
U(a2) = θ and evenness of w0(x) to derive

U(a1) =
∫ a2

a1

w0(a1 − y)dy =
∫ a2−a1

0
w0(−z)dz

=
∫ d

0
w0(z)dz = θ

U(a2) =
∫ a2

a1

w0(a2 − y)dy = −
∫ 0

a2−a1

w0(z)dz

=
∫ d

0
w0(z)dz = θ.

Note that the evenness of w0(x) allows us to manipulate the
above equations so they are the same equalities. If evenness

did not hold, the above pair of equations would each be dif-
ferent and we would have an overdetermined system for the
bumpwidth d , meaning stationary bumps do not exist. Thus,

W(d) =
∫ d

0
w0(x)dx = θ ⇒ d = W−1(θ).

For example, in the case of a cosine weight w0(x) = cos(x),
we have

W(d) =
∫ d

0
cos(x)dx = sin(d)

= θ ⇒ d = sin−1 θ, π−sin−1 θ. (3.3)

As mentioned, the threshold conditions specify the width
d of the bump. Translation symmetry allows the position
of the bump to be anywhere x ∈ [−π, π ], which allows
this network to integrate and store velocity inputs as a posi-
tion memory. As mentioned in Section 2, the position of the
bump will be given by its center of mass Eq. (2.4), which
for unimodal and even symmetric bumps will also be given
by the peak


 = argmaxxU(x). (3.4)

For example, in the case of cosine weight functions w0(x) =
cos(x), there is an even symmetric solution such that a1 =
−a and a2 = a, so

U(x) =
∫ a

−a

cos(x − y)dy = 2 sin(a) cos(x). (3.5)

Thus, the location of the bump as computed by Eq. (3.4) is

 = 0. Similarly, if we compute the center of mass using
Eq. (2.4), we find


 =
∫ π

−π

xf (U(x))dx =
∫ a

−a

xdx = 0,

which is consistent.

3.2 Perfect velocity integration by traveling bumps

Now we explore the impact of velocity inputs (v(t) �= 0) on
the translationally symmetric network (w(x, y) = w0(x −
y)). For now, we assume constant velocity inputs, v(t) ≡ v0.
Assuming the bump subsequently moves at a constant speed
c, we look for a traveling wave solution u(x, t) = U(ξ)

where ξ = x − ct . We will show that the traveling wave
speed c is exactly equal to the velocity input amplitude v0,
under the assumption that wv(x) = −w′

0(x) in Eq. (2.1).
Plugging these conditions into Eq. (2.1), we find

−cU ′(ξ) + U(ξ) =
∫ π

−π

[w0(ξ − y)

+v0wv(ξ − y)]f (U(y))dy.
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Now plugging in our requirement that the velocity por-
tion of the weight function wv(x) = −w′

0(x), we have

− cU ′(ξ) + U(ξ) = −v0

∫ π

−π

w′
0(ξ − y)f (U(y))dy

+
∫ π

−π

w0(ξ − y)f (U(y))dy. (3.6)

Under the assumption that the function U(ξ) satisfies the
equality Eq. (3.2), we can differentiate this equation to yield

U ′(ξ) =
∫ π

−π

w′
0(ξ − y)f (U(y))dy. (3.7)

Canceling the Eq. (3.2) portion of Eq. (3.6), we find that

cU ′(ξ) = v0

∫ π

−π

w′
0(ξ − y)f (U(y))dy. (3.8)

The equality Eq. (3.8) follows from Eq. (3.7) as long as we
set c ≡ v0. Another implication of our analysis is that the
shape of the bump U(ξ) will be the same no matter what c

(equivalently v0) is, suggesting there will be no relaxation
time if the external drive v0 were to be changed abruptly. In
this way, we can expect the translation symmetric version
of the network Eq. (2.1) to integrate inputs perfectly, as was
originally proposed by Zhang (1996).

3.3 Imperfect integration due to heterogeneity,
asymmetry, and noise

Now that we have explored the dynamics of the perfect
velocity-integrating network, we study the impact of intro-
ducing heterogeneities (σ ), asymmetry (φ), and noise (ε)
into the network Eq. (2.1). Rather than deriving exact solu-
tions as we did for the translationally symmetric system,
we take a perturbative approach under the assumption that
alterations to the symmetric system are weak. Following
perturbation methods originally developed for the study
of front propagation in reaction-diffusion systems (Panja
2004; Sagués et al. 2007), we employ a separation of time
scales to decompose these effects into a slowly evolving dis-
placement 
(t) of the bump from its uniformly translating
position and perturbations to the bump profile �(x, t). This
yields the following decomposition

u(x, t) = U(x − 
(t)) + ε�(x − 
(t), t) + O(ε2), (3.9)

where we assume σ, φ, ṽ(t) ∼ O(ε). Plugging the ansatz
Eq. (3.9) into Eq. (2.1) and expanding in powers of ε, we
find that at O(1), the system has a stationary bump solu-
tion given by Eq. (3.2). At linear order O(ε), we find the
following equation

εd�(x, t) = εL�(x, t)dt + U ′(x)d
(t)

+σ

∫ π

−π

wu(y + 
(t))w0(x − y)f (U(y))dydt

−(ṽ(t) + φ)

∫ π

−π

w′
0(x−y)f (U(y))dydt

+εdW(x, t) (3.10)

where L is a linear functional given by

Lp(x) := −p(x) +
∫ π

−π

w0(x − y)f ′(U(y))p(y)dy

and its adjoint operator

L∗q(x) = −q(x) + f ′(U(x))

∫ π

−π

w0(x − y)q(y)dy.

To ensure a solution to Eq. (3.10), we require that the inho-
mogeneous portion of the equation be orthogonal to the
nullspace of the adjoint operator L∗. Indeed, the nullspace
of L∗ is spanned by ϕ(x) = f ′(U(x))U ′(x), where U(x) is
defined by Eq. (3.2), which we can verify using integration
by parts

L∗ϕ(x) = −ϕ(x) + f ′(U(x))

∫ π

−π

w0(x−y)ϕ(y)dy

= f ′(U(x))

(
−U ′(x) +

∫ π

−π

w0(x−y)f ′(U(y))U ′(y)dy

)

= f ′(U(x))

(
−U ′(x) +

∫ π

−π

d

dy

(
w0(x−y))f (U(y))dy

)

= f ′(U(x))

(
−U ′(x) + d

dx

(∫ π

−π

w0(x−y)f (U(y))dy

))
= 0.

(3.11)

The last line holds by differentiating the bump existence
equation as in Eq. (3.7). Now, by taking inner products of
the null vector ϕ with the O(ε) Eq. (3.10), we can derive an
evolution equation for 
(t), the position of the bump

−
∫ π

−π

ϕ(x)U ′(x)dxd
(t) = σ

∫ π

−π

ϕ(x)

∫ π

−π

wu(y + 
(t))w0(x − y)f (U(y))dydxdt (3.12)

−(ṽ(t) + φ)

∫ π

−π

ϕ(x)U ′(x)dxdt + ε

∫ π

−π

ϕ(x)dW(x, t)dx,
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where we have applied the Eq. (3.7). We can simplify the
Eq. (3.12) further by isolating d
(t) to yield the stochastic
differential equation

d
(t) = [F(
(t)) + v(t) + vc(t) + φ] dt+dW(t), (3.13)

where the impact of synaptic spatial heterogeneities is
described by the nonlinear function

F(
)=−σ

∫ π

−π
f ′(U(x))U ′(x)

∫ π

−π
wu(y + 
)w0(x − y)f (U(y))dydx∫ π

−π
f ′(U(x))U ′(x)2dx

,

(3.14)

and the noise term has been projected to a temporal white
noise process W(t) with mean zero (〈W(t)〉 = 0) and vari-
ance 〈W(t)2〉 = Dt with associated diffusion coefficient

D = ε2

∫ π

−π

∫ π

−π
f ′(U(x))U ′(x)f ′(U(y))U ′(y)C(x − y)dydx[∫ π

−π
f ′(U(x))U ′(x)2dx

]2
.

(3.15)

Setting vc(t) ≡ 0 and v(t) ≡ v0 (constant), the dynamics of
the position variable 
(t) can be equivalently described by
a potential function

V (
) = −
∫

[F(
) + v0 + φ] d
 = −
∫

F(
)d
−(v0+φ)
,

(3.16)

so 
(t) will descend the gradient of V (
) toward its local
minima. Note that in the case F(
) ≡ −φ and W(t) ≡ 0,
the control term will vanish vc(t) ≡ 0 and the bump will
perfectly integrate the velocity input, 
(t) = ∫ t

0 v(s)ds. We
find that the low dimensional approximation is in excellent
agreement with simulations of the full system in this case of
perfect integration (Fig. 4a).

Ignoring the control for the time being in Eq. (3.13), we
can also identify how different network imperfections con-
tribute to the resultant error in path integration. To do so, we
simply compute the error function r(t) = 
T (t) − 
(t) as
given in Eq. (2.5). First, note that in a network with asym-
metry φ �= 0 and no heterogeneity F(
) ≡ 0, the long term
error accumulates linearly in time

r(t)=
T (t)−
(t)=
∫ t

0
v(s)ds−

∫ t

0
[v(s) + φ] ds =−φt,

so the animal’s true position 
T will be behind (in front of)
the estimated position 
 when φ > 0 (φ < 0). We will
demonstrate the impact external control via sensory cues has
upon this error in Section 4. Errors due to arbitrary hetero-
geneities are more difficult to express explicitly. In general,

we can express the solution to Eq. (3.13) implicitly in this
case if we assume the velocity is constant v(t) ≡ v0:

G(
(t)) =
∫ 


0

dy

F(y) + v0
= t. (3.17)

If indeed the function G(
) is invertible, then we can
express 
(t) = G−1(t), so

r(t) = 
T (t) − 
(t) = v0t − G−1(t). (3.18)

We will demonstrate some cases where we can perform
this calculation explicitly in Section 3.4. Note that the main
impact of heterogeneities is to establish a finite number
of discrete attractors, in the velocity input-free system, so
that bumps drift toward these locations (Fig. 4b). Even in
the velocity-driven network, spatial heterogeneities lead to
a sinuous trajectory of the bump that is mismatched to a
straight integration of velocity input (Fig. 4c, d). Lastly,
note that the impact of noise can be quantified by averaging
across realizations of the stochastic process


(t) =
∫ t

0
v(s)ds + W(t) = 
T (t) + W(t).

While the mean position will be the same for the true and
encoded positions (
T (t) − 〈
(t)〉 = 0), the variance will
grow linearly in time

〈r(t)2〉 = 〈(
T (t) − 
(t))2〉 = 〈W(t)2〉 = Dt,

where the diffusion coefficient D can be computed using
Eq. (3.15). Previous work has characterized the impact of
the bump profile and spatiotemporal noise correlation struc-
ture on the diffusion coefficient D, providing some explicit
calculations (Kilpatrick and Ermentrout 2013). In general,
the main effects of noise perturbations on the bump will be
experienced by the bump edges, where the activity variable
u(x, t) crosses the firing rate threshold θ . We now pro-
vide some explicit calculations demonstrating the impact of
spatial heterogeneity on the long term position of the bump.

3.4 Explicit results for spatially heterogeneous networks
with a Heaviside firing rate

Several previous studies have characterized the impact of
periodic microstructure on the propagation of waves in neu-
ral media (Bressloff 2001; Kilpatrick et al. 2008; Coombes
and Laing 2011). Typically, periodic heterogeneities can
slow down waves and even cause propagation failure. We
extend these previous results here, showing that the low-
dimensional Eq. (3.13) allows us to estimate the location of
bifurcations separating detectable and undetectable constant
velocity inputs v(t) ≡ v0. Again, we are ignoring the impact
of control at this point, studying its effects in more detail in
Section 4. To allow for more general weight heterogeneities,
we consider the decomposition given by Eq. (2.3). Thus, we
can integrate each of the Fourier modes independently to
derive the function F(
) given by Eq. (3.14). Furthermore,
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we assume a cosine for the homogeneous weight function
w0(x) = cos(x) and a Heaviside firing rate Eq. (2.8).

To begin, note that the bump solution is given by
Eq. (3.5) and the half-width is a = 1

2

[
π − sin−1 θ

]
as

given by Eq. (3.3). Therefore, the spatial derivative U ′(x) =

−2 sin(a) sin(x). Furthermore, the null vector defined by
Eq. (3.11) is spanned by the difference of delta distributions
δ(x +a)− δ(x −a). This means that the frequency n cosine
Fourier components of the heterogeneity, with scaling αn,
contribute the function F(
) in the following way

Fαn(
) =
∫ π

−π (δ(x + a) − δ(x − a))
∫ a

−a
cos(n(y + 
)) cos(x − y)dydx

2 sin a
∫ π

−π (δ(x + a) − δ(x − a)) sin xdx

= −
∫ π

−π (δ(x + a) − δ(x − a)) (n cos(a) sin(na) − sin(a) cos(na)) cos(x)dx cos(n
)

2(n2 − 1) sin2 a

+
∫ π

−π (δ(x + a) − δ(x − a)) (cos(a) sin(na) − n sin(a) cos(na)) sin(x)dx sin(n
)

2(n2 − 1) sin2 a

= n cos(na) − cot(a) sin(na)

n2 − 1
sin(n
).

In a similar way, we can compute the coefficients arising
from the sine Fourier components with scaling βn as

Fβn(
) =
∫ π

−π (δ(x + a) − δ(x − a))
∫ a

−a
sin(n(y + 
)) cos(x − y)dydx

2 sin a
∫ π

−π (δ(x + a) − δ(x − a)) sin xdx

= −
∫ π

−π (δ(x + a) − δ(x − a)) (n cos(a) sin(na) − sin(a) cos(na)) cos(x)dx sin(n
)

2(n2 − 1) sin2 a

−
∫ π

−π (δ(x + a) − δ(x − a)) (cos(a) sin(na) − n sin(a) cos(na)) sin(x)dx cos(n
)

2(n2 − 1) sin2 a

= cot(a) sin(na) − n cos(na)

n2 − 1
cos(n
).

Thus, we can write the resultant heterogeneity in general as

F(
) = σ

N∑
n=1

Cn [αn sin(n
) − βn cos(n
)] , (3.19)

where

Cn = n cos(na) − cot(a) sin(na)

n2 − 1
, (3.20)

and notice in the special case n = 1, we can take the limit
n → 1 to find

C1 = sin(a) cos(a) − a

2 sin(a)
. (3.21)

We can explicitly compute the solution to Eq. (3.13) in
some special cases of the heterogeneity F(
), defined by
Eq. (3.19). In particular, we focus on a single cosine-shaped
heterogeneity so that αm = 1, αn = 0 (n �= m), and βn =
0 (∀n). Furthermore, we assume a constant input velocity
v(t) ≡ v0, so that the scalar Eq. (3.13) for 
(t) is given by


̇(t) = κ sin(m
) + v0, (3.22)

where κ = σCn. Now, assuming 
(0) = 0, the Eq. (3.22)
can be integrated to yield an explicit solution


(t) = 2

m
tan−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
v2

0 − κ2 tan

⎛
⎜⎝tan−1

⎡
⎢⎣ κ√

v2
0 − κ2

⎤
⎥⎦ + mt

2

√
v2

0 − κ2

⎞
⎟⎠ − κ

v0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.23)

There is a partition in (κ, v0) parameter space given by the
equation |κ| = |v0|. When |κ| > |v0|, so the arguments
κ2 − v2

0 of the square roots in Eq. (3.23) are positive, then
there is a family of fixed points of the Eq. (3.22), so that the
bump position 
(t) will eventually become pinned to a sin-
gle position. In this case, velocity inputs are not detectable
by the network, since they do not result in the propagation of
a bump. Consistent with this, Eq. (3.23) has a defined limit

at t → ∞, 
(t) → 2
m

tan−1
[√

κ2 − v2
0/v0 − κ/v0

]
. The
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Fig. 4 The low-dimensional Eq. (3.13) for the bump position 
(t)

provides an accurate approximation of the bump’s movement in the
full neural field model Eq. (2.1). a Perfect integration of the constant
velocity input v(t) = 0.05 leads to a constantly drifting bump (solid
line) whose position is well approximated by the projected variable

(t) (dashed line). Inset shows the tilted potential V (
) resulting
from the constant velocity input. Circles provide corresponding loca-
tions between the two plots at t = 10, 20, 30. b Spatial heterogeneity

wu(x) = sin(x) with σ = 0.1 causes bumps to drift toward local
attractors of the network. Inset shows potential with a local minimum
to which the trajectory is attracted. c Spatial heterogeneity wu(x) =
sin(6x) with σ = 0.2 leads to a more rapid oscillation in the trajectory

(t). d Spatial heterogeneity wu(x) = sin(4x)+cos(8x) with σ = 0.1
leads to a less regular deviation in the trajectory 
(t). Heaviside firing
rate function Eq. (2.8) has threshold θ = 0. Numerical simulations are
run using the same parameters as in Fig. 2

general formulas for all equilibria of Eq. (3.22) are given by


̄k+ = 2kπ

m
+ 1

m
sin−1 v0

κ
, k = 0, ..., m − 1, (3.24)


̄k− = (2k + 1)π

m
− 1

m
sin−1 v0

κ
, k = 0, ..., m−1. (3.25)

On the other hand, when |κ| < |v0|, the heterogeneity F(
)

will not lead to pinning of bumps, so bumps will propagate

Fig. 5 Spatial heterogeneity slows and even stops the propagation of
velocity-driven bumps. a Bump position 
(t) demonstrates the vari-
ant propagation velocity occurring when heterogeneity (σ = 0.5) is
introduced as opposed to the homogeneous network (σ = 0). For
strong enough heterogeneity (σ = 1), propagation fails. Theory (solid
line) given by Eq. (3.23) is well matched to simulations (dashed line)

of the full model Eq. (2.1). b Bump velocity vb decreases as a func-
tion of heterogeneity strength σ until propagation failure occurs at
σ = (m2 − 1)|v0|/| cot(a) sin(ma) − m cos(ma)|. Firing rate function
is Heaviside Eq. (2.8), heterogeneity is wu(x) = cos(mx), and other
parameters θ = 0.5 and m = 4
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indefinitely in response to velocity inputs. However, the het-
erogeneity will ultimately reduce the speed of propagation
of bumps, as found in previous studies of periodically het-
erogeneous neural fields (Bressloff 2001; Kilpatrick et al.
2008; Coombes and Laing 2011). We can determine the
average reduction in the bump’s speed by calculating the
time T at which 
(t) crosses 
 = 2π/m, completing one
period of the heterogeneity sin(m
):

T = 2π

m

√
v2

0 − κ2
, (3.26)

which means that the average speed of the bump vb is given

vb = 2π/m

T
=
√

v2
0 − κ2, (3.27)

similar to the speed scaling formulas found in Bressloff
(2001) and Coombes and Laing (2011). This allows us to
directly compute the curve in parameter space at which
wave propagation failure occurs, |v0| = |κ| as stated above.
Note that the bump speed Eq. (3.27) depends on the fre-
quency and amplitude of the heterogeneity through the term

κ = σ
cot(a) sin(ma) − m cos(ma)

m2 − 1
. (3.28)

Thus, we can approximate the average, temporally-evolving
error in path integration for this network as

r(t) = 
T (t) − 
(t) ≈
(

v0 −
√

v2
0 − κ2

)
t. (3.29)

A more precise estimate is obtained by using the formula
for 
(t) given by Eq. (3.23). We demonstrate the accuracy
of this full approximation in Fig. 4c, d. The bump position
approximation Eq. (3.23) and average speed approximation
computed from Eq. (3.27) are compared with the full neural
field model Eq. (2.1) in Fig. 5. We find the low-dimensional
approximation Eq. (3.22) is in excellent agreement with
simulations. In particular, the points in parameter space
at which propagation failure occur are well matched, and
the sinuous trajectory of the bump is well tracked by our
low-dimensional theory. This suggests we can gain many
insights concerning the full model by analyzing this simpler
Eq. (3.13).

As noted above, the existence of spatial heterogeneities
in networks can lead to pinning or a reduction in the speed
of propagating bumps, which should be accurately track-
ing velocity-input. However, several previous experiments
have suggested that sensory feedback is incorporated into
the neural representation of spatial navigation (Ulanovsky
and Moss 2011; Battaglia et al. 2004; Zhang et al. 2014;
Hardcastle et al. 2015). As discussed in Section 2, we pro-
pose a simple external control mechanism that incorporates
a comparison of an animal’s current estimate of position
with an external sensory cue (Fig. 1a). In Section 4, we will
demonstrate the improvement in position encoding afforded

by sensory feedback control. Furthermore, we will show
that there is an optimal weighting and timescale of control
feedback when sensory cues appear discretely in space or
time.

4 Incorporating sensory cues with online control

Recent experimental studies have shown that the presence
of sensory landmarks reduces the size of mammalian place
fields as compared to the case of no landmarks (Aikath et al.
2014; Battaglia et al. 2004; Zhang et al. 2014). Interest-
ingly, such a reduction in place field size can occur quite
quickly, in response to the temporary presence of sensory
information, as show in echolocating bats (Ulanovsky and
Moss 2011). Note here, we are referring to sensory infor-
mation beyond the animal’s proprioceptive experience of
its own motion. Specifically, we are referring to objects
placed along the track of navigation that may provide visual,
auditory, or olfactory feedback (Fig. 1b). This suggests an
online interaction between the sensory system and the path
integration system that passes some positional information
acquired by sensory cues (Tsao et al. 2013). We suggest
that such a mechanisms could counteract errors in position
encoding that arise due to synaptic heterogeneity (Hansel
and Mato 2013; Itskov et al. 2011; Brody et al. 2003) or
noise (Laing and Chow 2001; Compte et al. 2000; Burak
and Fiete 2012). However, when cues occur discretely in
space, tuning the strength of feedback introduces a tradeoff
between the immediate benefits of recent cues and the dele-
terious influence of older irrelevant cues. We explore this in
the low-dimensional model Eq. (3.13) derived in Section 3.

4.1 Reducing error due to network asymmetry
and heterogeneity

We first examine the case of instantaneous cues and updates,
modeled as a continuous update to the position variable

(t), as described by Eq. (2.6). This would be the case in
which landmark cues are continuously apparent to an ani-
mal, allowing the sensory system to send a constant stream
of information to the position-encoding network. For the
time being, we also ignore the impact of noise, explor-
ing its effect in Section 4.2. Under these assumptions, the
low-dimensional equation for bump position is


̇(t) = F(
(t)) + φ + v(t) + λ(
T (t) − 
(t)). (4.1)

As a simple example of the impact of the control term in
Eq. (4.1), we examine the case of no heterogeneity F(
) ≡
0 and non-zero asymmetry φ > 0. In this case, we can
analytically calculate the long term trajectory of the error
r(t) = 
T (t) − 
(t). To do so, we can write down the
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first order differential equation for the error (Slotine and Li
1991)

ṙ(t) + λr(t) = 
̇T (t) − 
̇(t) + λ(
T (t) − 
(t))

= v(t) − φ − v(t) − λ(
T (t) − 
(t))

+λ(
T (t) − 
(t))

= −φ. (4.2)

It is straightforward to calculate the solution to the linear
differential Eq. (4.2) in the case r(0) = 0, finding r(t) =
−φ(1 − e−λt )/λ so that limt→∞ r(t) = −φ/λ. Thus, per-
fect convergence of the trajectory 
(t) to 
T (t) can only be
obtained in the limit of infinitely strong control λ → ∞. It
is also important to note that as long as the control strength
is positive λ > 0, the error r(t) will be bounded in the long
time limit t → ∞.

We can extend our analysis of the Eq. (4.1) to the case of
arbitrary heterogeneities using regular perturbation theory.
Writing the linear expansion of 
(t) = 
0(t) + 
1(t)/λ

under the assumption λ � 1, we find that the zeroth order
equation for 
0(t) is simply given by 
0(t) = 
T (t).
Extending to the first order equation in 1/λ, we find


̇T (t) = F(
T (t)) + φ + v(t) − 
1(t).

Applying the equation 
̇T (t) = v(t), we thus find that

1(t) = F(
T (t)) + φ, which means that the long term
error can be approximated by

r(t) = F

(∫ t

0
v(s)ds

)
+ φ + O(1/λ2)

to first order in 1/λ. Thus, as long as F(
) is a bounded
function, then the error will remain bounded, reaching a
maximum amplitude of maxx |F(x) + φ| (Slotine and Li
1991).

Thus far, we have considered the case of a continuous
flow of sensory information providing an accurate estimate
of an animal’s position in space. However, in more realis-
tic scenarios, animals receive external sensory information
discretely in time via local landmarks (Battaglia et al. 2004;
Tsao et al. 2013) or echolocation (Ulanovsky and Moss
2011). Sensory cues that provide a landmark for an animal’s
present position may be captured periodically in time or
more randomly; we account for both forms of sensory cue
acquisition. As discussed in our formulation of the model in
Section 2, we assume the influence of sensory cues weakens
as time elapses from the time at which they were received.
This is consistent with recent observations concerning the
evolution of place fields in bats as a function of the time
since the last echo signal (Ulanovsky and Moss 2011). Thus,

we consider the following model combining path integration
with sensory cues acquired at times tk:


̇(t) = F(
(t)) + φ + v(t) + vc(t), (4.3)

v̇c(t) = −vc(t)/τ + λ

Nc∑
k=1

r(tk)δ(t − tk), (4.4)

r(tk) = 
T (tk) − 
(tk).

Analogous to the continuous control case, the error term
rk computes the instantaneous difference between the true
position 
T (t) and the encoded position 
(t) at time tk .
This is then incorporated into the discretely incremented
control term vc(t) with strength λ, and the temporal decay
of cue influence is determined by the timescale τ . We will
demonstrate that for any given τ , there is an optimal strength
of feedback that trades off the error reduction of recent cues
(tk) with the error increase potentially arising for older cues
(t1, ..., tk−1). Assuming vc(0) = 0 and treating the point-
wise values of r(t) as constant, we can integrate Eq. (4.4) to
yield the piecewise smooth function

vc(t) = λ

Nc∑
k=1

r(tk)e
−(t−tk)/τH(t − tk),

as we did in Section 2 for the full neural field model in
Eq. (2.9). Thus, adjustments in velocity are discretely incre-
mented and then decay over time. Also, note in the limit
τ → 0 and tk+1 − tk → 0, we obtain the continuous control
function vc(t) = λr(t). This can be seen by performing this
limit on Eq. (4.4) and then integrating.

To demonstrate the impact of discrete control in more
detail, we begin by studying the case of a network subject
only to asymmetry (F(
) ≡ 0 and φ > 0). Furthermore,
we focus on the case of constant velocity input v(t) ≡ v0, so
we can write the discretely controlled position Eq. (4.3) as


̇(t) = φ + v0 + λ

Nc∑
k=1

[v0tk − 
(tk)] e−(t−tk)/τH(t − tk).

(4.5)

We can solve the piecewise smooth differential Eq. (4.5)
recursively, integrating with a new initial condition 
(tk) at
each cue time tk . In the initial time domain [0, t1), 
(0) = 0
and 
̇(t) = v0 + φ, so 
(t) = (v0 + φ)t and 
(t1) =
(v0 + φ)t1. On the subsequent time domain [t1, t2), we have


̇(t) = v0 + φ + r(t1)e
−(t−t1)/τ ,

so


(t) = (v0 + φ)t + λτr(t1)
[
1 − e−(t−t1)/τ

]
.

In a similar way, we can solve for 
(t) on [t2, t3) to find


(t) = (v0 + φ)t + λτ

2∑
k=1

r(tk)
[
1 − e−(t−tk)/τ

]
,
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and in general, we can express


(t) = (v0 +φ)t +λτ

Nc∑
k=1

r(tk)
[
1 − e−(t−tk)/τ

]
H(t − tk).

Thus, we can express the error as a function of time

r(t) = −φt −λτ

Nc∑
k=1

r(tk)
[
1 − e−(t−tk)/τ

]
H(t − tk). (4.6)

Expressing rk := r(tk) and focusing on the error at the cue
timepoints tk , we can write Eq. (4.6) as

rl = −φtl − λτ

l−1∑
k=1

rk

[
1 − e−(tl−tk)/τ

]
.

Furthermore, in the case of periodically spaced cues, we can
write tk+1 − tk = (
t), ∀k, so that

rl = −φ · l · 
t − λτ

l−1∑
k=1

rk

[
1 − e−(l−k)
t/τ

]
. (4.7)

Assuming that λ is not too large, the discrete Eq. (4.7) will
have a fixed point in the long time limit rl → r∗, which we
can compute by taking the difference between rl+1 and rl
and approximating rk ≈ r∗:

rl = r∗ = −φ · l · 
t − λτr∗
l−1∑
k=1

[
1− e−(l−k)
t/τ

]
,

rl+1 =r∗=−φ · (l+1) · 
t−λτr∗
l∑

k=1

[
1−e−(l+1−k)
t/τ

]
,

and we can make the approximation e−l
t/τ → 0, so that
rl − rl+1 yields

0 = φ · 
t + λτr∗ ⇒ r∗ = −φ · 
t/(λτ). (4.8)

We demonstrate the accuracy of the formula in Fig. 6a, b,
showing that the error remains bounded due to the peri-
odic perturbations of the discrete control term. Of course,
the fixed point value given by Eq. (4.8) is contingent on
its existence and stability. In cases where either condition
is violated, the error rl will diverge in the long time limit
(Fig. 6c). Essentially, negative feedback overcorrects for
the previously observed errors at each cue time, leading to
unstable oscillations in the error. Analytically identifying
the cases in which rl diverges would require a more thor-
ough study of the discrete Eq. (4.7). Numerical simulations
suggest there is a boundary value of λ above which these
unstable oscillations occur. Thus, the maximal value λ for
which the fixed point r∗ exists and is stable would corre-
spond to the optimal control strength, all other parameters
being fixed.

We now study the case of heterogeneities and explore the
impact of sensory cues on the long term error. Note, in the
case of no asymmetry and constant velocity input v(t) = v0,
the low dimensional equation for bump position takes the
form


̇(t)=F(
(t))+v0+λ

Nc∑
k=1

[v0tk−
(tk)] e−(t−tk)/τH(t−tk).

(4.9)

While we cannot solve Eq. (4.9) explicitly for general
heterogeneities F(
), we can numerically analyze the
impact of both the control strength λ and the control decay
timescale τ on the long term error r(t) = 
T (t) − 
(t).
Specifically, we associate error with a scalar quantity by
computing the log of the L2-norm

R := ln||
T (t)−
(t)||2 = ln

⎡
⎣
√∫ tf

0
|
T (t) − 
(t)|2dt

⎤
⎦ ,

(4.10)

Fig. 6 Path integration error in a network with asymmetry φ = 0.1,
discretely controlled according to Eq. (4.4). a Error resulting from
asymmetry plus discrete control with time decay τ = 1 quickly
reaches the fixed point r∗ (thin lines) given by Eq. (4.8). Notice as the
strength of control λ is increased, the amplitude |r(t)| of long term
error decreases. Low dimensional approximations (solid lines) given
by Eq. (4.5) are in excellent agreement with simulations (dashed lines)

of the full model Eq. (2.1). b Increasing the control decay timescale
τ = 2 leads to longer lasting oscillations in the error. c Making the
control too strong, λ = 4.5, leads to instability in the error. Negative
feedback produces oscillations that grow in amplitude. Time spacing
between cues is 
t = 1. Other parameters θ = 0.5, v0 = 0.1.
Numerical simulations utilize the same parameters as in Fig. 2
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where tf is time at which the path ends. We compare the
effects of varying the spacings tk+1 − tk between subsequent
cues, testing both time-periodic cues (tk+1 − tk = 
t , ∀k)
and exponentially distributed spacings (p(
t) = μe−μ
t ).
Furthermore, we randomize the heterogeneity according to
the formula Eq. (2.3) with variance σ 2

n = 1 with four total
modes (N = 2). To average error across many realiza-
tions, we simulate the controlled version Eq. (4.9) for many
different randomly generated heterogeneities, compute an
L2-norm of error Rj for the j th realization and averaged
〈R〉 = 1

Nr

∑Nr

j=1 Rj for Nr realizations.
We are mainly interested in the (λ, τ ) values that min-

imize the average log error 〈R〉. Our findings are summa-
rized in Fig. 7. First, we note that there is always a curve
through (λ, τ ) space determining the values of the con-
trol term that minimize the average error 〈R〉. In all plots,
the associated τ value decreases with λ and vice versa. In
general, we find this relationship to be roughly inversely

proportional λ ∝ 1/τ . This means that stronger control
should decay more quickly, and equivalently weaker control
can last longer. Furthermore, by comparing plots for peri-
odic cues with 
t = 4 (Fig. 7a) versus 
t = 2 (Fig. 7b), we
find longer decay timescales associated with each λ value
in the case 
t = 2. Such a trend may arise due to the fact
that more frequent updates in sensory information via cues
prevents overcorrection that could occur in the case of less
frequent cues. A similar trend arises in the case of exponen-
tially distributed time spacings between cues (μ = 0.5 in
Fig. 7c versus μ = 1 in Fig. 7d). When cues are more fre-
quent, the optimal timescale of decay τ is slightly larger for
each value of λ.

In addition, we have studied the average error as a func-
tion of time for both continuously and discretely controlled
networks with heterogeneities. Note that we randomize the
heterogeneity wu(x) = α1 cos(x) so that α1 is normally dis-
tributed with variance unity. To compute the average error,

Fig. 7 Average log error 〈R〉 computed across realizations of
Eq. (4.10) for the discretely controlled low-dimensional approxima-
tion Eq. (4.9) with spatial heterogeneity resulting from Eq. (2.3) with
N = 2 and coefficient variance σ 2

n = 1. (a) For periodically appear-
ing control cues with 
t = 4, we find there is an intermediate curve
(solid) of (λ, τ ) values that minimizes 〈R〉. In particular, as the control
decay timescale τ is increased, the optimal value of λ decreases. (b)
The same trend is consistent for periodic cues with spacing 
t = 2, but

the curve of optimal (λ, τ ) values shifts so there are higher values of τ

associated with each value of λ as compared with a. (c,d) When spac-
ings between cue times are exponentially distributed p(
t) = μe−μ
t

with μ = 0.5 in c and μ = 1 in d, we find the optimal curve
shifts to shorter values of τ for more frequent cues. Other parameters
v0 = 0.15, θ = 0, σ = 0.1, and simulation time tf = 40. Numeri-
cal simulations are performed using Euler’s method with a timestep of
0.05, and each grid point used 1000 realizations
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Fig. 8 Average error 〈|r(t)|〉 as a function of time in a heterogeneous
network (wu(x) = α1 cos(x) with control. Velocity-input is constant
v(t) = v0 = 0.05. a Numerical simulations (dashed lines) of the
neural field Eq. (2.1) are well matched by the low-dimensional approx-
imation (solid lines) given by Eq. (4.9). As demonstrated, continuous
control provides the best reduction in error, but discrete control with


t = 4 still provides an appreciable reduction. b Plot demonstrates
the impact of varying the control strength λ and the control decay
timescale τ . Other parameters are θ = 0.2 and σ = 0.1. Numerical
simulations are run with the same parameters as in Fig. 2 for 1000
realizations each curve

we take the mean of the absolute value 〈|r(t)|〉 as shown in
Fig. 8. In the case of strong continuous control, it is possi-
ble to substantially decrease the impact of heterogeneities
as compared with the uncontrolled case (Fig. 8a). Discrete
control maintains an intermediate level of error, since there
is not a constant stream of information provided to reduce
error. Varying the strength λ and timescale τ of control alters
the long term variance in the error (Fig. 8b). As suggested
by Fig. 7, strong and fast decaying control tends to lead to
substantial reductions in error.

4.2 Reducing error due to dynamic fluctuations

We now examine the impact of sensory feedback on net-
works subject to temporal noise fluctuations. Dynamic vari-
ability in networks can arise from ion channel fluctuations
(Chow and White 1996), synaptic variability (Ribrault et al.
2011), or finite size effects (Bressloff 2009). As demon-
strated in our analysis in Section 3, we can reduce the
equation for the position of a noise- and velocity-driven
bump to a single stochastic differential Eq. (3.13). Focusing
specifically on the impact of noise, taking constant speed
v(t) ≡ v0, and ignoring heterogeneities, we find that the
controlled equation for the bump position takes the form

d
(t) = [v0 + vc(t)] dt + dW(t). (4.11)

We begin by examining the case of continuous sensory
feedback, so that Eq. (4.11) becomes

d
(t) = [v0 + λv0t − λ
(t)] dt + dW(t). (4.12)

Note that Eq. (4.12) is a non-autonomous Ornstein-
Uhlenbeck process, and we can use integrating factors
to identify an explicit solution. Utilizing the change of

variables h(
, t) = 
eλt and differentiating with respect to
t , we find

dh(
, t) = d
eλt + λ
eλt = eλt [v0 + λv0t − λ


+λ
]dt + eλtdW
= eλt [v0 + λv0t] dt + eλtdW = d(v0te

λt )

+eλtdW. (4.13)

Assuming 
(0) = 0, we can integrate Eq. (4.13) and
multiply through by e−λt to yield the solution


(t) = v0t + e−λt

∫ t

0
eλsdW(s),

whose mean is 〈
(t)〉 = v0t and variance is given

〈
(t)2〉 − 〈
(t)〉2 =
√

D

2λ

[
1 − e−2λt

]
,

where the diffusion coefficient D can be calculated from
the neural field model parameters as in Eq. (3.15). The long
term variance is thus given by lim

t→∞〈
(t)2〉 − 〈
(t)〉2 =√
D

2λ
. Note that in the limit λ → ∞, the variance goes to

zero 〈
(t)2〉 − 〈
(t)〉2 → 0, suggesting that strengthening
continuous control will always reduce the average error fur-
ther. Continuous control substantially reduces the long term
variance in the bump position 
(t) as well as the error

r(t) = 
T (t) − 
(t) = −e−λt

∫ t

0
eλsdW(s).

Note that 〈r(t)〉 = 0 and 〈r(t)2〉 =
√

D
2λ

[
1 − e−2λt

]
. We

compare the continuously controlled system to the control-
free system in Fig. 9a, revealing the long term saturation in
the position variance.
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We also study the effect of discrete control on the vari-
ance in position, using the low-dimensional approximation
of bump position

d
(t) = [v(t) + vc(t)] dt + dW(t), (4.14)

v̇c(t) = −vc

τ
+ λ

Nc∑
k=1

r(tk)δ(t − tk).

Again, this is under the assumption that cues are spaced
discretely in time or space, and they provide sensory input
for a brief period of time. As in Section 4.1, we can solve
Eq. (4.14) iteratively. To begin, note that when t ∈ [0, t1),


(t) has yet to be affected by the feedback control term in
Eq. (4.14), so 
(t) = v0t + W(t). Subsequently, we can
integrate Eq. (4.14) to find the stochastic formula for 
(t)

after the first cue at t1:


(t) = v0t + λτ(v0t1 − 
(t1))
[
1 − e−(t−t1)/τ

]
+ W(t),

t ∈ [t1, t2).
Each realization will typically produce a different value for

(t1) = v0t1 + W(t1). Note that 〈
(t)〉 = v0t , so the
impact of noise and control can be observed by calculating
the variance (Gardiner 2004)

〈
(t)2〉 − 〈
(t)〉2 =
〈(

v0t + λτ(v0t1 − 
(t1))
(

1 − e−(t−t1)/τ
)

+ W(t)
)2
〉
− (v0t)

2

= 〈W(t)2〉 +
〈
(λτ)2W(t1)

2
(

1 − e−(t−t1)/τ
)2
〉
−
〈
2λτW(t1)W(t)

(
1 − e−(t−t1)/τ

)〉

= Dt + λτDt1

(
1 − e−(t−t1)/τ

) (
λτ

(
1 − e−(t−t1)/τ

)
− 2

)
. (4.15)

One insight to be gained from the formula Eq. (4.15) is
that infinitely strong and fast decaying control, even when
it is discrete, will minimize the variance in the position.
Specifically, if we take λ = λ0/τ , then we can write

〈
(t)2〉 − 〈
(t)〉2

=Dt+λ0Dt1

(
1−e−λ(t−t1)/λ0

) (
λ0

(
1−e−λ(t−t1)/λ0

)
−2

)
.

Taking the limit as λ → ∞, we find that

lim
λ→∞

[
〈
(t)2〉 − 〈
(t)〉2

]
= Dt + λ0Dt1(λ0 − 2),

which is minimized when the scaling term λ0 = 1, yielding
〈
(t)2〉 − 〈
(t)〉2 = D(t − t1).

We can solve Eq. (4.14) explicitly for an arbitrary number
of cue times, yielding


(t) = v0t + λτ

Nc∑
k=1

r(tk)
[
1 − e−(t−tk)/τ

]
H(t − tk)

+W(t). (4.16)

While it is clear that the mean 〈
(t)〉 = v0t , it is more
complicated to compute the variance 〈
(t)2〉 − 〈
(t)〉2

in general. This is chiefly due to the fact that r(tk) will
depend on (r(t1), ..., r(tk−1)), and this long-lasting history-
dependence will accumulate indefinitely. To gain some
analytical understanding, we make the assumption of brief
control impulses, so that τ � 1 and e−(tk+1−tk)/τ � 1, ∀k.
In this case, we can write the equation for the update of the
error term rk := r(tk) as

rk+1 ≈ (1 − λτ)rk + W(tk+1) − W(tk),

where r1 = W(t1). Again, it should be clear there is an
inverse relationship between the impact of λ and τ on the

long term error in this limiting case. We compute the vari-
ance numerically from Eq. (4.16) for the case of discrete
control in Fig. 9, demonstrating an excellent match with the
neural field model Eq. (2.1).

We conclude by computing the average log error
Eq. (4.10) across realizations of Eq. (4.14) in Fig. 10. Notice
again that the optimal value of τ , which minimizes 〈R〉 is
inversely related to the strength of control. Furthermore,
this trend is preserved whether cues appear periodically
in time (Fig. 10a) or at exponentially distributed intervals
(Fig. 10b).

5 Discussion

We have introduced and studied a neural field model of path
integration with sensory feedback. Velocity input results in
the propagation of a bump attractor whose position encodes
an animal’s estimate of its position. Sensory information
is assumed to come in the form of cues that are either
constantly present, in the case of continuous feedback, or
present at discrete points in time, in the case of discrete feed-
back. The full neural field model Eq. (2.1) can be reduced
to a single scalar Eq. (3.13) for the resulting position of the
bump attractor. Analyzing this reduced equation, we have
found that continuous control can be used to reduce the error
to zero in a variety of cases. Incorporating the more realistic
assumption of discrete sensory control, we find a tradeoff
arises as the strength of control λ is tuned: error reduction
when cues are recent, counteracted by error increases when
cues are older and irrelevant. Thus, there is an optimal con-
trol strength λ that minimizes the long term error in the
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Fig. 9 Variance 〈
(t)2〉 − 〈
(t)〉2 computed for the noise-driven
network with control. Velocity-input is constant v(t) = v0 = 0.
a Numerical simulations (dashed lines) of the neural field model
Eq. (2.1) are well matched to low-dimensional approximation (solid
lines) given by Eq. (4.11). Continuous control substantially reduces
the variance, but discrete control with 
t = 4 also provide a variance

reduction. Notably, the variance saturates in the case of discrete control
as well. b Similar to the case of quenched variability through hetero-
geneity in Fig. 8, varying the strength and timescale of control alters
the long term variance. Other parameters are θ = 0.2 and ε = 0.1.
Numerical simulations are run with the same parameters as in Fig. 2
with 1000 realizations each curve

model’s position estimate. This pattern holds when errors
originate from spatial heterogeneities as well as dynamic
fluctuations.

Our analysis has focused on one-dimensional periodic
systems, wherein it is assumed the animal is navigating
along a narrow annular track (Fig. 1b). This was based
on the protocol used in the experiments of Battaglia et al.
(2004), which were used to study the effect of local cues
on the sharpness of neuronal place fields. However, there
are several studies of navigation in two-dimensional and
even three-dimensional space that demonstrate mammals’
ability to use sensory cues to perform error correction
(Geva-Sagiv et al. 2015; Solstad et al. 2008). For instance,
a recent study has demonstrated that encounters with the
boundaries of rectangular environments correct for the sys-
tematic drift in position representation (Hardcastle et al.
2015). In particular, border cells in medial entorhinal cortex
(MEC) are thought to provide inputs to position-encoding
grid cells when an animal senses an environmental bound-
ary. Such recent studies are consistent with the predictions

of planar models of spatial navigation based on the dynam-
ics of velocity-driven bump attractors (Burak and Fiete
2009; Samsonovich and McNaughton 1997). The model
we have presented here could be extended to incorporate
the effects of position-dependent cues, like boundaries, in
two-dimensional domains. We expect the extension to two-
dimensional neural field models should be possible through
a similar negative feedback control mechanism to those pre-
sented in Section 2. Our derivation of the reduced equation
would then simply yield a position variable that is two-
dimensional, with a correction term along each coordinate.

In this work, we have modeled the effects of sensory
feedback assuming the distance between an animal’s per-
ceived and actual position is relatively small. However,
there is also evidence that place cell networks can respond
to abrupt and large changes in an animal’s spatial con-
text (Wills et al. 2005). In a study by Jezek et al. (2011),
when an animal’s spatial reference frame was suddenly
switched, network activity could rapidly adjust to reflect
the new context. In some trials, activity flickered between

Fig. 10 Average log error 〈R〉 computed across realizations of
Eq. (4.10) for the discretely controlled low-dimensional approxima-
tion Eq. (4.16) driven by additive noise with amplitude ε = 0.1 as
described in Eq. (2.1). a For periodic cues with spacing 
t = 4, we
find that the curve (solid line) of optimal (λ, τ ) values has τ decreasing

with λ as in Fig. 7. b A similar tend is observed for exponentially dis-
tributed p(
t) = μe−μ
t spacings between cue times with μ = 0.5.
Other parameters v0 = 0.15, θ = 0, and simulation time tf = 40.
Numerical simulations are performed using the same method as in
Fig. 7
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the two possible environment representations before settling
on the new contextual representation. We could extend our
model to account for these observations by exploring the
effects of large and strong sensory feedback cues, which
could lead to such winner-take-all dynamics (Shpiro et al.
2007; Kilpatrick 2013). There is also recent experimental
evidence for discrete, rather than continuous, representa-
tions of spatial position by navigational networks. Studying
the dynamics of sharp-wave ripple events in hippocam-
pus, Pfeiffer and Foster (2015) showed that reactivation
sequences had activity reflecting discrete attractors of the
underlying network. Rather than evolving smoothly, neu-
ral activity would temporarily sharpen in the vicinity of
each position-representing attractor before transitioning to
a spatially discontiguous location. In this paradigm, theta
or gamma frequency oscillations of inhibitory input could
temporarily destabilize attractors, allowing neural activity to
traverse the network to subsequent attractors (Welday et al.
2011; Hasselmo and Brandon 2012). It would be interest-
ing to consider such modifications to our model and explore
how they impact the robustness of the spatial position code.

We also note that there is recent evidence that the posi-
tion of discrete objects in the environment may be encoded
by cells in the lateral entorhinal cortex (LEC) (Tsao et al.
2013). In particular, these cells tend to be inactive in open
environments with no spatial landmarks, but they become
active in the presence of objects that can help animals to ori-
ent themselves (Deshmukh and Knierim 2011). Some cells
in LEC, object-trace cells, have been shown to fire when
an animal encounters a location where an object was previ-
ously located, demonstrating a persistent memory of loca-
tion (Tsao et al. 2013). If in fact such cells provide inputs
to the position-encoding networks in MEC or hippocampus,
LEC object cells could provide a candidate mechanism for
the sensory feedback control we have modeled here.
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