Theorem 71:

For an irreducible, positive recurrent, aperiodic Markov chain,

lim p(n)

n—o0" U
exists and is independent of 7.

(Recall that we have shown that any limiting distribution is stationary.)

Theorem 72:

Suppose that a Markov chain defined by the transition probabilities p;; is
irreducible, aperiodic, and has stationary distribution 7. Then for all states
¢ and 7,

pZ(;L) — T,  as n— oo.

Theorem 73:

For an irreducible, positive recurrent Markov chain, a stationary distribution
7 exists, is unique, and satisfies

Theorem 74:

For an irreducible Markov chain, a stationary distribution exists if and only
if all states are positive recurrent. In this case the stationary distribution is
unique.

Note that these Thoerems overlap quite a bit. In fact, Theorem 73 is just
one half of the “if and only if” in Theorem 74. Even so, I felt that it was
useful to state them in this way.



For Proof of Theorem m2:

Lemma (72): If a stationary distribution 7 exists, then all states j that
have 7; > 0 are recurrent.

Proof: We want to show that g; = P(T; < oco|Xy = j) = 1, where T; =
min{n >1: X, =j}.

Let N; be the number of visits to state j at times > 1. Then

Nj = Iix,—j)-
n=1

So,
Ei(N;] = E_,21 Iix=y) = Dot Eillix, =]

- 2211 Pz(Xn = ]) Z?:l P(Xn = ]‘XO = Z)

= > pg}l)-

Consider the quantity > . mE;[V;]:
SomEIN] = Sm S p = )

station. 00 o
- anl 7T] = 0

since m; > 0.

Recall in class where we showed that, starting at state ¢, the expected number
of returns to ¢ at times > 1 was g;/(1 — g;). We can similarly show that the
expected number of visits to state j, starting from i is g;;/(1 — g;) where
9ij = P(T < 00| Xy = 1).

Then, we have

0o = Yy mEN] =3 miet < 3 mi,

since g;; < 1. So,

1 1 1
o0 = T 1

which implies that g; = 1, as desired. O



For Proof of Theorem w2 Continued:

Define, for any state ¢, the set
A ={n: pgl) > 0}.

Note then that the period of 7, which we have denoted by d; is the greatest
common divisor of all of the elements in A;.

Claim: If ¢ has period 1, then there is a number K such that, for all n > K,
n is in A;.

Partial Proof of Claim: We will quote, without proof, a result from number
theory that says

“If the greatest common divisor of a set A; is 1, then there

are integers i1, 1s,...,%, in A; and positive or negative in-
teger coefficients ¢y, co, ..., ¢, such that cii; + cotg + -+ - +
T Cm, = 1.7

in order to show that A; contains two consecutive integers. Then we will
show that A; containing two consecutive integers gives us the result we want.

Proof Step 1:

If ¢ has period 1, then, by definition, the greatest common divisor of the
elements in A; is 1. So, by the claim quoted above, there are integers
1,179, ...,1, in A; and positive or negative integer coefficients ¢y, ca, ..., cn,
such that cji1 + cot9 + -+ - + 4,0, = 1.

Let j be the number of positive coefficients and let k be the number of negative
coefficients. (So j + k =m.) Let sy, s2,...,s; be the subscripts of the i’s in
11,19, ...,%, with positive coefficients and let t1,t,...,t; be the subscripts

of the ¢’s with negative coefficients. Define a; = ¢, for [ = 1,2,...,7 and
by =—c, forl=1,2,... k.

Then, we have

alisl + -+ CLjiSj = blitl 4+ ...+ bkitk + 1. (1)



For Proof of Theorem w2 Continued:

Note that any positive linear combination of elements in A; is also in A;.
For example, if you can, with positive probability, go from state i to state @
in 3 steps and you can also go in 7 steps, then 3 and 7 are numbers in A;.
Furthermore, 4-3+ 2 -7, for example, is also in A; since you can go from 7 to
¢ in 3 steps, then another 3 steps, then another 3 steps, then another 3 steps,
then in 7 steps, and then another 7 steps.

So, (1) shows us two consecutive integers in A;.

Proof Step 2:

We have now shown that there are two consecutive integers, say k and k + 1
in A;. We now wish to conclude that this implies that all integers, after some
point are in A;.

If £ and k£ + 1 are in A;, then so are
2k, 2k+1, and 2k + 2

since we can go from ¢ to ¢ in k steps plus another £ steps or in k steps plus
another k 4+ 1 steps, or in k + 1 steps plus another £ + 1 steps.

Since 2k, 2k + 1,2k + 2 are in A;, then so are
4k, 4k +1, 4k + 2, 4k + 3, and 4k + 4.
as these are all the distinct sums of pairs from 2k, 2k + 1, 2k + 2.
Continuing, we get that k and k + 1 in A; implies that
gk, jk+1,...,jk+ 7

are in A; for any positive integer j.

For j > k — 1, these blocks of numbers included in A; will start to overlap,

thereby leaving no gaps in the remaining sequence of integers included in
A;. O



Proof of Theorem w2:

We are now ready to prove the theorem.

1. Let S denote the state space and let {X,} and {Y,} denote two inde-
pendent copies of the Markov chain.

Consider the bivariate Markov chain {(X,,Y,)} on S* = S x S and let
the transition probabilities be denoted by

P iy), (Gardy)-
Note that, by defintion of {X,} and {Y,,} and their independence,
Pliviy),(Gardy) = Piga ™ Piy,jy-
We are going to show that
\P(X,=j)—PY,=j)]—0, as n — 0o (2)

regardless of the starting values of {X,} and {Y,}. So, we are able to
take Xy = 7 and Y to be a random variable with distribution 7, and
then by (2) we will have

|p§?) — ;| =0, as n — oo.

2. Claim: This bivariate Markov chain is irreducible.
Proof of Claim:

We want to take any states (i,,1%,) and (j,,j,) and find an integer [ such

that
(1)

Py iy),Gardy

)>O.

e Take any states (iy,i,) and (j,,j,) in S?.

e Since the original chain is irreducible, i, <+ j, and i, <+ j,. ie: There
exist integers n and m such that pz(:?h > 0 and pl(:nj)y > 0. (There are

also two more integers that reverse these transitions, but we don’t

care about them.)



Proof of Theorem 72 Continued:

e Since the original chain is aperiodic, states j, and j, have period 1.
Hence, by the claim preceding this Theorem, there exists a K such

that er) )
k+ K k+K
joje >0 and jiy 0
for all k.
Specifically, |
(m+K) (n+K
e >0 and I 0.
e Therefore,
(n+m+K) =~ 0

(iziy), (Ja-dy)
since the components move independently.

3. Since the two coordinates are independent,
(

igyiy) — Mg " Ty

defines a stationary distribution for the Markov chain.
Proof:
We need to show that

T (fardy) = E :7T (iaiy) P (i i), (G )
g,y
Well,
D iy Wliasig)Plinsiy) Gady) = iy 2y W) Pliniy),(andy)

= D0 2, i iy DissuDiy

= D, TiPivja 2i, Ti,Piyi,

= D Ti.Dinj. T, (7w stationary)
= T, D i TinDisis

d .
= T, < T(jaj,) (7 stationary)



Proof of Theorem 72 Continued:

4. Since 7(;, ;) is stationary for the bivariate chain, if we can show that
T(i,q,) > 0 for all states (is,i,), we will have, by Lemma (71), that all
states in the bivariate chain are recurrent.

Proof of 7(;, ;) > 0:

[ ]
T(iyyiy) = Ti, * T,
So, we need to show that m;, > 0 and m; > 0 for all states i, i, in
S.
ie: We need to show 7; > 0 for all j € S,
e Since 7 is a distribution, ) |, 7; = 1 implies that there is at least one
state ¢* such that m; > 0.
Since 7 is a stationary distribution, we have that

(n)
= Z b,
7

for any fixed time point n.

e Choose n so that pl(n?]

chain is irreducible.
e Then we have that

> (. We can do this since the original Markov

= Zmpgf}) > szz(n?y > 0.

5. Let T'=min{n > 0: X,, = Y,} and let Tj;y = min{n > 0: X,, =Y, =

Since the bivariate chain {(X,,Y,,)} is irreducible (can get to (x,z)) and
recurrent (will get to (z,x)), we have that

Tir) < o0 with probability 1.

So,
T <Ty <o with probability 1.
6. Claim: P(X,, =3,T <n)=P(Y,=73T <n).
(“On {T < n}, X, and Y,, have the same distribution.”)



Proof of Theorem 72 Continued:
Proof:

P(X,=jT<n) = " P(X,=3T=u)

2um0 22 P(Xn =, Xu =i, T = u)

Yo o2 PXp =74l Xy=0,T=u)-P(X,=4T =u)

WP S S P(X = X, = i) P(X, =i, T = u)

2ou—0 22 PV = jlYu =) - P(Y, =i, T = u)

= PY,=75T<n)

In the second to last equality, the first factor came from the fact that
{X,} and {Y,,} have the same transition law. The second factor came
from the fact that at time 7', X,, =Y,,.

7. Note that
PX,=7) = PX,=4T<n)+PX,=5T>n)

MO py, =, T <n)+ P(X,=j,T >n)

< PY,=7)+PX,=73T>n).
Similarly, we have that

PY,=j)<P(X,=j)+P(X,=4T>n).

|P(Xn=j)—P(Y,=j)| < P(X,=4T>n)+PY,=jT>n)
8. Summing over j, we get

D IP(Xn =) = P(Yo =) <2 P(T >n)

regardless of the intial values for {X,,} and {Y,}.



Proof of Theorem 72 Continued:

9. Therefore, if we let Xg =17 and Yy ~ 7, we get
Z\pgj})—wj\SQ-P(T>n)—>O as n — 0o
J
since T' < oo with probability 1.
Therefore
pi; = T as n — o0

for all 7,7 € S.



Proof of Theorem 73:

Proof of Existence:

e [ix a state k.

e Let N; be the number of visits to state ¢ between two consecutive visits
to state k.

(In the case that k = ¢, count the last visit to k& but not the first. Then
we have N = 1.)

e Let T = min{n > 1: X,, = k}. Note that

Ty 00
N; = Z Iix,—n = Z Iix,—im>n)-
n=1 n=1

e Define ax(i) = Ex[V;].

Then . N
ar(i) = Ex[Ni] = Ex[>2, 1 Iix,=iTy>n})

= Y et BEbll{x,=imony]
= >l P(X =41, > n)

= > 2 P(X,=14T, >n|Xo=k).
e Let S be the state space for the Markov chain. Note that
Dies (1) = Dics > ey P(Xy =0, T), > n|Xo = k)

= 21 P(Th 2 n|Xo = k)

= Ex[T}]
Since the chain is positive recurrent, this expectation is finite. Let’s call
ﬁlﬂ%h

e We can now define a probability distribution over S with
ar(i) _ ar(z)

TS m

jes

for all7 € S.



Proof of Theorem 73, Existence Continued:

e Note that

P(X,=iTy>n|Xo=k) = P(X,=14X,1=4T >n|Xo=k).
jes

Also note that the term P(X, =i, X, 1 = j, T > n|Xo = k) is zero
when 5 = k. Thus, we have

P(X,=iTy>n|Xo=k) = P(X,=14X,1 =T >n|Xo=k)
JF#k
=Y P(X,=i|lXy1 =}, Ti > n,Xo=k)-P(Xy_y = j, T, > n| Xy = k)
J7#k
e Since T}, > n, X,, could be k or could be anything else. It is not restricted
and we have

P(X, =i|Xp-1=4,Tp > n, Xo = k) = pji,

the usual transition probability for the Markov chain.(Note that this
would not be the case if, say T}, > n were replaced by T = n or T, > n.)

Thus, we have

P(X, =i, Ty >n|Xo=k) = > 4pji P(Xn1 =, Tk > n|Xo = k)

= Y i Pji P(Xn—1=17,T; > n—1|X, = k)
since j # k.

e Note that P(X1 =1, 1 > 1‘X0 = kf) = P(X1 = Z‘Xo = ]{) = Pri. S0, we
have

ak(z) = 2?21 P(Xn = i,Tk Z ’I’L|X0 = k)
= P+ Yy P(Xn =4, Ti; > n| Xy = k)

= Prit D oo 2 i Pii P(Xn1 = 3,1k > n— 1|Xo = k)



Proof of Theorem 73, Existence Continued:

e Interchanging the order of summation, we have
ar (i) = Pri+ D Pji 2oney P(Xn1 =5, Te > n — 1| Xo = k)
= DPri+ D Pji 2oney P(Xn =4, T > n|Xo = k)
= DPki T Zj;ék pjiax(i)
= ) pjiax(i)
jes
since ai(k) = Ex[Ng| = Eg[1] = 1.

e We have shown that
ar(i) Y _ piar(i).

jes

Dividing both sides by m;. gives us
Di ijipj-

jes
This tells us that the probability distribution {p; : i € S} is stationary
for this Markov chain!

(End of existence part of proof.)

The rest of the proof is coming soon!



