
Theorem π1:

For an irreducible, positive recurrent, aperiodic Markov chain,

lim
n→∞

p
(n)
ij

exists and is independent of i.

(Recall that we have shown that any limiting distribution is stationary.)

Theorem π2:

Suppose that a Markov chain defined by the transition probabilities pij is
irreducible, aperiodic, and has stationary distribution π. Then for all states
i and j,

p
(n)
ij → πj, as n→∞.

Theorem π3:

For an irreducible, positive recurrent Markov chain, a stationary distribution
π exists, is unique, and satisfies

πi =
1

Ei[Ti]
.

Theorem π4:

For an irreducible Markov chain, a stationary distribution exists if and only
if all states are positive recurrent. In this case the stationary distribution is
unique.

Note that these Thoerems overlap quite a bit. In fact, Theorem π3 is just
one half of the “if and only if” in Theorem π4. Even so, I felt that it was
useful to state them in this way.



For Proof of Theorem π2:

Lemma (π2): If a stationary distribution π exists, then all states j that
have πj > 0 are recurrent.

Proof: We want to show that gj = P (Tj < ∞|X0 = j) = 1, where Tj =
min{n ≥ 1 : Xn = j}.
Let Nj be the number of visits to state j at times ≥ 1. Then

Nj =
∞∑
n=1

I{Xn=j}.

So,
Ei[Nj] = Ei[

∑∞
n=1 I{Xn=j}] =

∑∞
n=1 Ei[I{Xn=j}]

=
∑∞

n=1 Pi(Xn = j)
∑∞

n=1 P (Xn = j|X0 = i)

=
∑∞

n=1 p
(n)
ij .

Consider the quantity
∑

i πiEi[Nj]:∑
i πiEi[Nj] =

∑
i πi

∑∞
n=1 p

(n)
ij =

∑∞
n=1

∑
i πip

(n)
ij

station.
=

∑∞
n=1 πj =∞

since πj > 0.

Recall in class where we showed that, starting at state i, the expected number
of returns to i at times ≥ 1 was gi/(1− gi). We can similarly show that the
expected number of visits to state j, starting from i is gij/(1 − gj) where
gij = P (Tj <∞|X0 = i).

Then, we have

∞ =
∑

i πiEi[Nj] =
∑

i πi
gij
1−gj ≤

∑
i πi

1
1−gj

since gij ≤ 1. So,

∞ = 1
1−gj

∑
i πi = 1

1−gj · 1 = 1
1−gj

which implies that gj = 1, as desired. ut



For Proof of Theorem π2 Continued:

Define, for any state i, the set

Ai = {n : p
(n)
ii > 0}.

Note then that the period of i, which we have denoted by di is the greatest
common divisor of all of the elements in Ai.

Claim: If i has period 1, then there is a number K such that, for all n ≥ K,
n is in Ai.

Partial Proof of Claim: We will quote, without proof, a result from number
theory that says

“If the greatest common divisor of a set Ai is 1, then there
are integers i1, i2, . . . , im in Ai and positive or negative in-
teger coefficients c1, c2, . . . , cm such that c1i1 + c2i2 + · · · +
imcm = 1.”

in order to show that Ai contains two consecutive integers. Then we will
show that Ai containing two consecutive integers gives us the result we want.

Proof Step 1:

If i has period 1, then, by definition, the greatest common divisor of the
elements in Ai is 1. So, by the claim quoted above, there are integers
i1, i2, . . . , im in Ai and positive or negative integer coefficients c1, c2, . . . , cm
such that c1i1 + c2i2 + · · ·+ imcm = 1.

Let j be the number of positive coefficients and let k be the number of negative
coefficients. (So j + k = m.) Let s1, s2, . . . , sj be the subscripts of the i’s in
i1, i2, . . . , im with positive coefficients and let t1, t2, . . . , tk be the subscripts
of the i’s with negative coefficients. Define al = csl for l = 1, 2, . . . , j and
bl = −ctl for l = 1, 2, . . . , k.

Then, we have

a1is1 + · · ·+ ajisj = b1it1 + . . .+ bkitk + 1. (1)



For Proof of Theorem π2 Continued:

Note that any positive linear combination of elements in Ai is also in Ai.
For example, if you can, with positive probability, go from state i to state i
in 3 steps and you can also go in 7 steps, then 3 and 7 are numbers in Ai.
Furthermore, 4 · 3 + 2 · 7, for example, is also in Ai since you can go from i to
i in 3 steps, then another 3 steps, then another 3 steps, then another 3 steps,
then in 7 steps, and then another 7 steps.

So, (1) shows us two consecutive integers in Ai.

Proof Step 2:

We have now shown that there are two consecutive integers, say k and k + 1
in Ai. We now wish to conclude that this implies that all integers, after some
point are in Ai.

If k and k + 1 are in Ai, then so are

2k, 2k + 1, and 2k + 2

since we can go from i to i in k steps plus another k steps or in k steps plus
another k + 1 steps, or in k + 1 steps plus another k + 1 steps.

Since 2k, 2k + 1, 2k + 2 are in Ai, then so are

4k, 4k + 1, 4k + 2, 4k + 3, and 4k + 4.

as these are all the distinct sums of pairs from 2k, 2k + 1, 2k + 2.

Continuing, we get that k and k + 1 in Ai implies that

jk, jk + 1, . . . , jk + j

are in Ai for any positive integer j.

For j ≥ k − 1, these blocks of numbers included in Ai will start to overlap,
thereby leaving no gaps in the remaining sequence of integers included in
Ai. ut



Proof of Theorem π2:

We are now ready to prove the theorem.

1. Let S denote the state space and let {Xn} and {Yn} denote two inde-
pendent copies of the Markov chain.

Consider the bivariate Markov chain {(Xn, Yn)} on S2 = S × S and let
the transition probabilities be denoted by

p(ix,iy),(jx,jy).

Note that, by defintion of {Xn} and {Yn} and their independence,

p(ix,iy),(jx,jy) = pix,jx · piy,jy .

We are going to show that

|P (Xn = j)− P (Yn = j)| → 0, as n→∞ (2)

regardless of the starting values of {Xn} and {Yn}. So, we are able to
take X0 = i and Y0 to be a random variable with distribution π, and
then by (2) we will have

|p(n)ij − πj| → 0, as n→∞.

2. Claim: This bivariate Markov chain is irreducible.

Proof of Claim:

We want to take any states (ix, iy) and (jx, jy) and find an integer l such
that

p
(l)
(ix,iy),(jx,jy)

> 0.

• Take any states (ix, iy) and (jx, jy) in S2.

• Since the original chain is irreducible, ix ↔ jx and iy ↔ jy. ie: There

exist integers n and m such that p
(n)
ix,jx

> 0 and p
(m)
iy,jy

> 0. (There are
also two more integers that reverse these transitions, but we don’t
care about them.)



Proof of Theorem π2 Continued:

• Since the original chain is aperiodic, states jx and jy have period 1.
Hence, by the claim preceding this Theorem, there exists a K such
that

p
(k+K)
jx,jx

> 0 and p
(k+K)
jy,jy

> 0

for all k.

Specifically,
p
(m+K)
jx,jx

> 0 and p
(n+K)
jy,jy

> 0.

• Therefore,
p
(n+m+K)
(ix,iy),(jx,jy)

> 0

since the components move independently.

3. Since the two coordinates are independent,

π(ix,iy) = πix · πiy
defines a stationary distribution for the Markov chain.

Proof:

We need to show that

π(jx,jy) =
∑
ix,iy

π(ix,iy)p(ix,iy),(jx,jy)

Well,∑
ix,iy

π(ix,iy)p(ix,iy),(jx,jy) =
∑

ix

∑
iy
π(ix,iy)p(ix,iy),(jx,jy)

=
∑

ix

∑
iy
πixπiypix,jxpiy,jy

=
∑

ix
πixpix,jx

∑
iy
πiypiy,jy

=
∑

ix
πixpix,jxπjy (π stationary)

= πjy
∑

ix
πixpix,jx

= πjyπjx
def
= π(jx,jy) (π stationary)



Proof of Theorem π2 Continued:

4. Since π(ix,iy) is stationary for the bivariate chain, if we can show that
π(ix,iy) > 0 for all states (ix, iy), we will have, by Lemma (π1), that all
states in the bivariate chain are recurrent.

Proof of π(ix,iy) > 0:

•
π(ix,iy) = πix · πiy

So, we need to show that πix > 0 and πiy > 0 for all states ix, iy in
S.

ie: We need to show πj > 0 for all j ∈ S.

• Since π is a distribution,
∑

i πi = 1 implies that there is at least one
state i∗ such that πi∗ > 0.

Since π is a stationary distribution, we have that

πj =
∑
i

πip
(n)
i,j

for any fixed time point n.

• Choose n so that p
(n)
i∗,j > 0. We can do this since the original Markov

chain is irreducible.

• Then we have that

πj =
∑
i

πip
(n)
i,j ≥ πi∗p

(n)
i∗,j > 0.

5. Let T = min{n ≥ 0 : Xn = Yn} and let T(x) = min{n ≥ 0 : Xn = Yn =
x}.
Since the bivariate chain {(Xn, Yn)} is irreducible (can get to (x, x)) and
recurrent (will get to (x, x)), we have that

T(x) <∞ with probability 1.

So,
T < T(x) <∞ with probability 1.

6. Claim: P (Xn = j, T ≤ n) = P (Yn = j, T ≤ n).

(“On {T ≤ n}, Xn and Yn have the same distribution.”)



Proof of Theorem π2 Continued:

Proof:

P (Xn = j, T ≤ n) =
∑n

u=0 P (Xn = j, T = u)

=
∑n

u=0

∑
i P (Xn = j,Xu = i, T = u)

=
∑n

u=0

∑
i P (Xn = j|Xu = i, T = u) · P (Xu = i, T = u)

M.P.
=

∑n
u=0

∑
i P (Xn = j|Xu = i) · P (Xu = i, T = u)

=
∑n

u=0

∑
i P (Yn = j|Yu = i) · P (Yu = i, T = u)

= P (Yn = j, T ≤ n)

In the second to last equality, the first factor came from the fact that
{Xn} and {Yn} have the same transition law. The second factor came
from the fact that at time T , Xn = Yn.

7. Note that

P (Xn = j) = P (Xn = j, T ≤ n) + P (Xn = j, T > n)

Step 6
= P (Yn = j, T ≤ n) + P (Xn = j, T > n)

≤ P (Yn = j) + P (Xn = j, T > n).

Similarly, we have that

P (Yn = j) ≤ P (Xn = j) + P (Xn = j, T > n).

So,

|P (Xn = j)− P (Yn = j)| ≤ P (Xn = j, T > n) + P (Yn = j, T > n)

8. Summing over j, we get∑
j

|P (Xn = j)− P (Yn = j)| ≤ 2 · P (T > n)

regardless of the intial values for {Xn} and {Yn}.



Proof of Theorem π2 Continued:

9. Therefore, if we let X0 = i and Y0 ∼ π, we get∑
j

|p(n)i,j − πj| ≤ 2 · P (T > n)→ 0 as n→∞

since T <∞ with probability 1.

Therefore
pni,j → πj as n→∞

for all i, j ∈ S. ut



Proof of Theorem π3:

Proof of Existence:

• Fix a state k.

• Let Ni be the number of visits to state i between two consecutive visits
to state k.

(In the case that k = i, count the last visit to k but not the first. Then
we have Nk = 1.)

• Let Tk = min{n ≥ 1 : Xn = k}. Note that

Ni =

Tk∑
n=1

I{Xn=i} =
∞∑
n=1

I{Xn=i,Tk≥n}.

• Define ak(i) = Ek[Ni].

Then
ak(i) = Ek[Ni] = Ek[

∑∞
n=1 I{Xn=i,Tk≥n}]

=
∑∞

n=1 Ek[I{Xn=i,Tk≥n}]

=
∑∞

n=1 Pk(Xn = i, Tk ≥ n)

=
∑∞

n=1 P (Xn = i, Tk ≥ n|X0 = k).

• Let S be the state space for the Markov chain. Note that∑
i∈S ak(i) =

∑
i∈S

∑∞
n=1 P (Xn = i, Tk ≥ n|X0 = k)

=
∑∞

n=1 P (Tk ≥ n|X0 = k)

= Ek[Tk]

Since the chain is positive recurrent, this expectation is finite. Let’s call
it mk.

• We can now define a probability distribution over S with

pi :=
ak(i)∑

j∈S

ak(j)
=
ak(i)

mk

for all i ∈ S.



Proof of Theorem π3, Existence Continued:

• Note that

P (Xn = i, Tk ≥ n|X0 = k) =
∑
j∈S

P (Xn = i,Xn−1 = j, Tk ≥ n|X0 = k).

Also note that the term P (Xn = i,Xn−1 = j, Tk ≥ n|X0 = k) is zero
when j = k. Thus, we have

P (Xn = i, Tk ≥ n|X0 = k) =
∑
j 6=k

P (Xn = i,Xn−1 = j, Tk ≥ n|X0 = k)

=
∑
j 6=k

P (Xn = i|Xn−1 = j, Tk ≥ n,X0 = k) ·P (Xn−1 = j, Tk ≥ n|X0 = k)

• Since Tk ≥ n, Xn could be k or could be anything else. It is not restricted
and we have

P (Xn = i|Xn−1 = j, Tk ≥ n,X0 = k) = pji,

the usual transition probability for the Markov chain.(Note that this
would not be the case if, say Tk ≥ n were replaced by Tk = n or Tk > n.)

Thus, we have

P (Xn = i, Tk ≥ n|X0 = k) =
∑

j 6=k pji P (Xn−1 = j, Tk ≥ n|X0 = k)

=
∑

j 6=k pji P (Xn−1 = j, Tk ≥ n− 1|X0 = k)

since j 6= k.

• Note that P (X1 = i, Tk ≥ 1|X0 = k) = P (X1 = i|X0 = k) = pki. So, we
have

ak(i) =
∑∞

n=1 P (Xn = i, Tk ≥ n|X0 = k)

= pki +
∑∞

n=2 P (Xn = i, Tk ≥ n|X0 = k)

= pki +
∑∞

n=2

∑
j 6=k pji P (Xn−1 = j, Tk ≥ n− 1|X0 = k)



Proof of Theorem π3, Existence Continued:

• Interchanging the order of summation, we have

ak(i) = pki +
∑

j 6=k pji
∑∞

n=2 P (Xn−1 = j, Tk ≥ n− 1|X0 = k)

= pki +
∑

j 6=k pji
∑∞

n=1 P (Xn = j, Tk ≥ n|X0 = k)

= pki +
∑

j 6=k pjiak(i)

=
∑
j∈S

pjiak(i)

since ak(k) = Ek[Nk] = Ek[1] = 1.

• We have shown that
ak(i)

∑
j∈S

pjiak(i).

Dividing both sides by mk gives us

pi
∑
j∈S

pjipj.

This tells us that the probability distribution {pi : i ∈ S} is stationary
for this Markov chain!

(End of existence part of proof.)

The rest of the proof is coming soon!


