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The piston shock problem is a classical result of shock wave theory. In this work, the analogous
dispersive shock wave (DSW) problem for a fluid described by the nonlinear Schrödinger equation is
analyzed. Asymptotic solutions are calculated for a piston (step potential) moving with uniform speed into
a dispersive fluid at rest. In contrast to the classical case, there is a bifurcation of shock behavior where, for
large enough piston velocities, the DSW develops a periodic wave train in its wake with vacuum points
and a maximum density that remains fixed as the piston velocity is increased further. These results have
application to Bose-Einstein condensates and nonlinear optics.
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The study of dispersive shock waves (DSWs) has gained
significance due to the recent experimental realization of
DSWs in a Bose-Einstein condensate (BEC) [1,2] and the
propagation of light through a nonlinear defocusing me-
dium [3]. Comparisons between classical, viscous shock
waves (VSWs), and DSWs have been discussed in the
context of single shocks [2] and the interaction of two
shocks [4], revealing appealing similarities but also im-
portant differences. Motivated by the classical VSW piston
problem, we consider the generation of a DSW by a piston
moving into a dispersive fluid at rest.

The piston shock problem is one of the canonical prob-
lems in the theory of VSWs. A uniform gas is held at rest in
a long, cylindrical chamber with a piston at one end. When
the piston is impulsively moved into the gas with constant
speed, a region of higher density builds between the piston
and a shock front that propagates ahead of it. An elegant
asymptotic (zero dissipation limit) solution to this problem
is well known and relates the shock speed to the speed of
the piston and the initial density of the gas (see, e.g., [5]
and the discussion below).

In this work, we consider the analogous problem of a
‘‘piston’’ moving with constant speed into a steady, dis-
persive fluid: e.g., a BEC or nonlinear optics. The piston in
this case is a step potential that moves with uniform speed.
This potential could be realized in a BEC with a repulsive
dipole beam and in nonlinear optics with a local change in
the index of refraction. One expects, in analogy with the
classical, viscous case, the generation of a dispersive shock
wave. As we will show, this is indeed the case. However, in
contrast to the viscous case, there are two types of asymp-
totic behavior, depending on the piston speed. For smaller
piston velocities, a region of larger density builds between
the piston and a DSW. For large enough piston velocities, a
locally periodic wave train is generated between the piston
and the DSW that has no VSW correlate. This wave train
oscillates between the vacuum state (zero density) and a

maximum density that is independent of further increase in
the piston velocity.

DSWs can be studied using the Whitham averaging
method [6]. This technique has been successfully applied
to many DSW problems including collisionless shocks in
plasma [7], undular bores in hydrodynamics [8], Bose-
Einstein condensates [2,9,10], fiber optics [11], the gen-
eration of ultrashort lasers [12], and DSW interactions [4].
A related class of moving boundary shock problems was
studied as an asymptotic reduction of two-dimensional,
steady, supersonic flow of a dispersive fluid around an
obstacle [13].

We consider the one-dimensional (1D) nonlinear
Schrödinger equation (NLS) with a potential [also known
as the Gross-Pitaevskii (GP) equation]

 i"�t � �
"2

2
�xx � V0�x; t��� j�j

2�; 0< "� 1:

(1)

This equation models the mean field of a quasi-1D BEC
[14] and the slowly varying envelope of the electromag-
netic field propagating through a Kerr medium [15]. The
small parameter " is inversely proportional to the number
of atoms in the BEC [2] or, after rescaling, inversely
proportional to the maximum initial intensity of the elec-
tromagnetic field. For all calculations in this work, we
assume " � 0:015, a typical experimental value for BEC
[2]. The piston problem is modeled with a temporally and
spatially varying step potential V0�x; t� � VmaxH�vpt�
x�, where H�y� is the Heaviside step function. The piston
strength and speed are Vmax and vp, respectively. The
initial conditions are ��x; 0� !

������
�R
p

as x! 1, ��x; 0� !
0 as x! �1. Because the strength of the piston is large,
Vmax � �R, the density or intensity rapidly decays to zero
near the origin. We assume that the wave function � is in
the ‘‘ground state’’ of the step potential VmaxH��x� when
t � 0. For all calculations in this work, �R � 0:133.
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It is useful to view Eq. (1) in its hydrodynamic form by
making the transformation � �

����
�
p

exp	 i"
R
x
0 u�x

0; t�dx0

and inserting this expression into the first two local con-
servation equations for the GP equation,
 

�t � ��u�x � 0;

��u�t �
�
�u2 �

1

2
�2

�
x
�
"2

4
	��log��xx
x � �V0x ;

(2)

where � is the dispersive fluid ‘‘density’’ and u is the
dispersive fluid ‘‘velocity’’. These equations are similar
to the Navier-Stokes and shallow water equations of fluid
dynamics except that the viscous terms have been replaced
by the dispersive term with coefficient "2=4.

To motivate the discussion of the DSW piston problem,
we briefly consider the analogous VSW piston problem in
shallow water (see, e.g., [5] ). The 1D equations are equiva-
lent to Eqs. (2) when " � 0, V � 0, and a dissipative
regularization is used whenever a shock forms. The asymp-
totic solution is found by assuming a simple wave (pure
VSW) and the boundary condition

 u�vpt; t� � uL � vp (3)

at the piston. This condition is derived from the continuity
equation in (2) and is therefore applicable to the dispersive
case also. The shock speed (vs) is always larger than the
piston speed; i.e., one finds vs � vp � vp�R=��L �
�R�> 0 where �L > �R is the fluid density between the
piston and the shock. As we now show, the DSW piston
problem admits quite different behavior. Note that the
asymptotic solutions for the VSW and DSW piston prob-
lems are the same when the piston is retracted, vp < 0,
because no shock waves develop.

We convert the piston DSW problem into a moving
boundary value problem where appropriate boundary con-
ditions are imposed at the piston front. First we solve the
piston DSW problem for sufficiently small positive piston
velocities vp. The first boundary condition at the piston for
the local fluid velocity is Eq. (3). In addition, we require a
boundary condition for the density.

The Whitham theory of DSWs involves a system of
quasilinear, first order, hyperbolic equations [6]. These
Whitham equations describe the slow evolution of a peri-
odic wave’s parameters. The simplest nontrivial solutions
to these equations are known as simple waves, where only
one dependent variable varies in space and time and the
rest are constant (a pure DSW or rarefaction wave). In
analogy with viscous fluid dynamics, we assume a simple
wave DSW solution, but in this case to the Whitham
equations. This determines a density �L at the piston. In
order to connect to the uniform state ahead of the piston
�R < �L, we must have a single DSW for vp sufficiently
small (vp < 2

������
�R
p

). As we will show below, a ‘‘vacuum
state’’ is created when vp � 2

������
�R
p

, and we find a uniform
traveling wave (TW) with speed vp, instead of the constant

density �L, adjacent to the DSW. Now we derive the
asymptotic piston DSW.

At the time t � 0�, we assume that there is a disconti-
nuity in the fluid variables due to the impulsive motion of
the piston at t � 0:
 

��x; 0�� �
��L; x � 0

�R; x > 0
;

u�x; 0�� �
� uL � vp; x � 0

uR � 0; x > 0
:

(4)

This discontinuity is regularized by a slowly modulated
traveling wave solution to Eq. (2) with V�x; t� � 0 [9]:
 

��x; t; �� � �3 � 	�3 � �1
dn
2��;m�; m �

�2 � �1

�3 � �1
;

u�x; t; �� � V � �

����������������
�1�2�3

p

��x; t; ��
; 0< �1 < �2 < �3;

� � 1;
@�
@x
�

�����������������
�3 � �1

p
=";

@�
@t
� �V

�����������������
�3 � �1

p
="; (5)

where the parameters �i, i � 1, 2, 3, and V satisfy
 

�1 �
1
16�r1 � r2 � r3 � r4�

2;

�2 �
1
16��r1 � r2 � r3 � r4�

2;

�3 �
1
16��r1 � r2 � r3 � r4�

2;

V � 1
4�r1 � r2 � r3 � r4�;

and the Riemann invariants, ri�x; t�, evolve according to
the Whitham equations,

 

@ri
@t
� vi�r1; r2; r3; r4�

@ri
@x
� 0; i � 1; 2; 3; 4:

The velocities vi can be expressed in terms of K�m� and
E�m�, complete elliptic integrals of the first and second
kind, respectively [9]. In this work, we only require knowl-
edge of v3 � V � 1

2 �r4 � r3�	1�
�r4�r2�E�m�
�r3�r2�K�m�


�1.
In order to find a simple wave solution to the Whitham

equations, we require that only one of the parameters ri
spatially varies and that the initial data for all the parame-
ters ri properly characterize the initial data in Eq. (4) with
the spatial average of Eq. (5). We use the method of initial
data regularization [2,4,11,12] to find
 

r1 � �2
������
�R
p

; r2 � 2
������
�R
p

; r4 � 2vp � 2
������
�R
p

;

r3�x; 0
�� �

(
2
������
�R
p

; x � 0

2vp � 2
������
�R
p

; x > 0
; � � 1;

��vpt; t� � �L �
�
1

2
vp �

������
�R
p

�
2
: (6)

The last equation, the boundary condition for the density at
the piston, comes from the simple wave assumption. A
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self-similar, rarefaction solution for r3 is found giving rise
to a pure DSW propagating ahead of the piston with
trailing and leading edge speeds, respectively [2,9]:

 v�s �
1

2
vp �

������
�R
p

; v�s �
2v2

p � 4vp
������
�R
p

� �R
vp �

������
�R
p :

(7)

Figure 1, left, depicts the asymptotic piston DSW solu-
tion for a small piston velocity. The minimum values of the
density and velocity occur at the trailing edge of the DSW
and are [2,9]:

 �min �

� ������
�R
p

�
1

2
vp

�
2
; umin � �vp

� ������
�R
p

� 1
2vp������

�R
p

� 1
2vp

�
:

(8)

The maximum values occur between the piston and the
DSW: �max � �L � �vp=2�

������
�R
p
�2, umax � uL � vp.

The piston velocity can be greater than the trailing DSW
velocity calculated by use of Eq. (7), vp � v�s if vp �
2
������
�R
p

. When vp � 2
������
�R
p

, � vanishes at the piston (there is
a so-called vacuum point [2,9] ) and a modification of the
solution is required. To find a simple wave solution for
large piston velocities, we must derive new conditions for
the parameters ri. We modify the DSW solution by intro-
ducing a locally periodic traveling wave (TW) between the
piston and the trailing edge of the DSW. The vacuum
condition, � � 0, is satisfied in Eq. (5) when

 �1 � 0) r1 � r2 � r3 � r4 � 0) r4 � r3 � 4
������
�R
p

:

(9)

Note that the fluid velocity is undefined at a vacuum point,
even though the vacuum points have a well-defined propa-
gation speed through the fluid. We assume that condition
(9) holds for vp > 2

������
�R
p

as well. One more condition is
required to completely determine r4 and r3�x � 0; t �
0��; r1, r2, and r3�x > 0; 0�� are determined by the initial
data (4). Because there is a locally periodic TW between
the piston and DSW, we assume that the velocity of the TW
equals the piston velocity. This is the TW velocity condi-
tion:

 V � vp ) r1 � r2 � r3 � r4 � 4vp ) r3 � r4 � 4vp:

(10)

Given the initial data in Eq. (4) and the two conditions (9)
and (10) only r3 and � in the initial data of Eq. (6) are
altered:

 r3�x; 0�� � 2vp � 2
������
�R
p

; ��x; 0�� � �1; x >
� 0:

(11)

Note that � � �1 in the locally periodic region. The
motivation for introducing a TW comes from the
Whitham analysis where, to satisfy the simple wave con-
dition for vp > 4

������
�R
p

, r3�0; 0�� is taken to be larger than
r2�0; 0�� [compare Eq. (11) with Eq. (6)].

Figure 1, right, depicts the asymptotic DSW solution for
vp > 2

������
�R
p

. Several properties of this DSW solution are
worth noting. The density between the piston and the DSW
oscillates between the values

 �min � 0 and �max � 4�R; (12)

independent of the piston velocity vp, while the TW in this
region propagates with the velocity V � vp. Note that
since the vacuum condition (9) holds everywhere inside

FIG. 1 (color online). Left: asymptotic piston DSW solution at
time t � 3 for vp �

������
�R
p

� 0:365. The vertical lines mark the
left and right edges of the DSW moving with speeds v�s � 0:548
and v�s � 1:278, respectively. Right: asymptotic piston DSW
solution at time t � 1:7 when vp � 2:5

������
�R
p

� 0:912. A locally
periodic region connects the piston to the trailing edge of the
DSW. The density minima in this region are zero and the
velocity is theoretically undefined (infinite) at these points.
The density maxima are 4�R � 0:532. DSW speeds are v�s �
1:245, v�s � 2:452.

FIG. 2. Numerical solutions to Eq. (1) for the piston problem.
Left: the density (upper) and velocity (lower) for the same
parameters as in Fig. 1, left; numerically calculated trailing
edge speed is 0.557, approximately the theoretical value 0.548.
Right: the density (upper) and velocity (lower) for the same
parameters as in Fig. 1, right; numerically calculated TW veloc-
ity of locally periodic wave is 0.912, approximately the same as
the piston speed 0.913.
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the TW trailing the DSW, the velocity in this region, from
Eq. (5), is u � V � vp everywhere (except at the vacuum
points, where the velocity is undefined). The wavelength of
the TW is l � 2"K�4�R=v2

p�=vp. The DSW propagates
with trailing edge speed (also the propagation speed of
the rightmost vacuum point where � changes sign) v�s �

vp � �vp � 3
������
�R
p
�	

vpE�4�R=v2
p�

�vp�2
�����
�R
p
�K�4�R=v2

p�
� 1
�1, and leading

edge speed v�s , the same as that given in Eq. (7). The
number of vacuum points increases linearly with time:

Nvac�t� � d
v�s �vp

l te � d �v
�
s �vp�vp

2"K�4�R=v
2
p�
te.

We perform direct numerical simulations of Eq. (1) to
verify the assumptions we have made, such as the bound-
ary conditions (3) and (6), the vacuum and TW velocity
conditions (9) and (10), and the trailing edge DSW speed
v�s of Eq. (7). All of our assumptions agree well with the
numerical simulations shown in Figs. 2 and 3.

Numerically calculated piston DSWs for both moderate
(vp �

������
�R
p

) and large (vp � 2:5
������
�R
p

) piston velocities are
shown in Fig. 2. For the slower piston velocity in Fig. 2,
left, the solution is similar to the asymptotic result in Fig. 1,
left. The piston DSW corresponding to the large piston
velocity in Fig. 2, right, is very similar to the asymptotic
result in Fig. 1, right. The vacuum condition in Eq. (9)
predicts u � vp everywhere in the trailing wave region,

except at vacuum points, where it is undefined. This is
reflected in the numerical calculation as very large spikes
in the velocity when the density approaches zero.

In conclusion, we have solved the dispersive shock wave
piston problem for arbitrary positive piston velocities in
systems described by the nonlinear Schrödinger equation,
demonstrating the existence of a bifurcation in shock be-
havior. For small piston velocities, a DSW propagates
ahead of the piston, as in the viscous shock piston problem.
For large enough piston velocities, a wave train oscillating
between the vacuum state and a saturated maximum den-
sity propagates between the piston and DSW, behavior
unique to DSWs.
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FIG. 3. Comparisons of the analytical theory (solid curves) and
numerical simulations (�) for different DSW parameters as
functions of the piston velocity vp. Left: �max (top) and �min

(bottom). Maximum absolute error in �max from Eqs. (6) and
(12) is 0.0088. Maximum absolute error in �min from Eq. (8) is
0.010. Right: top depicts the speed of the trailing edge of the
piston DSW for vp < 2

������
�R
p

� 0:73 and TW velocity V of
locally periodic wave for vp � 2

������
�R
p

. Bottom shows the validity
of the boundary condition (3). Maximum absolute error in v�s =V
from Eqs. (7) and (10) is 0.018. Maximum absolute error in uL
from Eq. (3) is 0.013.
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