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Predicting Criticality and Dynamic Range in Complex Networks: Effects of Topology
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The collective dynamics of a network of coupled excitable systems in response to an external stimulus
depends on the topology of the connections in the network. Here we develop a general theoretical
approach to study the effects of network topology on dynamic range, which quantifies the range of
stimulus intensities resulting in distinguishable network responses. We find that the largest eigenvalue of
the weighted network adjacency matrix governs the network dynamic range. When the largest eigenvalue
is exactly one, the system is in a critical state and its dynamic range is maximized. Further, we examine
higher order behavior of the steady state system, which predicts that networks with more homogeneous
degree distributions should have higher dynamic range. Our analysis, confirmed by numerical simulations,
generalizes previous studies in terms of the largest eigenvalue of the adjacency matrix.
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Numerous natural [1,2] and social [3] systems are accu-
rately described as networks of interacting excitable nodes.
The collective dynamics of such excitable networks often
defy naive expectations based on the dynamics of the
single nodes which constitute the network. Recent experi-
ments in neural networks [4] suggest that their dynamic
range (the range of stimuli over which there is significant
variation in the collective response of the network) is
maximized in a critical regime in which neuronal ava-
lanches [5] occur, confirming earlier theoretical predic-
tions [2]. It has been argued [2,4] that this critical regime
occurs when the expected number of excited nodes pro-
duced by one excited node is one. However, this criterion
is invalid for networks with broad degree distributions
[6,7]. A general understanding of how dynamic range
and criticality depend on network structure remains
lacking. In this Letter, we present a unified theoretical
treatment of stimulus-response relationships in excitable
networks, which holds for diverse networks including
those with random, scale-free, degree-correlated, and as-
sortative topologies.

As a tractable model of an excitable network, here we
consider the Kinouchi-Copelli model [2], which consists of
N coupled excitable nodes. Each node i can be in one of m
states x;. The state x; = 0 is the resting state, x; = 1 is the
excited state, and there may be additional refractory states
x; =2,3,...,m— 1. At discrete times t =0, 1,... the
states of the nodes x! are updated as follows: (i) If node i
is in the resting state, x% = 0, it can be excited by another
excited node j, x’ = 1, with probability A;;, or indepen-
dently by an external process with probability 7. The
network topology and strength of interactions between
the nodes is described by the connectivity matrix
A ={A;;}. In this model, 7 is considered the stimulus
strength. (ii) The nodes that are excited or in a refractory
state, x! = 1, will deterministically make a transition to the
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next refractory state if one is available, or otherwise return
to the resting state (i.e., x1*' =xl +1if l = xl<m — 1,
and x!* = 0 if xl = m — 1).

An important property of excitable networks is the
dynamic range, which is defined as the range of stimuli
that is distinguishable based on the system’s response F.
Following [2], we quantify the network response with the
average activity F = (f),, where (-), denotes an average
over time and f* is the fraction of excited nodes at time z.
To calculate a system’s dynamic range, we first determine
a lower stimulus threshold 7,,,, below which the change
in the response is negligible and an upper stimulus thresh-
old 7y above which the response saturates. Dynamic
range (A), measured in decibels, is defined as A =
101080 Mhigh / Mow- To analyze the dynamics of this system,
we denote the probability that a given node i is excited at
time ¢ by pi. For simplicity, we will consider from now
on only two states, resting and excited (m = 2) [8]. Then,
the update equation for p! is

==+ a-w[1-T0-pan]) @

which can be obtained by noting that 1 — p! is the
probability that node i is resting at time ¢, and the term
in large parentheses is the probability that it makes a
transition to the excited state. We assumed that the events
of neighbors of node i being excited at time ¢ are statisti-
cally independent. As noted before [3,9—11], this approxi-
mation yields good results even when the network has a
non-negligible amount of short loops.

In Ref. [2], the response F was theoretically analyzed
as a function of the external stimulation probability 7
using a mean-field approximation in which connection
strengths were considered uniform, A;; = /N for all
i, j. It was shown that at the critical value o = 1, the
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network response F changes its qualitative behavior. In
particular, lim, ,F =0 if o<1 and lim, ,F >0 if
o > 1. In addition, the dynamic range of the network
was found to be maximized at o = 1. The parameter o
is defined in Refs. [2,4] as an average branching ratio,
written here as o =Y, A; = (d") = (d°"), where
dan=y ;A and df" = 3" ;A;; are the in and out degrees
of node i, respectively, and (-) is an average over nodes. For
the network topology studied by Ref. [2], o = 1 marks the
critical regime in which the expected number of excited
nodes is equal in consecutive time steps. While o = 1
successfully predicts the critical regime for Erd6s-Rényi
random networks [2], this prediction fails in networks with
a more heterogeneous degree distribution [6,7]. Perhaps
more importantly, previous theoretical analyses [2,6,7] do
not account for features that are commonly found in real
networks, such as community structure, correlation be-
tween in and out degree of a given node, or correlation
between the degree of two nodes at the ends of a given edge
[12]. Here, we will generalize the mean-field criterion
o = 1 to account for complex network topologies.

To begin, we note that lim,_oF" = 0 corresponds to the
fixed point p = 0 of Eq. (1) with = 0. To examine the
linear stability of this fixed point, we set 7 = 0 and lin-
earize around p! = 0, assuming p! to be small, obtaining
pitt =3 ptA;;. Assuming p} = u; A" yields

N
J

Thus, the stability of the solution p = 0 is governed by the
largest eigenvalue of the network adjacency matrix A, with
A <1 being stable and A > 1 being unstable. Therefore,
the critical state described in previous literature, occurring
at various values of (d), should universally occur at A = 1.
Importantly, since A;; = 0, the Perron-Frobenius theorem
guarantees that A is real and positive [13]. Other previous
studies in random networks have also investigated spectral
properties of A to gain insight on the stability of dynamics
in neural networks [14] and have shown how A could be
changed by modifying the distribution of synapse strengths
[15]. An important implication of Eq. (2) is that, when p
and 7 are small enough, p should be almost proportional
to the right eigenvector u corresponding to A, so we write
p; = Cu; + €;, where C is a proportionality constant and
€; is a small error term. To first order, the constant C is
related to F' since, neglecting e,

F={f),= %ZP:‘ ~ %Zcui = C(u). 3)

The linear analysis allowed us to identify A = 1 as the
point at which the network response becomes nonzero
as n — 0. In what follows, we use a weakly nonlinear
analysis to obtain approximations to the response F(7)
when 7 is small. As we will show, these approximations
depend only on a few spectral properties of A. Assuming
A;jp;j < 1 (which is valid near the critical regime if each

node has many incoming connections), we approximate
the product term of Eq. (1) with an exponential, obtaining
in steady state

pi=00- p,-){n +(1- 77)[1 - eXP(_ZPinj)]}y “4)
J

which we expand to second order using p; = Cu; + €; and
Au = Au,

Cu; + €, = (Ae); + n(1 — Cu;) + (1 — 9)ACuy;
1
- (A + EAZ)Czu%. (5)

To eliminate the error term €; from Eq. (5), we multiply by
v;, the ith entry of the left eigenvector corresponding to A,
and sum over i. We use the fact that v"Ae = AvT €, where
vT denotes the transpose of v, and neglect the resulting
small term (1 — A)Y;v;€; close to A = 1, obtaining

Cluv) = n(v) — Cuv)) + (1 — 7)CXuv)
— (/\ + %AZ)CZ@MZ) (6)

This equation is quadratic in C [and therefore in F, via
Eq. (3)] and linear in 7, and may be easily solved for
either. For 7 = 0 the nonzero solution for F is

A=) (uww)
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A crude nonperturbative approximation can be obtained
by repeating this process without expanding Eq. (4), which
yields the linear equation for 7

Cluv) =3 (1= Cuf{n + (1 = )1 —exp(=ACu)}}. ()

Before numerically testing our theory, we will explain
how it relates to previous results. For a network with
correlations between degrees at the ends of a randomly
chosen edge (assortative mixing by degree [12]), measured
by the correlation coefficient p = (d}"d"), /{d"d*"") [16],
with (), denoting an average over edges, the largest
eigenvalue may be approximated by A = p{(d™d°"')/(d)
[16]. In the absence of assortativity, when p =1, A =
(d™d*y/{d). If, in addition, there are no correlations
between d;, and d,, (node degree correlations) or if the
degree distribution is sufficiently homogenous, then
(d™d°"'y = (d)*> and the approximation reduces to A =
(d). In the case of Ref. [2], A = (d) applies, and in the
case of Refs. [6,7], A = (d™"d°"'}/(d) applies.

We test our theoretical results via direct simulation of
the Kinouchi-Copelli model on six categories of directed
networks with N = 10000 nodes: (category 1) Random
networks with no node degree correlation between '™ and
d®"; (category 2) random networks with maximal degree
correlation, d™ = d°; (category 3) random networks
with moderate correlation between d™ and d°;
(category 4) networks with power-law degree distribution

F

(7

058101-2



PRL 106, 058101 (2011)

PHYSICAL REVIEW

week ending

LETTERS 4 FEBRUARY 2011

with power-law exponents y € [2.0, 6.0], with and without
node degree correlations; (category 5) networks con-
structed with (d) = 1, and assortativity coefficient p
varying in [0.7, 1.3]; (category 6) networks with weights
which depend on the degree of the node from which the
edge originates, A;; = a/d}".

We created networks in multiple steps: first, we created
binary networks (A;; € {0, 1}) with target degree distribu-
tions as described below; next, we assigned a weight to
each link, drawn from a uniform distribution between
0 and 1; finally, we calculated A for the resulting network
and multiplied A by a constant to rescale the largest eigen-
value to the targeted eigenvalue. The initial binary net-
works in categories 1-3 were Erd6s-Rényi random
networks, with (d) = 10 [17]. Maximal degree correlation
resulted from creating undirected binary networks and then
forcing A;; = Aj; for i < j. Moderate degree correlation
resulted from making undirected binary networks but al-
lowing A;; # Aj; when weights were assigned. The initial
binary networks of categories 4—6 were constructed using
the configuration model [18]. We enforced a minimum
degree of 10 and a maximum degree of 200. In creating
category 5 networks, we initially created one scale-free
network with power-law exponent y = 2.5 and A = 1.
Then we modified this original network by choosing two
links at random and swapping them if the resulting swap
would change the assortativity in the direction desired.
This process was repeated until a desired value of p was
achieved. Using this method we maintain exactly the same
degree distribution and mean degree, yet modify A by
virtue of A « p.

In the six network types tested, results of simulations
unanimously confirm the hypothesis that criticality occurs
only for largest eigenvalue A = 1. We present representa-
tive results in Fig. 1(a), noting that each line and set of
points corresponds to a single network realization, imply-
ing that the effect of the largest eigenvalue on criticality
is robust for individual systems. Figure 1(a) shows the
response F as a function of stimulus 7 for scale-free
networks with exponent y = 2.5, constructed with no
correlation between in and out degree, highlighting the
significant difference between the regimes of A <1 and
A > 1, with the critical data corresponding to A = 1. The
lines were obtained by using Egs. (3) and (8). Figure 1(b)
shows A as a function of A, using 9pien = 1 and 7oy, =
0.01, with the maximum occurring at A = 1. Similar re-
sults showing criticality and maximum dynamic range
at A = 1 are obtained for networks of all categories 1-5.
Figure 2 shows F,_,, for networks of categories 3-5,
confirming the transition predicted by the leading order
analysis in Eq. (2). The symbols show the result of direct
numerical simulation of the Kinouchi-Copelli model, the
solid lines were obtained by iterating Eq. (1), and the
dashed lines were obtained from Eq. (7). Figure 2(a) shows
that criticality occurs at A = 1 (indicated by a vertical
arrow) rather than at (d) = 1 for a category 3 random
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FIG. 1 (color online). (a) Response F vs stimulus 7 for power-
law networks with exponent y = 2.5 and no correlation between
d;, and d,. Equation (8) (lines) captures the behavior of the
simulation (circles), particularly for low levels of 7 and F.
(b) Dynamic range A is maximized at A = 1 in both simulation
results (circles) and Eq. (6) (line).

network. Figure 2(b) shows that criticality occurs at
A =1 for scale-free networks (category 4). Correlations
between d;, and d,,; affect the point at which A = 1 occurs
(vertical arrows). In Fig. 2(c), the mean degree was fixed at
(dy = 1, while A was changed by modifying the assortative
coefficient p. As predicted by the theory, there is a tran-
sition at A = 1 even though the mean degree is fixed.

We now explore the question of what network topology
will best enhance dynamic range. We consider the follow-
ing approximate measure of dynamic range A, obtained
by setting 7pen, to one in the definition of A,
A = 10log,y1/7., where 7. is the stimulus value corre-
sponding to a lower threshold response F'.. Since dynamic
range is maximized at criticality, we set A = 1, solve
Eq. (6) for 7., substitute it into the definition of A using
Eq. (3), retaining the leading order behavior to get

(vu?)
(u)uy*”

Since the entries of the right (left) dominant eigenvector
are a first order approximation to the in degree (out degree)
of the corresponding nodes [19], the second term suggests
that maximum dynamic range should increase (decrease)
as the degree distribution becomes more homogenous (het-
erogeneous). For example, consider the case of an undir-
ected, uncorrelated network, in which v; = u; = d;. The
second term is then approximately —10log,,({d*)/{d)?),
which is maximized when d; is independent of i. This

2
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FIG. 2 (color online).
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F,,_ obtained from direct numerical simulation of the Kinouchi-Copelli model (symbols) plotted against

(d) (a),(b) and A (c). Blue solid lines result from iterating Eq. (1) and green dashed lines result from Eq. (7). Small arrows show where
A =1 predicts a phase transition. (a) A set of random networks (category 3) showing that criticality occurs at A = 1 (arrow), but not
(d) = 1. (b) Criticality in scale-free networks (category 4) with node degree correlation also occurs at A = 1 (arrow), but not (d) = 1.
(c) Category 5 networks are tuned through criticality by changing assortativity, with fixed degree distribution and {(d) = 1.

corroborates the numerical findings in Refs. [2,7] that
random graphs enhance dynamic range more than more
heterogeneous scale-free graphs, and that the heterogeneity
of the degree distribution affects dynamic range [7]. To test
our result, we simulate scale-free networks with different
power-law exponents y € [2.0, 6.0], yet with A =1 to
maximize dynamic range in each case. Results of simula-
tion (circles) plotted against the prediction of Eq. (9) (line)
are shown in Fig. 3.

In summary, we analytically predict and numerically
confirm that criticality and peak dynamic range occur in
networks with largest eigenvalue A = 1. This result holds
for diverse network topologies including random, scale-
free, assortative, and/or degree-correlated networks, and
for networks in which edge weights are related to nodal
degree, thus generalizing previous work. Moreover, we
find that homogeneous (heterogeneous) network topolo-
gies result in higher (lower) dynamic range. Previous
demonstrations of how A governs network dynamics in
many other models (see [19] and references therein) sug-
gest that the generality of our findings may extend beyond
the particular model studied here. Taken together with
related experimental findings [4], our results are consistent
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FIG. 3. For power-law degree distributions with A = 1, peak
dynamic range increases monotonically with network homoge-
neity, as measured by power-law exponent 7. Simulations
(circles) agree well with our predictions [Eq. (9); line].

with the hypotheses that (1) real brain networks operate
with A = 1, and (2) if an organism benefits from large
dynamic range, then evolutionary pressures may act to
homogenize the network topology of the brain.
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