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We investigate the dynamics of spatially discordant alternans (SDA) driven by an instability of intracellular
calcium cycling using both amplitude equations [P. S. Skardal, A. Karma, and J. G. Restrepo, Phys. Rev. Lett.
108, 108103 (2012)] and ionic model simulations. We focus on the common case where the bidirectional coupling
of intracellular calcium concentration and membrane voltage dynamics produces calcium and voltage alternans
that are temporally in phase. We find that, close to the alternans bifurcation, SDA is manifested as a smooth
wavy modulation of the amplitudes of both repolarization and calcium transient (CaT) alternans, similarly to
the well-studied case of voltage-driven alternans. In contrast, further away from the bifurcation, the amplitude
of CaT alternans jumps discontinuously at the nodes separating out-of-phase regions, while the amplitude of
repolarization alternans remains smooth. We identify universal dynamical features of SDA pattern formation
and evolution in the presence of those jumps. We show that node motion of discontinuous SDA patterns is
strongly hysteretic even in homogeneous tissue due to the novel phenomenon of “unidirectional pinning”: node
movement can only be induced towards, but not away from, the pacing site in response to a change of pacing
rate or physiological parameter. In addition, we show that the wavelength of discontinuous SDA patterns scales
linearly with the conduction velocity restitution length scale, in contrast to the wavelength of smooth patterns that
scales sublinearly with this length scale. Those results are also shown to be robust against cell-to-cell fluctuations
due to the property that unidirectional node motion collapses multiple jumps accumulating in nodal regions into a
single jump. Amplitude equation predictions are in good overall agreement with ionic model simulations. Finally,
we briefly discuss physiological implications of our findings. In particular, we suggest that due to the tendency
of conduction blocks to form near nodes, the presence of unidirectional pinning makes calcium-driven alternans
potentially more arrhythmogenic than voltage-driven alternans.
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I. INTRODUCTION

Each year sudden cardiac arrest claims over 300 000 lives
in the United States, representing roughly half of all heart
disease deaths and making it the leading cause of natural
death [1–3]. Following several studies that linked beat-to-beat
changes of electrocardiographic features to increased risk
for ventricular fibrillation and sudden cardiac arrest [4–6],
the phenomenon of “cardiac alternans” has been widely
investigated [3,7–21]. At the cellular level, alternans originates
from a period doubling instability of the coupled dynamics of
the transmembrane voltage (Vm) and the intracellular calcium
concentration ([Ca2+]i). This instability is typically mani-
fested as a long-short-long-short sequence of action potential
duration (APD) accompanied by an in-phase (out-of-phase)
large-small-large-small (small-large-small-large) sequence of
peak calcium concentration (Ca).

At a tissue scale, cardiac alternans can be either spatially
concordant, with the whole tissue alternating in phase, or
spatially discordant, with different regions alternating out
of phase. In two dimensions, those out-of-phase regions of
period 2 dynamics are separated by nodal lines of period 1
dynamics, which reduce to points or nodes in one dimension.
In their pioneering study that evidenced spatially discordant
alternans (SDA) [16], Pastore et al. further demonstrated that
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SDA provides an arrhythmogenic substrate that facilitates the
initiation of reentrant waves, thereby establishing a causal link
between alternans at the cellular scale and sudden cardiac
arrest. Subsequent research has focused on elucidating basic
mechanisms of formation of SDA and conduction blocks
promoted by SDA [10–15,17–21].

A. Voltage-driven alternans

To date, our basic theoretical understanding of SDA is well
developed primarily for the case where alternans is “voltage-
driven” [1,22–25], i.e., originates from an instability of the
Vm dynamics. For a one-dimensional cable of length L, the
Vm dynamics is governed by the well-known cable equation

∂tVm = DV ∂2
xVm − Iion/Cm, (1)

where DV is the diffusion coefficient; Iion describes the total
flux of ion currents; Cm is the cell membrane capacitance; and,
by convention, we assume the cable is periodically paced at
the end x = 0. While the cable equation provides in principle
a faithful description of the Vm dynamics, it does not allow
an analytical treatment of the alternans bifurcation. A fruitful
theoretical framework for characterizing this bifurcation has
been the use of iterative maps first applied to the cell dynam-
ics [26,27] and formulated in terms of the APD restitution
properties. This relation describes the evolution of APD for an
isolated cell and is given by

An+1 = f (Dn), (2)
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where An+1 and Dn are the APD and diastolic interval (DI)
at beats n + 1 and n, respectively. At the tissue scale, the
diffusive coupling between cells influences the dynamics
through the conduction velocity (CV) restitution relation,
which describes how the depolarization wave speed depends
on DI, defined here by the function vcv(D). CV restitution
causes the activation interval Tn = An + Dn (the interval
between the arrival of the nth and nth + 1 stimuli) to vary
along the cable, thereby coupling the maps (2) in a nonlocal
fashion as first shown in an analysis of the alternans bifurcation
in a ring geometry [28]. Diffusive coupling also influences the
repolarization dynamics. Starting from Eq. (3), Echebarria and
Karma (EK) [22,23] showed that this effect can be captured
by a nonlocal spatial coupling between maps of the form

An+1(x) =
∫ L

0
G(x,x ′)f [Dn(x ′)]dx ′, (3)

where An+1(x) and Dn(x) are the APD and DI at beats n + 1
and n, respectively, at location x along the cable, and G is a
Green’s function that encompasses the nonlocal electrotonic
coupling along the cable due to the diffusion of Vm. For a
simple choice of ionic model, EK derived an analytical ex-
pression for the Green’s function G. Furthermore, they carried
out a weakly nonlinear multiscale expansion of the system of
spatially coupled maps close to the alternans bifurcation [i.e.,
the maps (2) at each point along the cable coupled nonlocally
by CV restitution and the Green’s function]. This expansion
of the form An = A∗ + (−1)na + . . . assumes that a is small
close to the bifurcation point, where A∗ is the fixed point
value of the APD at this point. Second, it exploits the fact
that the alternans amplitude a varies slowly in space on the
diffusive scale ξ ∼ √

DV A∗ that characterizes the spatial range
of the Green’s function G. The spatial scale of the variation
of a is generally characterized by the wavelength λs of SDA
equal to twice the spacing between nodes. Exploiting the fact
that a is small (a � A∗) and ξ � λs , EK reduced the system
of spatially coupled maps to the integro-partial-differential
equation [22,23]

τbcl∂ta = σa − χa3 + ξ 2∂2
x a − w∂xa − 1

�

∫ x

0
a(x ′)dx ′,

(4)

where � is a length scale related to the slope of the CV
restitution curve, w is a short length scale ∼DV /vcv(D∗), τbcl

is the pacing period or basic cycle length (BCL), and σ and χ

can be expressed in terms of derivatives of the APD restitution
curve evaluated at the fixed point and σ measures the distance
from the bifurcation point.

Analysis of this amplitude equation has yielded a funda-
mental understanding of the formation of SDA in terms of
a linear instability forming periodic wave patterns [22–25].
Depending on the relative magnitude of ξ , w, and �, SDA
formation is associated with a bifurcation to standing waves
with stationary nodes and a wavelength λs ∼ (w�)1/2 or
traveling waves with moving nodes and λs ∼ (ξ 2�)1/3 [22,23].
The assumption ξ � λs under which Eq. (4) is derived holds
in both cases due to the fact that both w and ξ are much smaller
than � for typical physiological parameters. This equation has

also been instrumental for developing methods of controlling
and suppressing alternans [29–32].

B. Calcium-driven alternans

While Eq. (4) is derived under the assumption that alternans
is voltage driven, both laboratory and numerical experiments
have shown that alternans can also be calcium driven, i.e.,
mediated by an instability in the intracellular [Ca2+]i dynam-
ics [33–43]. Calcium alternans drive repolarization alternans
due to the well-known property that Vm and [Ca2+]i dynamics
are bidirectionally coupled [44]. Membrane depolarization
activates the L-type calcium current ICa and Ca2+ entry into
the cell triggers Ca2+ release from the sarcoplasmic reticulum
(an intracellular calcium store). The transient rise of [Ca2+]i
known as the calcium transient (CaT) in turn influences
calcium-sensitive membrane currents. The increase of [Ca2+]i
tends to inactivate ICa, thereby shortening the APD, but drives
the sodium-calcium exchanger INCX current into a forward
mode of Ca2+ extrusion that is depolarizing (i.e., three Na+
ions are exchanged with one Ca2+ ion across the membrane),
thereby prolonging the APD. Consequently, depending on
the balance of those two currents, the net effect of the CaT
can be to prolong or shorten the APD and, concomitantly,
produce Ca alternans that are in phase or out of phase with Vm

alternans. The condition leading to in-phase (out-of-phase)
Ca and Vm alternans at a cellular level has been identified
as positive (negative) Ca-to-Vm coupling, which is associated
with dominance of INCX (ICa) [45–47].

Simulations of ionic models have demonstrated that
calcium-driven alternans can exhibit more complex spa-
tiotemporal behaviors on a tissue scale than voltage-driven
alternans [1,2,11,21,48]. A qualitatively distinguishing feature
of the calcium-driven case is that the amplitude and phase
of CaT alternans can jump discontinuously in space. Such
jumps are possible because Ca2+ diffusion is several orders
of magnitude smaller than Vm diffusion, both intracellularly
and across cells. Hence, [Ca2+]i varies rapidly over a scale
of a few microns, thereby allowing CaT alternans to become
spatially discordant in two neighboring cells or even in two
regions of the same cell. For negative Ca-to-Vm coupling, those
subcellular discordant CaT alternans have been shown to be
promoted by a Turing-like instability mediated by Vm and
Ca2+ diffusion [45,49,50]. This instability makes patterns of
alternans on a tissue scale quite complex [11,43,48]. Patterns
can display several jumps of CaT amplitude, with a wide range
of spacings between jumps. Furthermore, pattern formation
can be strongly history dependent [43,48].

While negative Ca-to-Vm coupling can be induced by
feedback control of the pacing interval [50] or pharmaco-
logically [46], and may occur in certain pathologies such
as heart failure, positive Ca-to-Vm coupling is more often
seen in experiments and is believed to be more prevalent.
For this case, the CaT alternans amplitude can also become
spatially discontinuous even in the absence of a Turing
instability [11,21]. The spatial gradient of CaT amplitude has
been found in one-dimensional ionic model simulations to
become steeper in the nodal region with increasing strength of
calcium-driven instability [11]. Based on this observation, it
was proposed that the steepness of the CaT amplitude profile
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in the nodal region could be used to distinguish between cases
where alternans is voltage driven and calcium driven [11]. In
this qualitative picture, a clear signature of the calcium-driven
case would be the observation of a CaT alternans profile that
is significantly steeper than the APD alternans profile or even
discontinuous.

At a more quantitative level, the formation and dynamical
consequences of spatial discontinuities in the CaT alter-
nans profile remains poorly understood. From a theoretical
standpoint, it would be desirable to generalize the ampli-
tude equation approach to develop a basic understanding of
calcium-driven SDA patterns for positive Ca-to-Vm coupling.
This extension is in principle straightforward close to the
alternans bifurcation, where the amplitudes of APD and CaT
alternans [a and c, respectively, where the amplitude of the CaT
at beat n is expanded in the form Cn = C∗ + (−1)nc + · · · ]
vary smoothly, i.e., both a and c vary on a scale larger
than the range ξ of the Vm diffusive coupling. We indeed
confirm in the present work by a linear stability analysis
that, close to the bifurcation, the wavelength of smooth SDA
patterns is governed by the same scaling laws for calcium-
and voltage-driven alternans, consistent with the expectation
that Eq. (4) provides a universal description of those patterns
near onset. However, the divergence of the spatial gradient
of c further away from the bifurcation renders the multiscale
expansion leading to Eq. (4) invalid. In particular, c can vary
on a scale shorter than ξ or even become discontinuous and
a can vary on a scale comparable to ξ but not much larger
than ξ .

In a previous report [51] we showed that, even in the
absence of a multiscale expansion, analytical insights into the
formation of SDA can be obtained by investigating a reduced
system of coupled integrodifference equations. This system
describes beat-to-beat variations of the amplitudes of voltage
and calcium alternans and handles discontinuous jumps in Ca
alternans amplitude. It is derived by assuming a simple generic
form for the iterative maps of the local bidirectionally coupled
Vm-[Ca]i dynamics and couples those maps spatially using
the CV-restitution relation and the diffusive Green’s function
defined by Eq. (3). We showed previously [51] that this system
reproduces the transition from smooth to discontinuous SDA
patterns with increasing strength of calcium-driven instability
and highlighted a range of novel dynamical behavior, including
a hysteresis of node motion related to the novel phenomenon
of unidirectional pinning. In this paper we develop this
theory further, providing a more complete picture of the
spatiotemporal dynamics of calcium-driven alternans for the
case of positive Ca-to-Vm coupling.

C. Outline

The rest of this paper is organized as follows. In Sec. II we
present the full derivation of the reduced system describing
the amplitude of the calcium and voltage alternans. We
assume here that the alternans is mediated by an instability in
the [Ca2+]i dynamics and account for bidirectional coupling
between [Ca2+]i and Vm dynamics. In Sec. III we present a
numerical survey of the reduced system and a description of
its phase space. We also present evidence that the dynamics of
the reduced system robustly captures the dynamics exhibited

by a detailed ionic model. In Sec. IV we use a linear stability
analysis to quantify the bifurcation characterizing the onset of
the alternans, as well as the spatial properties of solutions in
the smooth regime that appears immediately after onset. We
find that the wavelength λs of stationary and traveling SDA
patterns obeys the same scalings as predicted by Eq. (4) for the
case of voltage-driven alternans. This finding is consistent with
the expectation that Eq. (4) provides a universal description
of alternans dynamics close to the alternans bifurcation. In
Sec. V we continue our analysis by studying the strongly
nonlinear regime where discontinuous patterns form. This
analysis includes a description of the unique hysteresis found
for large degrees of instability. In Sec. VI we present several
numerical experiments of a detailed ionic model. First, we
show that the novel phenomena described by our reduced
model can be observed in ionic models. Second, we use results
from our reduced model to quantitatively predict dynamics in
ionic models. Finally, in Sec. VII, we close with a discussion
of spatially discordant alternans, physiological implications of
our work, and other conclusions.

II. DERIVATION OF THE AMPLITUDE EQUATIONS

We now present a detailed derivation of a reduced system
of integrodifference equations governing the dynamics of the
amplitude of calcium and voltage alternans along a one-
dimensional cable assuming a calcium-mediated instability.
In this paper we will restrict our analysis to a one-dimensional
cable of tissue. This case has experimental relevance [31,52]
and can be later generalized to two dimensions. As in
Refs. [22,23,38] we will assume that the cable has length
L with ends located at x = 0 and x = L and that the cable
is periodically paced at the x = 0 end. We add to Eq. (3)
an equation describing the evolution of [Ca2+]i dynamics
as well as account for the bidirectional coupling between
[Ca2+]i and Vm. Thus, we begin from the coupled system of
equations

Cn+1(x) = fc[Cn(x),Dn(x)], (5)

An+1(x) =
∫ L

0
G(x,x ′)fa[Dn(x ′),Cn+1(x ′)]dx ′, (6)

where Cn(x) gives the peak calcium concentration Ca at beat
n at location x along the cable. We note that the calcium
dynamics in Eq. (5) are not spatially coupled due to the
fact that diffusion of calcium occurs on a time scale that is
much slower than the diffusion of voltage and is therefore
negligible. Equations (5) and (6) state that Ca depends on a
local combination of Ca and DI of the previous beat, while
APD depends on a nonlocal combination of DI at the previous
beat and Ca at the current beat, weighted by the Green’s
function G. We note that APD depends on the current value
of Ca for the physiological reason that the Vm action potential
is buoyed by the influx of Ca2+ ions via the L-type calcium
current and thus influenced by the current [Ca2+]i dynamics.

For a paced cable with no-flux boundary conditions (i.e.,
dVm/dx = 0 at both ends of the cable), the nonlocal Green’s
function in Eq. (6) is given by

G(x,x ′) = G(x ′ − x) + G(x ′ + x) + G(2L − x ′ − x), (7)
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where

G(x) = 1√
2πξ 2

e−x2/2ξ 2

[
1 + wx

2ξ 2

(
1 − x2

ξ 2

)]
(8)

is an asymmetric Gaussian derived for a simple ionic model in
Appendix B of Ref. [23]. Importantly, G has two intrinsic
length scales ξ and w: ξ describes the length scale of
electrotonic coupling due to voltage diffusion and is given by
ξ = √

2DV A∗, where A∗ is the critical APD taken at the onset
of alternans, and w describes the symmetry-breaking effect
that results from a pulse traveling in the positive direction and
is given by w = 2DV /v∗

cv, where v∗
cv is the critical conduction

velocity value taken at the onset of alternans. We note that
typically w � ξ [23], so in order to understand the generic
behavior of calcium-driven alternans it is sufficient to consider
the limit of small w.

In order to quantify the amplitude of calcium and voltage
alternans, we now introduce the quantities

cn(x) = [Cn(x) − C∗]/C∗, (9)

an(x) = [An(x) − A∗]/A∗, (10)

dn(x) = [Dn(x) − D∗]/D∗, (11)

which describe a suitably scaled difference in Ca, APD, and DI
at beat n from the critical Ca, APD, and DI values, respectively,
at the onset of alternans. Thus, cn, an, and dn measure a
nondimensional amplitude of alternans in Ca, APD, and DI.
Next, in order to study the generic dynamics of calcium-driven
alternans, we choose the following forms of the functions fc

and fa:

fc(Cn,Dn)/C∗ = 1

I︷ ︸︸ ︷
−rcn + f (cn) +

II︷ ︸︸ ︷
αdn(x) , (12)

fa(Dn,Cn+1)/A∗ = 1 + βdn︸︷︷︸
III

+ γ cn+1︸ ︷︷ ︸
IV

, (13)

where terms labeled I–IV are chosen to model different aspects
of the dynamics of calcium and voltage alternans. In term
I we require that the function f (c) is odd and captures the
nonlinearity of local calcium dynamics. In this paper we will
assume that f is strictly cubic, i.e., f (c) = c3, for convenience
and in order to connect with Refs. [22,23]. Thus, term I models
local calcium dynamics with local degree of instability r . In
the absence of term II, the period 1 solution cn = 0 is stable
for 0 � r < 1 and loses stability at r = 1, at which point a
period-doubling bifurcation occurs and gives rise to stable
period 2 solutions cn+1 = −cn = ±√

r − 1 (which are stable
for 1 < r < 2).

Term III describes the dependence of APD on DI, capturing
the effect of APD restitution. Here β describes the slope of the
APD restitution curve, which we assume to be positive and
less than 1 to ensure that alternans are calcium driven. Finally,
terms II and IV describe the voltage-to-calcium and calcium-
to-voltage couplings, respectively. In this paper we will
consider the typical case of positive voltage-to-calcium and
positive calcium-to-voltage couplings and therefore assume
α,γ � 0. As a measure of the total bidirectional coupling, we
find it useful to define the parameter η = αγ .

In order to obtain a closed system, we seek to eliminate dn

in Eqs. (12) and (13) in favor of an. To this end, following
Refs. [22,23], we note that the effect of CV restitution causes
the activation interval Tn(x), which describes the time between
the nth and (n − 1)th depolarizations at point x, to vary along
the cable. By definition we have that

Tn(x) = An(x) + Dn(x). (14)

On the other hand, Tn(x) is also given by the pacing period τbcl

at the pacing site x = 0 plus the difference in times taken for
the nth and (n − 1)th stimuli to arrive at point x. Thus, in terms
of CV restitution, we have that

Tn(x) = τbcl +
∫ x

0

dx ′

vcv[DIn(x ′)]
−

∫ x

0

dx ′

vcv[DIn−1(x ′)]
.

(15)

Setting the right-hand sides of Eqs. (14) and (15) equal and
linearizing about A∗ and D∗ yields

an(x) + dn(x) = − 1

�

∫ x

0
[dn(x ′) − dn−1(x ′)]/2dx ′, (16)

where � is given by (v∗
cv)2/2v′∗

cv. We now note that the
amplitude of alternans evolves very slowly near the onset of
alternans, as well as far from onset in many ionic models,
including the model we use here (e.g., in typical ionic
model simulations several thousands of beats are required to
bypass transient dynamics in the cable equation), so dn−1(x) ≈
−dn(x). We then insert this approximation into Eq. (16), define
bn(x) = an(x) + dn(x), and take a derivative with respect to x,
which yields the following linear, nonhomogeneous ordinary
differential equation:

b′
n(x) = −[bn(x) − an(x)]/�, (17)

which can be solved analytically for bn(x) in terms of an(x).
After inserting back bn(x) = an(x) + dn(x) and noting that at
the pacing site x = 0 the pacing rate remains constant, giving
the initial condition an(0) + dn(0) = 0, we find that

dn(x) = −an(x) + 1

�

∫ x

0
e(x ′−x)/�an(x ′)dx ′. (18)

Before presenting the closed system of equations, we make
a few remarks about Eq. (18). First, since � is inversely
proportional to the derivative of vcv, � is typically very large
due to the flatness of typical CV restitution curves (in Sec. V
we will explicitly calculate the CV restitution curve and �

for a detailed ionic model). Thus, �−1 will be treated as a
small parameter in much of the analysis that follows. Next,
we will see that in steady state, solutions to our reduced
model remain stationary or have a very small velocity, so our
approximation dn−1(x) = dn(x) remains valid away from the
bifurcation. Finally, in Refs. [22,23] voltage-driven alternans
profiles were found to have a spatial wavelength that scaled
like λs ∼ (w�)1/2 or λs ∼ (ξ 2�)1/3, in either case λs � �,
so the exponential e(x ′−x)/� in Eq. (18) could be approximated
by 1. In contrast, we will find that for calcium-driven alternans
a certain regime of solutions yields the scaling λs ∼ �, and
therefore we will keep the full form of Eq. (18).

We finally close the dynamics of the amplitude of Ca and
APD alternans by inserting Eq. (18) along with Eqs. (12)
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and (13) into Eqs. (5) and (6). This yields the following reduced
system:

cn+1(x) = −rcn(x) + c3
n(x) − αan(x)

+ α

�

∫ x

0
e(x ′−x)/�an(x ′)dx ′, (19)

an+1(x) =
∫ L

0
G(x,x ′)

[
− βan(x ′)

+ β

�

∫ x ′

0
e(y−x ′)/�an(y)dy + γ cn+1(x ′)

]
dx ′. (20)

Equations (19) and (20) contain various parameters, but we
will primarily be concerned with the dynamical effects that
the degree of local calcium instability r and length scale of
CV restitution � have on steady-state solutions. Thus, we
will typically consider the APD restitution parameter β, the
bidirectional coupling parameters α and γ , as well as the
electrotonic-coupling length-scale parameters ξ and w [which
appear in the Green’s function G in Eq. (8)] to be given and
fixed. Finally, we note that although Eqs. (19) and (20) are in
principle valid near the onset of alternans, we find that they
also describe the features of alternans in the strongly nonlinear
regime.

In the rest of this paper, we will study the dynamics of
the reduced system in Eqs. (19) and (20). In Sec. III we will
present a numerical survey and describe the phase space of
the reduced system. In Secs. IV and V we present detailed
analyses of the reduced system. Finally, in Sec. VI we will use
the reduced system to predict qualitatively and quantitatively
the dynamics of a detailed ionic model.

III. NUMERICAL SURVEY AND PHASE SPACE

We now present a numerical survey of the reduced system
given by Eqs. (19) and (20) on a cable of length L = 30
with spatial discretization �x = 0.005, using α,γ = √

0.3,
β = 0, ξ = 1, and w = 0. It should be emphasized that ξ is
a dimensional length estimated to be in the range of a few
millimeters [22,23]. We are reporting all amplitude equation
results with lengths in units of ξ . Therefore the choice ξ = 1 is
equivalent to defining dimensionless length variables x̃ = x/ξ ,
�̃ = �/ξ , etc., and dropping the tilde symbol for convenience.
The choice β = 0 and w = 0 is also made for convenience
since we find that nonzero values result in qualitatively similar
behavior. (Theoretical results for nonzero values of β and
w that complement those presented in the following section
are presented in Appendix A.) In our numerical simulations
of Eqs. (19) and (20), we use a discretization of the spatial
coordinate, x = 0,�x,2�x, . . . ,L. The discretization length
�x is always chosen between �x = 0.05 (the cell size) and
�x = 0.005 (the distance that calcium diffuses during one
beat). Depending on the computational requirements of a
given numerical experiment (e.g., the necessity to simulate
long cables or to resolve small spatial scales), a value of
�x in this range was chosen, with larger �x used for
those experiments that require more computational resources
and smaller �x used when small spatial scales need to be
resolved. [Given a cable discretized with N = L/�x + 1
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FIG. 1. (Color online) (a) Phase space of Eqs. (19) and (20)
describing three solution regimes. As r increases (left to right) these
regimes are no alternans (blue), smooth wave patterns (yellow), and
discontinuous patterns (red), each separated by bifurcations r1(�)
and r2(�). For � = 15 (b) the maximal alternans amplitude c∞,
jump amplitude |c+ − c−|, and (c) velocity for a range of r values.
Other parameter values are α,γ = √

0.3, β = 0, ξ = 1, and w = 0
with L = 30 and �x = 0.005.

points, O(N2) operations are required to evolve Eqs. (19)
and (20) forward a single beat using the trapezoidal rule
for numerical integration.] Importantly, we verified that our
conclusions do not depend on the particular choice of �x. The
only difference is a slightly different convergence rate to steady
state after a change of parameters. The value of �x used for
each simulation will be always specified in the text and figure
captions. In Appendix B we report results that describe the
effect that using different spatial discretizations �x has on the
transient dynamics of Eqs. (19) and (20).

We summarize the results from varying the degree of
calcium instability r and CV length scale � in Fig. 1. In
Fig. 1(a) we show the phase space which consists of three
different regimes of solutions separated by two bifurcations.
The leftmost regime is colored blue and corresponds to
relatively small values of r , where we find that the only stable
solutions are identically zero, i.e., cn(x) ≡ 0 and an(x) ≡ 0.
We refer to this as the no-alternans regime. As r is increased,
we next cross the first bifurcation r1(�) and enter the middle
regime, which is colored yellow and corresponds to slightly
larger values of r . We find that at r = r1(�) the identically zero
solutions corresponding to no alternans lose stability and give
rise to solutions that form smooth wave patterns. Therefore,
the bifurcation r1(�) corresponds to the onset of alternans.
Furthermore, we find that these smooth wave patterns can
either travel with some finite velocity towards the pacing site
at x = 0 or remain stationary. Typically, stationary solutions
only form if the asymmetry length scale w is large enough,
as in the voltage-mediated instability studied in Refs. [22,23].
Finally, as r is increased further, we cross a second bifurcation
r2(�) and enter the rightmost regime, which is colored red
and corresponds to larger values of r . As r crosses r2(�) we
find that the smooth patterns of cn(x) found in the middle
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FIG. 2. (Color online) Examples of solutions of Eqs. (19)
and (20) for (a) r = 0.85 and (b) r = 1.15. Calcium cn(x) and voltage
an(x) profiles are plotted as blue dots and red curves, respectively.
Other parameter values are � = 15, α,γ = √

0.3, β = 0, ξ = 1, and
w = 0 with L = 20 and �x = 0.04. With the choice ξ = 1, x and �

are in units of ξ (see text).

regime develop a jump discontinuity at each node, while
the amplitude of voltage alternans an(x) remains smooth.
Furthermore, regardless of whether smooth solutions had a
finite velocity or were stationary, these discontinuous patterns
are always stationary.

In Figs. 1(b) and 1(c) we describe the nature of solutions in
the three regions in more detail by setting the CV restitution
length-scale parameter � = 15 and plotting several quantities
as the degree of calcium instability r is increased. In Fig. 1(b),
we plot the maximal amplitude of calcium alternans c∞ =
max0�x�L |c(x)| in blue crosses. In particular, we note that
at the bifurcation r1(�) (indicated by the first vertical dashed
green line) c∞ = 0 transitions from zero to nonzero values,
indicating the onset of alternans, and c∞ continues to increase
as r increases. Next, if a node exists at x = x0 [i.e., c(x0) = 0]
we define the left and right limiting values c− and c+ as the
values of c(x) just to the left and right of x0 [see Fig. 2(b)].
We compute the maximal difference |c+ − c−| and plot it in
red dots in Fig. 1(b). We note that |c+ − c−| remains zero for
r < r2(�), indicating solutions are continuous, but at r2(�)
(indicated by the second vertical dashed green line) |c+ − c−|
jumps to a finite positive value, indicating that solutions
develop discontinuities at the nodes. Finally, we calculate
the velocity of solutions, which we plot in Fig. 1(c). In the
no-alternans regime no such velocity exists because solutions
are identically zero. In the smooth regime we find positive
velocities that diminish with increasing r , until at r2(�)
the velocity vanishes and remains zero in the discontinuous
regime. As we will show in Sec. IV, a linear stability analysis
allows us to predict the velocity at the onset of alternans.
Figure 1 presents a detailed picture of the bifurcations that
we find in the system. In the next sections we analyze the
bifurcation at r1(�) and r2(�) as well as the properties of both
smooth and discontinuous solutions.

We close this section by presenting plots of alternans
profiles obtained from Eqs. (19) and (20) and comparing them
with profiles obtained from the ionic model. In Figs. 2(a)

0 5 10 15
−0.8
−0.4

0
0.4
0.8

x (cm)

c(x)
a(x)

(a) Ionic Model
BCL = 340 ms

0 5 10 15
−0.8
−0.4

0
0.4
0.8

x (cm)

c(x)
a(x)

(b)
BCL = 330 ms

FIG. 3. (Color online) Example solutions of the cable equation
with the Shiferaw-Fox model for (a) BCL = 340 ms and (b) BCL =
330 ms. The amplitude of calcium alternans cn(x) and voltage
alternans an(x) are plotted as blue dots and red curves, respectively.

and 2(b) we plot representative cn(x) and an(x) profiles on a
cable of length L = 20 with spatial discretization �x = 0.04
from both the smooth and discontinuous regime for r = 0.85
and 1.15, respectively, for fixed � = 15. Calcium and voltage
profiles cn(x) and an(x) are plotted in blue dots and dashed
red, respectively. Since we have used w = 0, the solutions in
the smooth regime were found to have a finite velocity in the
direction of the pacing site at x = 0, indicated by the arrow.
We also denote c− and c+ for the discontinuous pattern in
Fig. 2(b).

To complement the alternans profiles obtained from the
reduced system in Eqs. (19) and (20), we compute alternans
profiles from the cable equation (1) with a detailed ionic
model. In particular, we perform simulations of Eq. (1) with
DV = 5 × 10−4 cm2/ms and Cm = 1 μF/cm2, and the ion
currents are given by the so-called Shiferaw-Fox model, i.e.,
we use the ionic currents of Fox et al. [53] coupled with the
calcium-cycling dynamics of Shiferaw et al. [34]. We describe
in Sec. VI in detail specifics about the parameters used, as well
as particular parameter values, but note here that we choose
parameters to ensure that alternans is calcium driven.

As with most ionic models, beat-to-beat dynamics of the
Shiferaw-Fox model evolve slowly, so to reach steady state we
simulate through a transient of 12 000 beats. Once steady state
is reached, we extract the amplitudes corresponding to those
in Eqs. (9) and (10) by approximating C∗ = (Cn + Cn−1)/2
and A∗ = (An + An−1)/2, yielding

cn(x) = [Cn(x) − Cn−1(x)]/[Cn(x) + Cn−1(x)], (21)

an(x) = [An(x) − An−1(x)]/[An(x) + An−1(x)]. (22)

In Figs. 3(a) and 3(b) we plot the steady-state amplitudes
cn(x) and an(x) given by Eqs. (21) and (22) along a cable of
length L = 15 cm with spatial discretization �x = 0.02 cm,
for pacing periods of BCL = 340 ms and 330 ms, respectively.
For BCL = 340 ms both the amplitude of calcium and voltage
alternans form smooth wave patterns, analogous to the smooth
solutions from the reduced model, e.g., from Fig. 2(a). For
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BCL = 330 ms, while the amplitude of voltage alternans
remains smooth, the amplitude of calcium alternans develops a
discontinuity and resembles the discontinuous solutions from
the reduced model, e.g., from Fig. 2(b).

IV. LINEAR STABILITY ANALYSIS: ONSET OF
ALTERNANS AND SMOOTH WAVE PATTERNS

We now present a linear stability analysis of the reduced
model given by Eqs. (19) and (20). We begin by studying
the onset of alternans, described by the bifurcation at r1(�)
(see Fig. 1) and the properties of smooth solutions that arise
immediately after the onset of alternans [see Fig. 2(a)]. In
particular, because the bifurcation r1(�) describes a transition
from solutions cn(x) and an(x) that are identically zero to
nonzero, we study the dynamics of perturbations to solutions
cn(x) ≡ 0 and an(x) ≡ 0. For this linear stability analysis we
will consider the limit of long cable length L, but note that our
predictions are also accurate for cables of more realistic lengths
as well. Furthermore, since the length scales of electronic
coupling and CV tend to satisfy ξ � �, we will take the
nondimensional parameter ξ�−1 to be a small parameter.

For the sake of simplicity, in the analysis presented below
we will consider the limit of no asymmetry in the Greens
function in Eq. (8), i.e., w = 0. Furthermore, setting the APD
restitution parameter β to zero yields a much simpler set
of equations to study, and therefore the analysis below will
be for the case β = 0. In Appendix A we will present the
complementary theoretical results for both β 
= 0 and w 
= 0.
In Secs. IV A and IV B we study the onset of alternans and
spatial properties of smooth solutions, respectively, and in
Sec. IV C we compare and contrast our findings for calcium-
driven alternans to those of voltage-driven alternans.

For the purpose of carrying out the linear stability analysis,
we consider a semi-infinite cable paced at x = 0. The Green’s
function G(x,x ′) defined by Eq. (7) reduces for such a cable
to G(x,x ′) = G(x ′ − x) + G(x ′ + x). In the present section,
we treat the case w ≈ 0 leading to traveling waves. As for
the voltage-driven case [22,23], we find that the amplitude of
the traveling waves grows exponentially with distance away
from the pacing site. This makes the traveling wave eigenmode
insensitive to boundary effects at the paced end of the cable.
This allows us to self-consistently carry out the linear stability
analysis with the Green’s function for an infinite cable, i.e.,
G(x,x ′) = G(x ′ − x). The same turns out to be true for the
case of standing waves treated in Appendix A. In this case, the
zero flux boundary condition at the paced end is essential so
the form G(x,x ′) = G(x ′ − x) + G(x ′ + x) should be used in
principle for the linear stability analysis. However, since the
standing-wave eigenmode is ∼cos kx, the eigenvalue equation
obtained by analyzing this mode over the semi-infinite domain
x > 0 with G(x,x ′) = G(x ′ − x) + G(x ′ + x) is identical to
the eigenvalue equation obtained by analyzing the mode
∼ exp(ikx) over the infinite domain −∞ < x < +∞ with
G(x,x ′) = G(x ′ − x).

A. Onset of alternans

We consider a perturbation to the solution cn(x) ≡ 0 and
an(x) ≡ 0 of the form δcn(x) = cλneikx and δan(x) = aλneikx

for constants c,a � 1. Thus, perturbations are described by
the growth parameter λ and the wave number k. Since we
are interested in the onset of alternans, we will search for a
growth parameter of unit magnitude, i.e., |λ| = 1. Inserting
these perturbations into Eqs. (19) and (20), we find after
neglecting a term of order O(c3) that

(λ + r)c(ik + �−1) = −αika, (23)

a = γ ce−k2ξ 2/2. (24)

By combining Eqs. (23) and (24) we find the dispersion relation

λ = −r − η
ik

ik + �−1
e−k2ξ 2/2, (25)

which gives the growth parameter λ of a perturbation with
given wave number k.

We now recall that ultimately we are interested in a cable
of finite length, and therefore we will restrict our attention
to perturbations that grow with zero group velocity, i.e.,
possibly traveling solutions that grow inside of a stationary
envelope. This is refered to as an absolute instability and
is characterized by the condition ∂λ/∂k = 0 [54]. On the
other hand, perturbations that grow with some finite group
velocity, i.e., that grow inside of a moving envelope, will vanish
from a finite domain in finite time, and therefore we do not
consider these convective instabilities, which are characterized
by ∂λ/∂k 
= 0.

Enforcing the absolute instability condition ∂λ/∂k = 0 on
Eq. (25), we find that

�−1 = k2ξ 2(ik + �−1), (26)

which describes the wave number k corresponding to the
absolute instability we are looking for. We next solve for k

in Eq. (26) perturbatively, finding

�k =
(

�

ξ

)2/3

i−1/2 + i

3
+ O

[(
ξ

�

)2/3]
. (27)

After inserting Eq. (27) into Eq. (25), we have that the growth
parameter is given by

λ = − r − η + 3ηi−2/3

2

(
ξ

�

)2/3

− 13ηi−4/3

8

(
ξ

�

)4/3

+ O
[(

ξ

�

)2]
. (28)

Finally, by setting |λ| = 1, we find that the critical bifurcation
value describing the onset of alternans is given by

r1(�) = 1 − η + 3η

4

(
ξ

�

)2/3

+ O
[(

ξ

�

)4/3]
. (29)

To verify this result, we perform numerical simulations of
Eqs. (19) and (20) to find the onset of alternans. On a long
cable (L = 100) with spatial discretization �x = 0.05, over a
range of �, we start from a small r value and perturb the zero
solution cn(x) ≡ 0 and an(x) ≡ 0, evolving the system forward
in time to see if perturbations grow or decay. If perturbations
decay, we increase r slightly, perturb the zero solution again
and repeat. If perturbations grow, we continue evolving the
system to steady state to confirm that alternans form and store
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FIG. 4. (Color online) The critical value r1(�) describing the
onset of alternans computed directly from numerical simulations
of Eqs. (19) and (20) (blue circles) compared to our theoretical
prediction given by Eq. (29) (dashed red). Other parameters are
α,γ = √

0.3, β = 0, ξ = 1, and w = 0 with L = 100 and �x = 0.05.

the observed r1(�) value. In Fig. 4 we plot the results from
simulation in blue circles as well as our theoretical prediction
from Eq. (29) in dashed red. Other parameters are α,γ = √

0.3,
β = 0, ξ = 1, and w = 0. We label the region r < r1(�)
and r > r1(�) “no alternans” and “alternans,” respectively,
since the solution cn(x) ≡ 0 and an(x) ≡ 0 is stable and
unstable to perturbation in the respective regions. We note
that the agreement between onset as observed from numerical
simulations and our theoretical prediction is excellent.

We note that for a different form of nonlinearity in Eq. (19),
i.e., a more general odd form of f (cn), we recover the same
results. This follows from the fact that in our linear stability
analysis we neglected all nonlinear terms, eventually obtaining
Eq. (23). In the case of nonzero β or w, which we treat
separately in Appendix A, we find that the critical onset value
is given by Eqs. (A5) and (A12), respectively. In particular,
Eq. (A5) for β 
= 0 gives the critical onset value implicitly.

B. Spatial properties of smooth solutions

We now turn our attention to the properties of solutions that
form in the smooth regime, i.e., immediately after the onset
of alternans at r = r1(�). In particular, given the profiles we
observe [see Fig. 2(a)], we will focus on the spatial wavelength
λs and velocity v of steady-state solutions. We find that we can
quantify both by considering smooth solutions near the onset
of alternans. However, we note that the velocity decreases
quickly as r is increased past r1(�) [see Fig. 1(c)].

In the analysis above, we considered perturbations charac-
terized by the growth parameter λ and the wave number k, i.e.,
cn(x),an(x) ∝ λneikx . The spatial wavelength of solutions is
given by λs = 2π/kRe, where kRe is the real part of the wave
number k. Using the wave number in Eq. (27), we find that to
leading order

λs = ξ
4π√

3

(
�

ξ

)1/3

. (30)

Next, we note that near the onset of alternans the growth
parameter λ has approximately unit magnitude, so λ ≈ −ei�

for some � ∈ R, where we have included the negative sign
to account for periodic flipping of solutions. Thus, with
k = kRe + ikIm, we can express solutions as cn(x),an(x) ∝
e−kImxeikRe(x+n�/kRe). Note that from Eq. (27) we have that
k ≈ (

√
3 − i)/2(ξ 2�)1/3, which implies that kIm < 0 such that

the modes grow exponentially with distance away from the
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FIG. 5. (Color online) (a) The spatial wavelength λs and (b)
velocity v of smooth solutions near the onset of alternans computed
directly from numerical simulations of Eqs. (19) and (20) (blue
circles) compared to our theoretical predictions given by Eqs. (30)
and (31) (dashed red). Other parameters are α,γ = √

0.3, β = 0,
ξ = 1, and w = 0 with L = 100 and �x = 0.05.

pacing site as announced earlier. The velocity of solutions in
the direction of the pacing site is given by v = �/kRe. When
� is small, as in our case, it can be approximated in terms
of the imaginary part of λ, i.e., � ≈ −λIm. Using the growth
parameter and wave number from Eqs. (27) and (28), we find
that to second order the velocity is given by

v = 3ηξ

2

(
ξ

�

)1/3

− 13ηξ

8

(
ξ

�

)
, (31)

where we have included the second-order term to increase the
precision for more moderate values of �.

To verify this result, we calculate the spatial wavelength
λs and velocity v directly from numerical simulations of
Eqs. (19) and (20) immediately after the onset of alternans.
In Fig. 5 we plot the spatial wavelength λs and velocity v

in Figs. 5(a) and 5(b), respectively, from direct simulation
in blue circles as well as our theoretical predictions from
Eqs. (30) and (31) in dashed red. As previously, simulations
are done on a long cable (L = 100) with spatial discretization
�x = 0.05 with α,γ = √

0.3, β = 0, ξ = 1, and w = 0. We
note that the agreement between both the spatial wavelength
and velocity as observed from numerical simulations and our
theoretical prediction is excellent.

We note that for the case of nonzero β or w, the
spatial wavelength at onset is given by Eqs. (30) and (A13),
respectively. Note that the inclusion of nonzero β leaves the
spatial wavelength at onset unchanged from the β = 0 case,
but, as discussed in Appendix A, a sufficiently large w changes
the scaling entirely from λs ∼ (ξ 2�)1/3 to λs ∼ (w�)1/2.
Furthermore, the velocity for nonzero β is given by Eq. (A6)
while sufficiently large w yields stationary solutions.

C. Comparison to voltage-driven alternans

We conclude this section with a brief comparison of
the properties of calcium-driven alternans governed by
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Eqs. (19) and (20) and voltage-driven alternans governed by
Eq. (4) [22,23] near onset. We find remarkable similarities
between the dynamics, suggesting that the dynamics near
onset are universal. In particular, both calcium- and voltage-
driven alternans admit two classes of solutions after onset
that depends on the asymmetry parameter w: traveling and
stationary wave patterns. For both traveling and stationary
solutions, the scaling of the spatial wavelength is equivalent
for calcium- and voltage-driven alternans.

In contrast, the critical onset value and velocity of traveling
wave patterns of calcium-driven alternans is not precisely
equivalent to the voltage-driven case. In particular, the model
for calcium-driven alternans incorporates the bidirectional
coupling parameters α and γ , which do not appear in the
model for voltage-driven alternans. Here these bidirectional
coupling parameters surface in the expressions for r1(�) and
v [Eqs. (29) and (31) for β = 0 and w = 0, or Eqs. (A5), (A6),
and (A12) otherwise] as η = αγ . However, these expressions
are equivalent to those for the voltage-driven case under a shift
and scaling by η.

V. STRONGLY NONLINEAR REGIME: DYNAMICS OF
DISCONTINUOUS PATTERNS

We now consider the strongly nonlinear regime where
discontinuous calcium profiles form [see Fig. 2(b)] and the
properties of these solutions. We emphasize that, due to the
electrotonic coupling of voltage dynamics due to diffusion,
these solutions are nonphysical for voltage-driven alternans
and thus only observed when alternans is calcium driven.
Throughout this section we will primarily be interested in
the steady-state solutions of Eqs. (19) and (20). We note,
however, that the transient dynamics of Eqs. (19) and (20)
are interesting in their own right, and therefore we present
results from numerical investigation of transient behavior in
Appendix B.

We begin this section by studying the nature of the
discontinuities that form and the jumping points at each
discontinuity in Sec. V A. In Sec. V B we show the hysteretic
behavior inherent in the discontinuous regime, first describing
the symmetrizing of jumping points and then describing
unidirectional pinning. In Sec. V C we present a framework for
understanding the hysteretic behavior described previously. In
the Sec. V D we study the scaling properties of the spatial
wavelength of solutions. Finally, in Sec. V E, we address the
combined effects of random fluctuation of SDA under node
dynamics induced by changes of parameters.

A. Discontinuities

Due to the importance of nodes in spatially discordant
alternans, we will begin by studying the shape of the phase
reversals that form in the discontinuous regime and later study
their locations. Recall that given a steady-state solution that has
developed a discontinuity at x = x0 the left and right jumping
points, respectively, are defined by

c− = lim
x→x−

0

c(x), and c+ = lim
x→x+

0

c(x), (32)
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FIG. 6. (Color online) Illustration of jumping points c− and c+
and the jump amplitude |c+ − c−| at a node x0 for a discontinuous
calcium profile c(x) using parameters r = 1.15, � = 15, α,γ =√

0.3, β = 0, ξ = 1, and w = 0 with L = 20 and �x = 0.005.

and the total jump amplitude of the discontinuity is then given
by |c+ − c−| (see Fig. 6).

To gain some insight into the transition from the smooth
regime to the discontinuous regime, we fix � and simulate
Eqs. (19) and (20) over a range of r values. In Fig. 7 we
plot the resulting velocity and jump amplitude |c+ − c−|
simultaneously in blue circles and red dots, respectively, for
fixed � = 15. Simulation were performed on a cable of length
L = 30 with spatial discretization �x = 0.005, and other
parameters are α,γ = √

0.3, β = 0, ξ = 1, and w = 0. We
note that for smaller r values the velocity is finite while the
jump amplitude is approximately zero, implying that solutions
remain smooth. As r increases the velocity decays until,
seemingly at the same time, the velocity vanishes and the
jump amplitude jumps to a finite value, implying that the
corresponding solutions are in fact discontinuous at each
node. This finite value is plotted in dashed black and can be
predicted analytically, as we show below. Thus, the bifurcation
r2(�) describing the transition from smooth to discontinuous
solutions is given by this point where |c+ − c−| jumps and is
denoted by the vertical green dot-dashed line.

To gain some more insight into the jumping points c− and c+
and the jump amplitude |c+ − c−|, we now consider stationary
period 2 solutions of Eq. (19). Assuming solutions of the form
−cn+1(x) = cn(x) = c(x), we take a derivative of Eq. (19) with
respect to space and find that away from each discontinuity
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FIG. 7. (Color online) The velocity and jump amplitude |c+ −
c−| of steady-state solutions, plotted in blue circles and red dots,
respectively, over a range of r values for fixed � = 15. The theoretical
prediction for the jump amplitude of normal jumps is plotted in dashed
black and the bifurcation value r1(�) describing the transition from
smooth to discontinuous solutions is denoted by the vertical green
dot-dashed line. Other parameters are α,γ = √

0.3, β = 0, ξ = 1,
and w = 0 with L = 30 and �x = 0.005.
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solutions satisfy

�c′(x) = −α�a′(x) − (r − 1)c(x) + c3(x)

r − 1 − 3c2(x)
. (33)

Thus, we see that when 3c2(x) = r − 1 the denominator on
the right-hand side of Eq. (33) vanishes, causing the derivative
c′(x) to diverge and the profile c(x) to develop a jump
discontinuity. Thus, upon formation of discontinuities, the left
jumping point is given by c− = ±√

(r − 1)/3. To find the
right jumping point we note that stationary solutions satisfy
the cubic equation

(r − 1)c(x) − c3(x) = A(x), (34)

where A(x) = −αa(x) + α
�

∫ x

0 e(x ′−x)/�a(x ′)dx ′. Since a(x)
is smoothed by the Green’s function at each iteration, the
quantity A(x) remains smooth through the discontinuity in
c(x). The right jumping point c+ is given by the other
root of Eq. (34) at x = x0, where A(x0) = (r − 1)c− + c3

− =
±2(r − 1)3/2/3

√
3, yielding c+ = ∓2

√
(r − 1)/3. Finally, the

total jump amplitude is given by |c+ − c−| = √
3(r − 1). In

Fig. 7 we plot this theoretical prediction of |c+ − c−| in dashed
black, noting that the agreement with numerical simulations is
excellent.

We emphasize here that upon formation of discontinuities,
the left and right jumping points take the values described
above. We will refer to these as normal jumps. As we will
see below, upon changes of parameters, the values of c− and
c+ can potentially change. However, we will see below that
normal jumps play an important role in the dynamics in the
discontinuous regime.

To further understand the bifurcation r2(�) that character-
izes the transition from the smooth regime to the discontinuous
regime (see Fig. 7), we now study how discontinuities form
in profiles as r approaches r2(�) from below and surpasses
it. In particular, we consider the length scale of the phase
reversal corresponding to a given node. For solutions found
in the smooth regime [see Fig. 2(a)] we expect the length
scale of phase reversals to be finite. However, for patterns in
the discontinuous regime [see Fig. 2(b)], we expect the length
scale of the phase reversal to be comparable with the numerical
discretization length scale.

Given a node at x = x0, the corresponding length scale l of
the phase reversal, assuming a nonzero smooth profile, can be
defined as

l = 2c∞
|c′(x0)| , (35)

where c∞ = max0�x�L |c(x)| is the maximum value taken by
c(x) on the cable. In the main panel of Fig. 8 we plot the length
scale l of phase reversals for the same parameter values as those
from Fig. 7. We note that in the smooth regime l takes on finite
values, and l approaches zero as r approaches r2(�) ≈ 1.1.
In particular, as r approaches r2(�) from below the derivative
c′(x0) increases, yielding a sharper phase reversal, until at r =
r2(�) the derivative diverges, giving way to discontinuities at
each node. In the inset of Fig. 8 we compare these results to
the theoretical prediction of l for the limit of flat CV restitution
where � → ∞ and for w = 0 by plotting l versus (r − r2)/r2.
In this limit it can be shown that as r approaches r2 the length
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l

Λ = 15
theory

r2(Λ)

FIG. 8. (Color online) The length scale l of phase reversals
defined by Eq. (35) over a range of r values given � = 15. Note
that as r approaches r2(�) (denoted by the vertical dot-dashed
green line) from below, l approaches zero. Other parameters are
α,γ = √

0.3, β = 0, ξ = 1, and w = 0 with L = 30 and �x = 0.005.
Inset: Comparison to the analytical expression for the flat CV limit.

scale of the phase reversal is given by

l ≈ (1 − r)
√

2πξ 2

ηLi1/2(β)/β
, (36)

where Lis(β) = ∑∞
j=1 βj/j s is the polylogarithm function.

We present the full derivation of Eq. (36) together with other
properties of the flat CV case in Appendix C. This theoretical
prediction agrees well with simulations, indicating that the
scaling of the phase reversal length scale near the critical value
r2(�) for finite � is similar to that for flat CV restitution.

B. Hysteresis and unidirectional pinning

We will now consider the effects that changes of parameters
have on solutions once steady state is reached in the discon-
tinuous regime. We will find below that two unique types of
hysteresis are inherent to the discontinuous solutions. First, we
find that if r or � are increased, then the location of each node
remains unchanged. However, the shape of each node (e.g.,
the values of the jumping points c− and c+) changes, yielding
non-normal jumps. More specifically, while for normal jumps
we have |c+| = 2|c−|, we find that after increasing r or � that
c− and c+ change in such a way that |c+| and |c−| decrease and
increase, respectively, approaching one another for the case of
a symmetric Green’s function, i.e., w = 0. Thus, increasing r

or � has a symmetrizing effect on the shape of c(x) about each
node. To quantify this, we introduce a measure of asymmetry
defined by

� = |c+| − |c−|
|c0+| − |c0−| = |c+| − |c−|√

(r − 1)/3
, (37)

where c0
− and c0

+ are the left and right jumping point values for
a normal jump. This normalization is made so normal jumps
yield an asymmetry of � = 1 regardless of the value of r .
Furthermore, � approaching zero corresponds to c+ and c−
approaching one another in magnitude, i.e., a symmetrizing of
the shape of profiles about each node.

In Fig. 9 we illustrate this phenomenon by obtaining a
discontinuous pattern at r = 1.2 and � = 10, then increasing
� to 300. In Fig. 9(a) we plot the magnitude of the jumping
points |c−| and |c+| in solid blue and dashed red, respectively,
and in Fig. 9(b) we plot the asymmetry � as a function of �.
Simulations were performed on a cable of length L = 30 with
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FIG. 9. (Color online) (a) Jumping points values |c−| and |c+|
and (b) asymmetry of nodes � as � is increased from a steady-state
profile with normal jumps with r = 1.2 and � = 10, plotted in solid
blue and dashed red. Other parameters are α,γ = √

0.3, β = 0, ξ = 1,
and w = 0 with L = 30 and �x = 0.005.

a spatial discretization of �x = 0.005, and other parameters
are α,γ = √

0.3, β = 0, ξ = 1, and w = 0. We find that c− and
c+ approach one another in absolute value as � is increased.
In fact, it can be shown by studying the large � limit of
Eqs. (19) and (20) with w = 0 that |c−| and |c+| approach
the value

√
r − 1 as � → ∞, which is denoted in dot-dashed

black. This result also follows from the analysis presented in
Appendix C. We see explicitly in Fig. 9(b) that as � increases,
� approaches zero. Furthermore, if we restore � to its original
value after increasing it, the profile recovers its original shape
and previous jumping point values. Finally, we note that if
the symmetry of the Green’s function is broken with w > 0,
it can be shown that as � is increased, the magnitude of the
left jumping point c− eventually surpasses the magnitude of
the right jumping point c+, yielding a negative value for the
asymmetry �.

Next, we consider the effect that decreasing r or � has on
discontinuous solutions. Interestingly, the effect is somewhat
the opposite of what was described above: the jumping points
c− and c+ remain unchanged and the node locations move
towards the pacing site at x = 0. Furthermore, if r or � are
restored to their original (larger) value, we find that the profile
does not recover its original shape. Instead, the node remains
pinned to the location closer to the pacing site and the shape
of the node symmetrizes as described above. We refer to this
phenomenon as unidirectional pinning.

In Fig. 10 we illustrate the phenomenon of unidirectional
pinning by plotting the location of the first node x1 as we slowly
“zig-zag” � after obtaining a steady-state discontinuous
solution at r = 1.2 and � = 16. Simulations were performed
on a cable of length L = 20 with a spatial discretization of
�x = 0.02, and other parameters are α,γ = √

0.3, β = 0,
ξ = 1, and w = 0. Starting at � = 16, we first increase it
slowly to 20, then decrease it slowly to 10, and, finally, increase
it slowly to 14. As we begin initially increasing �, we note that
the first node location x1 (blue circles) remains pinned in its
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FIG. 10. (Color online) First node location x1 and �, plotted in
blue circles and dashed red, as � is “zig-zagged” starting from a
steady-state profile with normal jumps with r = 1.2 and � = 16.
Other parameters are α,γ = √

0.3, β = 0, ξ = 1, and w = 0 with
L = 20 and �x = 0.02.

original location and only decreases when � is decreased past
its previous minimum, at which point it appears to decrease
linearly with �. Finally, when � is increased again x1 remains
pinned in its location nearest the pacing site. We find that all
other node locations along the cable move in the same way as
the first node location.

We conclude this subsection by presenting an example
where, through changing both r and �, we observe both
symmetrizing of the profile near the node, as well as
unidirectional pinning. To highlight the hysteretic behavior
we see, we choose two parameter pairs (r1,�1) = (1.16,30)
and (r2,�2) = (1.26,14) and construct two different paths
that connect (r1,�1) to (r2,�2). Path 1 is traversed by first
increasing r from r1 to r2 while leaving � = �1, then
decreasing � from �1 to �2 while keeping r = r2, and path 2
is traversed by first decreasing � from �1 to �2 while keeping
r = r1, then increasing r from r1 to r2 while leaving � = �2

[see Fig. 11(a)]. Next, we perform two simulations where, after
reaching steady state at (r1,�1), we move slowly along paths
1 and 2.

In Fig. 11 we plot the results of these simulations. In
Fig. 11(a) we plot the trajectories of paths 1 and 2 in the
(r,�) plane in dashed blue and dot-dashed red, respectively. In
Fig. 11(b) we plot a zoomed-in view of the first node location
for the initial profile c0(x) taken at (r1,�1) in solid black,
as well as the final profiles c1(x) and c2(x) obtained after
moving along paths 1 and 2 in dashed blue and dot-dashed
red, respectively. From these profiles, we can see that after
moving along path 1, the profile c1(x) is very similar to the
initial profile c0(x), both with respect to the shape and location
of the first node. However, the profile resulting from moving
along path 2, c2(x) differs substantially from c1(x), despite
having the same parameters. In particular, the first node of
c2(x) is much closer to the pacing site than that of c1(x). In
Figs. 11(c) and 11(d), we explore the dynamics further by
plotting the asymmetry � and the first node location x1 in
blue circles and red crosses, respectively, along paths 1 and
2. Along the first half of path one, as r increases, we see the
node location remains constant and the asymmetry decreases,
until the second half, where � decreases, and the asymmetry
is almost recovered. Along the first half of path 2, however,
as � is decreased the asymmetry remains nearly constant at
� ≈ 1 while the node location decreases, until the second half
where the node location remains constant and the asymmetry
decreases as r is increased. In particular, we note that at the
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FIG. 11. (Color online) (a) Two paths plotted in dashed blue
and dot-dashed red connecting (r1,�1) = (1.16,30) and (r2,�2) =
(1.26,14). (b) Zoomed-in view of the first node of the initial profile
c0(x) at (r1,�) and resulting profiles c1(x) and c2(x) after moving
along paths 1 and 2 plotted in dashed blue and dot-dashed red. [(c)
and (d)] Asymmetry � (blue circles) and first node location x1 (red
crosses) along paths 1 and 2. Other parameters are α,γ = √

0.3,
β = 0, ξ = 1, and w = 0 with L = 20 and �x = 0.02.

end, where both simulations have the same parameter values
(r2,�2), both the asymmetry � and first node location x1 differ
substantially, depending on the path taken.

C. Node dynamics: A framework for understanding hysteresis

Given the novel dynamics presented in the previous sub-
section, we will now present a framework for understanding
the hysteretic behavior described there. To do so we will study
the dynamics of c(x) at a node x0. Our goal is to show that in
response to a change in parameters, and depending on which
direction we change parameters in, then the following is true.
First, starting at a normal jump, the absolute value of jumping
points |c−| and |c+| can approach one another but not move
away from one another. Second, nodes move towards the
pacing site at x = 0 but not away. We note that movement
towards the pacing site corresponds to the point c(x0) = c−
transitioning to c+.

We begin by noting that with the definition An(x) =
−αan(x) + α

�

∫ x

0 e(x ′−x)/�an(x ′)dx ′, Eq. (19) can be rewritten
as

cn+1(x) = −rcn(x) + c3
n(x) + An(x). (38)

Importantly, An(x) encompasses all the nonlocal effects con-
tributing to the local evolution of cn+1(x). Dropping subscripts,
we note that A is explicitly a function of x and a(x), as well as
the parameters α and λ, but it is also indirectly a function of
c(x) and the other parameters r , γ , β, ξ , and w, so in principle
we have that A = A(x,c,a, p), where p is a vector containing
all system parameters. We saw previously that for a normal
jump the right and left jumping points c− and c+ are given by
two roots of the cubic polynomial

F (c) = (r − 1)c − c3 − A(x0) = 0, (39)

where A(x0) = ±2(r − 1)3/2/3
√

3, yielding c− =
±√

(r − 1)/3 and c+ = ∓2
√

(r − 1)/3. We note here
that c− turns out to be a double root of Eq. (39).

In order to understand the node dynamics, one can study
the initial local dynamics of c = c(x0) in response to small
changes in A induced by small changes in either the parameters
or global profiles a(x) or c(x). More specifically, upon a
change of parameters we consider how A changes through
its explicit dependence on these parameters, while neglecting
the change in A due to the implicit dependence of c(x) and
a(x) on the modified parameters. We argue that this approach
is valid because the local dynamics of c(x0) occur very quickly
in comparison to the global dynamics of c(x). To study
the dynamics of c(x) at x = x0, we introduce the quantity
�cn = (−cn+1) − cn, which describes, after reflecting the
n + 1st beat, the evolution of c(x0) from beat n to n + 1. We
also choose without any loss of generality the positive root of
A. Choosing the negative root yields the same results for a
flipped calcium profile. From Eq. (38), we have that

�cn = (r − 1)cn − c3
n − An(x0) = F (cn). (40)

Now, as we noted in Sec. II, beat-to-beat dynamics of alternans
amplitudes evolve slowly, so �cn can be treated as the
continuous-time derivative dc/dt , where the time variable t

is in units of beats. Thus, the dynamics of Eq. (40) can be
approximated by the ordinary differential equation (ODE)

dc

dt
= −∂V

∂c
, (41)

where V (c) represents the energy potential given by

V (c) = c4/4 − (r − 1)c2/2 + A(x0)c. (42)

In Fig. 12 we illustrate the potential well given by V (c) for a
normal jump, i.e., A(x0) = 2(r − 1)3/2/3

√
3, for r = 1.2. The

steady-state jumping points c− and c+ are thus represented
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FIG. 12. (Color online) Potential well V (c) for a normal jump
with r = 1.2 whose equilibria give the jumping points c− (blue circle)
and c+ (red cross).
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FIG. 13. (Color online) Potential well V (c) for non-normal jump
with r = 1.2 after A(x0) is (a) decreased and (b) increased (solid
lines). The original potential is shown in dashed lines. Equilibria
represent the jumping points c− (blue circle) and c+ (red cross).

by the equilibria of Eq. (41), plotted as a blue circles and
red crosses, respectively. The equilibrium representing c+ is
a true minimum of V (c) and therefore stable to perturbations
in both directions. However, the equilibrium representing c−
is semistable, i.e., only stable to perturbations in the positive
direction, so in response to a negative perturbation, c(x0) will
“roll down” to the c+ equilibrium.

We now consider how a perturbation to A(x0) changes
V (c). In Figs. 13(a) and 13(b) we illustrate how V (c) changes
in response to a small decrease and increase, respectively,
in A(x0) by plotting the original potential V (c) as a dashed
curves and the modified potential V (c) as a solid curve. When
A(x0) is decreased, the potential well changes in such a way
that both equilibria c+ and c− increase slightly, becoming
more symmetric, and c− becomes a true minimum of V (c)
and therefore fully stable. Furthermore, since both equilibria
remain, there is no switching of c(x0) corresponding to any
node movement. On the other hand, when A(x0) is increased
the potential well changes in such a way that the c+ equilibrium
remains, while the c− equilibrium vanishes. Thus, c+ is
the only equilibrium remaining and a point previously at
c(x0) = c− must transition to c+ by “rolling down” the well,
corresponding to movement of the node towards the pacing
site. Thus, with a decrease or increase in A(x0) nodes respond
by either symmetrizing their shape or moving towards the
pacing site, respectively. In Appendix B we illustrate in greater
detail how node movement is driven by points switching from
c− to c+ with numerical experiments of Eqs. (19) and (20)
with different spatial discretizations.

The analysis above provides a framework for understanding
the node dynamics, i.e., symmetrizing of jumping points and
unidirectional pinning, via perturbations of the nonlocal term
A(x0). We now quantify how A(x0) changes in response
to changes in the different parameters in the model by
numerically computing the derivative of A(x0) with respect
to each parameter. In particular, we are interested in the sign
of each derivative. If the derivative is positive, then decreasing
the parameter will cause A(x0) to decrease and the nodes

TABLE I. Numerically computed derivatives of A(x0) with
respect to different parameters for r = 1.2, � = 15, α,γ = √

0.3,
β = 0, ξ = 1, and w = 0.

Derivative value

∂A/∂� −0.00232418
∂A/∂r −0.0281439
∂A/∂α 0.462741
∂A/∂β 0.0769836
∂A/∂γ 0.10796

to symmetrize and remain pinned, and an increase in the
parameter will cause A(x0) to increase and the nodes to move
towards to pacing site or asymmetrize. On the other hand, if
the derivative is negative, then decreasing the parameter will
cause A(x0) to increase and the nodes to move towards the
pacing site or asymmetrize, and an increase in the parameter
will cause A(x0) to decrease and the nodes to symmetrize and
remain pinned.

In Table I we present the results from numerically comput-
ing the derivatives of A(x0) with respect to �, r , α, β, and γ at
r = 1.2, � = 15, α,γ = √

0.3, β = 0, ξ = 1, and w = 0. We
note that both ∂A/∂� and ∂A/∂r are negative, confirming that
decreasing and increasing both � and r causes the nodes to
move towards the pacing site and nodes to symmetrize, respec-
tively, as we have shown above. Furthermore, we find that each
∂A/∂α, ∂A/∂β, and ∂A/∂γ are positive, implying that the op-
posite is true, which we find to occur in numerical experiments.
While the derivative values presented here are for a particular
choice of parameters, further investigation suggests that the
signs of the derivatives are preserved for all other relevant
parameter choices, yielding qualitatively similar dynamics.

D. Scaling of the spatial wavelength

Next we study the scaling behavior of the spatial wavelength
λs of solutions in the discontinuous regime. We begin by
noting that in the middle portion of Fig. 10 the first node
location x1 appears to scale linearly with �. To investigate
this further, we recall that by assuming period 2 stationary
solutions −cn+1(x) = cn(x) = c(x) and taking a derivative
of Eq. (19) with respect to x we obtained Eq. (33) which
solutions satisfy away from discontinuities. If instead we take
a derivative with respect to the scaled variable x̃ = x/� and
redefine c̃(x̃) = c(�x̃) and ã(x̃) = a(�x̃), we obtain the new
ODE,

c̃′(x̃) = −αã′(x̃) − (r − 1)c̃(x̃) + c̃3(x̃)

r − 1 − 3c̃2(x̃)
, (43)

along with the following expression for ã(x̃):

ã(x̃) =
∫

Gξ̃ (x̃,x̃ ′)[−βã(x̃ ′) + γ c̃(x̃ ′)]dx̃ ′, (44)

where ξ̃ = ξ/�. For simplicity we have assumed that w = 0
and we have included in the notation of G explicitly its length
scale ξ̃ . In the limit ξ/� → 0 the Green’s function becomes a
δ function, Eq. (44) yields ã(x̃) = γ c̃(x̃)/(1 + β), and Eq. (43)
has solutions with a wavelength λ̃ independent of �. Therefore
we expect the wavelength of the profiles for the original
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FIG. 14. (Color online) (a) First node location x1 and (b) spatial
wavelength λs of solutions in the discontinuous regime for r = 1.12
and 1.22. Results are well approximated by x1 = 1.08 + 0.08�

and λs = 3.54 + 0.32� (r = 1.12) and x1 = 1.12 + 0.17� and λs =
3.16 + 0.66� (r = 1.22). Other parameters are α,γ = √

0.3, β = 0,
ξ = 1, and w = 0 with L = 200 and �x = 0.04.

system (33) for large � to be approximately proportional to
�, i.e., λs ≈ λ̃�, plus a small correction of order ξ/�.

To test this hypothesis, we simulate Eqs. (19) and (20)
until we obtain a steady-state discontinuous solution, then
slowly decrease � and observe the spatial scaling behavior
of solutions. In Figs. 14(a) and 14(b) we plot the first node
location x1 and the spatial wavelength λs , respectively, for
r = 1.12 (blue circles) and 1.22 (red crosses). Simulations
were performed on a long cable (L = 200) with spatial dis-
cretization �x = 0.04, and other parameters are α,γ = √

0.3,
β = 0, ξ = 1, and w = 0. We find that both x1 and λs quantities
scale with � and are well approximated by x1 = 1.08 + 0.08�

and λs = 3.54 + 0.32� for r = 1.12 and x1 = 1.12 + 0.17�

and λs = 3.16 + 0.66� for r = 1.22, agreeing with our
hypothesis. In particular, the scaling of spatial wavelengths
in the discontinuous regime, i.e., λs ∼ �, qualitatively differs
from the scaling at the onset of alternans, where λs ∼ (ξ 2�)1/3

or λs ∼ (w�)1/2 [see Eqs. (30) and (A13)].

E. Random fluctuations and node dynamics

Numerical simulations of ionic models have shown that
random cell-to-cell fluctuations in the initial phase of Ca
alternans give rise to nodal areas, i.e., relatively thin regions
that contain several rapid, fine-scale phase reversals in Ca
alternans [43]. While fine-scale phase reversals tend to be
eliminated rapidly in regions of large APD alternans, they can
remain in nodal regions where the APD alternans amplitude
is small. It remains unclear what the effects of changes in
control parameters are on those nodal areas with multiple
jumps of Ca alternans amplitude. In particular, are such profiles
subject to the unidirectional pinning phenomenon described
above for single jumps? Here we show that multiple jumps in
nodal areas do in fact display unidirectional pinning dynamics.
Furthermore, we show that node dynamics tends to sharpen
nodal areas into a single node (i.e., collapse multiple jumps
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FIG. 15. (Color online) Alternans profiles c(x) (blue dots) and
a(x) (dashed red) for random initial conditions [each point c(x) drawn
independently from the uniform distribution U(−0.1,0.1)] for (a)
initial CV parameter � = 30 and (b) after slowly decreasing � to
10. Insets: Zoomed-in vein of the first nodal area. Other parameters
are r = 1.2, α,γ = √

0.3, β = 0, ξ = 1, w = 0 with L = 20 and
�x = 0.02.

into a single jump), effectively “washing away” the effect of
random initial fluctuations.

To show this, we perform the following experiment. Be-
ginning with a random initial calcium profile c(x) where each
point is drawn independently from the uniform distribution
U(−0.1,0.1) and initial CV parameter � = 30, we first evolve
Eqs. (19) and (20) until steady state is reached. Simulations
were performed on a cable of length L = 20 with a spatial
discretization of �x = 0.02, and other parameters are r =
1.24, α,γ = √

0.3, β = 0, ξ = 1, and w = 0. In Fig. 15(a) we
plot the resulting c(x) and a(x) profiles (blue dots and dashed
red, respectively). To highlight the fine-scale variations in c(x)
in the nodal area we connect adjacent points of c(x) with thin,
dashed green lines and show a zoomed-in view of the first
nodal area in the inset. Here we find near x = 4 a nodal area
containing nine rapid phase reversals. Next we slowly decrease
� to 10, thereby inducing unidirectional node motion towards
the pacing site and plot the steady-state profile in Fig. 15(b),
again showing a zoomed-in view of the first nodal area in the
inset. In addition to the node movement towards the pacing
site, the nodal region has agglomerated into a single node near
x = 3, thus washing away the remnant effects of random initial
fluctuations in c(x). We conclude that unidirectional node
motion collapses multiple jumps of Ca alternans amplitude
accumulating in the nodal area into a single jump.

This phenomenon can be understood in terms of the
amplitude equations as follows. First, note that in nodal areas
(see Fig. 15) a(x) ≈ 0. Thus, in these relatively thin regions
calcium dynamics is entirely driven by local effects and CV
restitution, explaining the emergence of fine-scale cell-to-cell
variations in c(x). Next, the agglomeration of phase reversals
in a nodal area into a single node is the result of CV restitution
inducing movement of the furthest phase reversal in a nodal
area towards the pacing site until it collides and combines with
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those closer to the pacing site, eventually resulting in a single
node. We note that, in contrast with our findings of Sec. V B,
this typically does not occur immediately as � is decreased
from its initial value, but only after CV restitution has become
sufficiently steep. This is due to the fact that in the presence
of fluctuations the (first) node often forms in a location closer
to the pacing site than dictated by the effect of CV restitution.
Thus, � must be decreased by a finite amount to compensate
for the initial node position before node movement towards the
pacing site is induced. Importantly, if the opposite experiment
is performed, i.e., � is increased, then nodal areas do not
agglomerate and the multiple jumps of Ca alternans amplitude
originating from initial cell-to-cell fluctuations remain. Thus,
nodal area agglomeration only occurs when nodal movement
is induced, with this motion being always towards the pacing
site due to unidirectional pinning.

VI. IONIC MODEL, RESTITUTION CURVES, AND
NUMERICAL EXPERIMENTS

Equipped with a detailed understanding of the dynamics of
the amplitude equations (19) and (20), we shift our focus to
the dynamics of the cable equation [Eq. (1)] with a detailed
ionic model. In particular, we aim to show that the results we
have obtained from the reduced model can be used to predict,
both qualitatively and quantitatively, behavior of the cable
equation with a biologically robust detailed ionic model. As we
mentioned in Sec. IV, we have chosen to use the Shiferaw-Fox
ionic model, which combines the calcium cycling dynamics
of Shiferaw et al. [34] with the ionic current dynamics of Fox
et al. [53]. Importantly, the coupling between detailed calcium
and voltage dynamics given by the Shiferaw-Fox model allows
for a robust-enough model to produce calcium-driven alternans
for relatively large parameter ranges.

We will begin this section by describing the important
parameter values of the Shiferaw-Fox model that we have
chosen in Sec. VI A. Next, in Sec. VI B we describe and present
the APD and CV restitution curves for the Shiferaw-Fox
model. We will then show with numerical simulations that we
can predict both qualitatively and quantitatively the behavior
of the Shiferaw-Fox model using results from our reduced
model. In Sec. VI C we present examples of unidirectional
pinning in the Shiferaw-Fox model. In Sec. VI D we study
the discontinuous solutions. Finally, in Sec. VI E we study the
scaling of spatial wavelengths.

A. Details of the ionic model

The most important feature of the Shiferaw-Fox model
for our purposes is its ability to produce calcium-driven
alternans. To this end, we choose parameter values of the
model to promote instabilities in the calcium dynamics while
suppressing instabilities in the voltage dynamics. Voltage-
driven alternans is often caused by long inactivation time
scales of the voltage-dependent gating variables. These long
inactivation time scales cause ionic current dynamics to take
longer to equilibrate between subsequent beats, thus more
easily transitioning to a regime of period 2 dynamics. To
suppress instabilities in the voltage dynamics we identify the
voltage inactivation time scale τf which directly affects the

voltage equation (1) through the L-type calcium current. In
particular, we choose τf to be relatively small, i.e., τf = 30 ms
as compared to other typical values of τf ≈ 40–60 ms for
which voltage driven alternans can be achieved relatively
easily. We note that variables and parameters described in
this text refer to the Shiferaw-Fox model as implemented in
Ref. [55].

In the calcium-cycling dynamics of the Shiferaw-Fox
model, the primary mechanism for calcium ions entering
the cell cytoplasm, aside from the standard L-type calcium
current, is the release of stored calcium from the sarcoplasmic
reticulum (SR), a network of rigid tubulelike structures that
store calcium within the cell. The release of calcium from the
SR occurs via a positive-feedback process in response to the
activation of the L-type calcium current. In the Shiferaw-Fox
model, the rate of calcium release by this mechanism is
determined by a parameter u. Larger (smaller) choices of u

typically correspond to more (less) instability in the calcium
cycling dynamics. Thus, to promote calcium instabilities, we
choose a relatively large release parameter of u = 9 ms−1.

We also make other parameter choices that should be
noted before moving on. First, recall that we are interested
in studying calcium-driven alternans when the calcium-to-
voltage (as well as the voltage-to-calcium) coupling is positive.
To ensure that this coupling is positive, following [47], we
change the calcium-inactivation exponent γ , which affects
the inactivation of the L-type calcium current. In short,
γ < 1 (γ > 1) typically corresponds to positive (negative)
calcium-to-voltage coupling. Here we set γ = 0.2.

With the parameter choices described above, another
parameter we can change is the BCL, i.e., the period at which
the cable is paced at x = 0. By decreasing (increasing) BCL,
we allow the tissue less (more) time to equilibrate between
subsequent beats, thus promoting (suppressing) instabilities.
Regarding our reduced system, decreasing (increasing) BCL
corresponds to increasing (decreasing) r . In addition to the
degree of calcium instability r , another parameter that played
a large dynamical role in the reduced system was the CV
restitution length scale �. Thus, it will be useful to identify
a parameter in the Shiferaw-Fox model that will effectively
change � as well. To this end, we consider the spiking
behavior of the voltage dynamics that occurs at the beginning
of each action potential, since, as with many other types of
excitable media, the velocity with which activity propagates
through the tissue depends primarily on the sharpness of the
front of the propagating dynamics. The dynamics responsible
for the spiking at the beginning of each action potential is
primarily contained in the fast sodium current. Therefore,
by controlling the time scale of the fast-sodium dynamics,
as done in Ref. [11], we can modulate the sharpness of the
spike. In particular, we introduce a scaling parameter τ that
scales the time scale of the fast sodium j -gate dynamics,
i.e., 1/(αm + βm) → τ/(αm + βm). Increasing τ slows the
dynamics of the j gate, yielding a more mild spike at the
beginning of each action potential. Thus, as we will see below,
increasing (decreasing) τ effectively decreases (increases) CV.
Below we will show more precisely how τ can be used to
change the shape of the CV restitution curve and change �. We
note that changing τ could potentially change other parameters
of the reduced model. However, as increasing τ weakens the
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initial action potential upstroke, we expect that the primary
effect is on CV restitution. We note that numerical simulation
support this hypothesis. The Shiferaw-Fox model with similar
parameter choices has also been used in other numerical
studies of cardiac dynamics [21,55]. Unless otherwise noted,
ionic model simulations are all performed on a cable of length
L = 15 cm with a spatial discretization of �x = 0.02 cm.

B. Restitution curves

We now present the APD and CV restitution curves for
the Shiferaw-Fox model, which describe the APD and CV,
respectively, as a function of the DI at the previous beat. In
particular, recall from the derivation of the reduced model in
Sec. II that the CV restitution curve vcv(D) plays a crucial
role in the dynamics as it defines the CV restitution length
scale � = (v∗

cv)2/2v′∗
cv. Both restitution curves are typically

computed numerically by measuring the APD and CV at a
point halfway through a relatively short cable. Here we take
the cable to be of length L = 1 cm. Both are calculated using
the S1S2 pacing protocol, i.e., pacing a cable at a large period
BCL1 (taken here to be BCL1 = 440 ms) until steady state is
reached, then decreasing the BCL to a value BCL2 < BCL1,
and storing the resulting abbreviated DI and the resulting APD
and CV. This process is repeated for many values of BCL2 until
the APD and CV restitution curves are complete.

In Figs. 16(a) and 16(b) we plot the resulting APD and CV
restitution curves, respectively, obtained from the Shiferaw-
Fox model using a scaling parameter value of τ = 2. We first
note that the general shape of both curves is similar: Both are
monotonically increasing with a steep slope for smaller DI
that becomes milder for larger DI. Recall, however, that � is
inversely proportional to the slope of the CV restitution curve
vcv(D) at the onset of alternans D = D∗, which turns out to oc-
cur where CV restitution is very flat. Thus for smaller values of
τ including τ = 1 (i.e., the unmodified model) and τ = 2, the
parameter values that yield the restitution curves in Fig. 16(b)
where v′

cv(D) ≈ 0 yield an extremely large value of �.
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FIG. 16. (Color online) APD and CV restitution curves calcu-
lated for the Shiferaw-Fox model for scaling parameter value τ = 2.
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FIG. 17. (Color online) Effect of increasing the scaling parame-
ter τ on the CV restitution curve for the Shiferaw-Fox model. In solid
blue, dashed red, and dot-dashed black the CV restitution curves for
τ = 2, 6, and 10, respectively.

To obtain more mild values of � in our ionic model, we
can modify the scaling parameter τ . In fact, as observed in
Ref. [11], we find that increasing τ , i.e., slowing down the fast
sodium j -gate dynamics, tends to unflatten the CV restitution
curve. In Fig. 17 we plot the resulting CV restitution curves
for τ = 2, 6, and 10 in solid blue, dashed red, and dot-dashed
black, respectively. We note in particular that as τ increases,
so does the slope v′

cv(D) along the whole curve. We note that
this same technique was used in the supplemental material of
Ref. [11].

Next, we explicitly calculate � for the Shiferaw-Fox model
for several different values of the scaling parameter τ . Since
� = (v∗

cv)2/2v′∗
cv, where v∗

cv = vcv(D∗) is the CV at the onset
of alternans, we calculate the CV restitution curve vcv(D) for
several values of τ , from which we calculate the derivative
v′

cv(D) numerically. Next, for each value of τ , we simulate a
short cable while slowly decreasing BCL to find the critical
onset value D∗. Thus, we can finally evaluate vcv and v′

cv at D∗.
In Fig. 18 we plot the resulting values of � as a function of the
scaling parameter τ between 8 and 10. In particular, we note
that for these parameter values, � decreases monotonically
with τ . Therefore, via the scaling parameter τ we have a
mechanism of varying the CV restitution length scale � that
features prominently in the dynamics of the reduced model.
We also note that over this range of τ we can change � by
a relatively large amount, and we find that � � 1, as we
assumed in our analysis of the reduced model.

C. Unidirectional pinning

We will now present a series of numerical simulations
designed to show that results from our reduced model can
be used to predict behavior in the cable equation [Eq. (1)]
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FIG. 18. (Color online) CV restitution length scale � as com-
puted numerically from the Shiferaw-Fox model over a range of
values of the scaling parameter τ .
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FIG. 19. (Color online) Unidirectional pinning in the Shiferaw-
Fox model via changing τ . (a) Calcium profiles c(x) as τ is increased
from 9 to 10 and (b) calcium profiles c(x) as τ is restored to 9. (c)
Second node location x2 (blue circles) and τ (dashed red) vs beat
number.

with the Shiferaw-Fox model. We begin with the phenomenon
of unidirectional pinning. Recall that unidirectional pinning
is the phenomenon observed in the discontinuous regime
characterized by the fact that, by changing parameters, nodes
can be moved towards, but not away from, the pacing site.

By studying the reduced model [Eqs. (19) and (20)], we
have found that there are many parameters that can be changed
to observe unidirectional pinning, including both the CV
restitution length scale � and the degree of calcium instability
r . To test the predictions in the ionic model, we begin by
modifying �, recalling from Fig. 10 that, starting from a
normal jump, when � is decreased the nodes move towards
the pacing site, after which if we increase � the nodes remain
pinned in their locations close to the pacing site. Now that we
have a way of changing the CV restitution length scale for the
Shiferaw-Fox model, we show that unidirectional pinning can
be observed in the Shiferaw-Fox model as well.

In Fig. 19 we plot the results from a simulation of a cable
of length L = 15 cm where we have first slowly increased τ

from 9 to 10 and then slowly decreased it from 10 back to 9.
The pacing protocol here is to simulate the cable for 12 000
beats to achieve steady state and then change τ by �τ = 0.02
ms every 500 beats. Recall that by increasing (decreasing) τ

we effectively decrease (increase) the CV restitution length
scale � (see Fig. 18). In Fig. 19(a) we plot the profile of the
amplitude of calcium alternans c(x) at τ = 9, 9.5, and 10 in
red circles, green crosses, and blue triangles, respectively, as
we first increase τ . Note that the node locations move towards

the pacing site at x = 0 during this process, as predicted by
our reduced model. Furthermore, due to the fixed finite size
of the cable, an additional node forms. In Fig. 19(b) we plot
the profile of the amplitude of calcium alternans c(x) as we
now decrease τ , plotting profiles at τ = 10, 9.5, and 9 in blue
triangles, green crosses, and red circles. Importantly, we note
that as τ is restored to 9 the nodes remain pinned in their
locations close to the pacing site. To highlight this pinning, we
plot in Fig. 19(c) the second node location, x2, and τ versus
the beat number in blue circles and dashed red, respectively.
In this plot it is easy to see that the node first moves towards
the pacing site as τ is initially increased but remains pinned as
we restore τ to its initial value. Thus, we have confirmed that
unidirectional pinning is observable in detailed ionic models
and is not simply an artifact of our reduced model. We also
note that from Fig. 19(b) it is apparent that the jumping points
and asymmetry of c(x) about the nodes change as τ is restored
to 9, which we will study in more detail in the next subsection.

As we found in Sec. V B, changing other parameters of
the reduced model can also induce unidirectional pinning,
in particular the degree of calcium instability (see Fig. 11).
To this end, we now show that unidirectional pinning can be
achieved in the Shiferaw-Fox model by simply changing the
BCL, which is easily done in experiments. Thus, we expect
that the following results could be qualitatively reproduced in
experiments. In Fig. 20 we plot the results from a simulation
of a cable of length L = 15 cm where we have first slowly
increased BCL from 330 to 340 ms, and then slowly decreased
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FIG. 20. (Color online) Unidirectional pinning in the Shiferaw-
Fox model via changing BCL. (a) Calcium profiles c(x) as BCL is
increased from 330 to 340 ms and (b) calcium profiles c(x) as BCL
is restored to 330 ms. (c) Second node location x2 (blue circles) and
BCL (dashed red) vs beat number.
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it from 340 ms back to 330 ms. The pacing protocol here is
to simulate the cable for 12 000 beats to achieve steady state
and then change BCL by �BCL = 0.1 ms every 300 beats.
In Fig. 20(a) we plot the profile of the amplitude of calcium
alternans c(x) at BCL = 330 ms, 335 ms, and 340 ms in red
circles, green crosses, and blue triangles, respectively, as we
first increase BCL. Note that the node locations move towards
the pacing site at x = 0 during this process, as predicted by our
reduced model, in a similar fashion to changing τ (see Fig. 19).
Furthermore, due to the fixed finite size of the cable, and
additional node forms, as it did when τ changed. In Fig. 20(b)
we plot the profile of the amplitude of calcium alternans c(x)
as we now decrease BCL, plotting profiles at BCL = 340 ms,
335 ms, and 330 ms in blue triangles, green crosses, and red
circles. Importantly, we note that as BCL is restored to 330 ms
the node locations remain pinned in their locations close to the
pacing site. We again highlight the pinning phenomenon by
plotting in Fig. 20(c) the second node location, x2, and τ versus
the beat number in blue circles and dashed red, respectively.
Just as in the previous simulation where τ was modified, we
see that the node first moves towards the pacing site as the
BCL is initially increased but remains pinned as we restore the
BCL to its initial value.

This confirms that unidirectional pinning can be achieved in
detailed ionic models by changing only the pacing frequency.
However, these results need to be interpreted carefully. In
particular, it is well known that a change in BCL results in
a change in CV restitution as follows [22,23]: A decrease
(increase) in BCL yields a steeper (shallower) CV via
decreasing (increasing) DI. However, a change in BCL can
also affect change in the degree of calcium instability: A
decrease (increase) in BCL allows the calcium dynamics less
(more) time to equilibrate between beats, yielding a larger
(smaller) degree of instability. Thus, changing the pacing rate
yields competing effects from CV restitution and the degree
of instability. Here we find that the change in CV restitution
is small in comparison to the change in instability, which is
dominant. Thus, node movement is induced by decreasing the
degree of instability (as predicted by the reduced model and
illustrated in Fig. 14), i.e., by increasing BCL. In principle,
however, if the change in CV restitution dominates the change
in instability, we expect that node movement towards the
pacing site will be induced by decreasing BCL.

D. Jumping points and asymmetry

In addition to the movement and pinning of node locations
in the discontinuous regime, another form of hysteresis we
observed involved the shape of c(x) about the nodes. In
particular, we saw that increasing � or r in the reduced model
causes a symmetrizing effect where the jumping points c− and
c+ would approach one another, or in terms of the asymmetry
measure � [see Eq. (37)], � would decrease. We now show
that this phenomenon can be observed in the Shiferaw-Fox
model.

In Fig. 21 we plot the results from a simulation of a cable
of length L = 15 cm where we have set BCL = 330 ms and
slowly decreased τ from 10 to 6. The pacing protocol here is
to simulate the cable for 12 000 beats to achieve steady state,
then change τ by �τ = 0.1 every 200 beats. Recall that by
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FIG. 21. (Color online) Asymmetry of node shapes in the
Shiferaw-Fox model via changing τ . (a) Asymmetry � in calcium
profiles c(x) of the Shiferaw-Fox model as τ is decreased from 10
to 6 and (b) representative calcium profiles c(x) for three values of
�: � = 41.76, 52.68, and 71.74 (blue circles, red crosses, and green
triangles).

decreasing τ we effectively increase the CV restitution length
scale �. In Fig. 21(a) we plot the asymmetry � vs �. Note
these we begin at a normal jump, i.e., � = 1 after which �

decreases. However, we see that rather than approach zero
as � → ∞, in the Shiferaw-Fox model � crosses zero at
� ≈ 57 and takes on negative values, implying that |c−| >

|c+|. In Fig. 21(b) we plot the profile of the amplitude of
calcium alternans c(x) at representative � values, � = 41.76,
52.68, and 71.74 plotted as blue circles, red crosses, and green
triangles, respectively, where we can see explicitly that |c−|
eventually becomes larger than |c+|. Although the results of
the Shiferaw-Fox model in Fig. 21(a) differ from those we
found with the reduced model in Fig. 9(b), in that � becomes
negative, these results do not contradict one another. Recall
that for simplicity, in our analysis of the reduced model we
assumed zero asymmetry in the Green’s function, i.e., w = 0.
By studying the limit of flat CV restitution, i.e., � → ∞, of the
reduced model in Eqs. (19) and (20), it can be shown that, while
� → 0 as � → ∞ when w = 0, if w > 0, � approaches
a negative value, crossing zero at some finite value of �.
Thus, we can infer from these results that for these particular
parameters the asymmetry of the Green’s function w is not
exactly zero.

E. Scaling of spatial wavelengths

We close this section by investigating the scaling of spatial
wavelengths found in the Shiferaw-Fox model in the smooth
and discontinuous regimes. Recall that in the reduced model
[Eqs. (19) and (20)] we found that the spatial wavelength λs

of solutions at the onset of alternans in the smooth regime
scales sublinearly with the CV restitution length scale � [in
particular, λs ∼ (ξ 2�)1/3 or λs ∼ (w�)1/2 for traveling or
stationary patterns, respectively], while in the discontinuous
regime λs scales linearly with �.
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FIG. 22. (Color online) Scaling of the spatial wavelength λs in
the Shiferaw-Fox model as a function of the CV restitution length
scale � as τ is slowly increased from 8 to 10. Results in the
discontinuous and smooth regimes are obtained using BCL = 330
ms (blue circles) and 345 ms (red crosses), respectively.

To track λs in the different solution regimes, we set
BCL = 330 ms and 345 ms to obtain discontinuous and
smooth solutions, respectively, and track the node locations
and measure � as τ is slowly increased from 8 to 10. In
Fig. 22 we plot the results from the discontinuous regime
(BCL = 330 ms) and smooth regime (BCL = 345 ms) in
blue circles and red crosses, respectively. (We note that for
BCL = 345 ms increasing τ beyond ≈9.5 has a large effect
on the amplitude of solutions, indicating an effective change
in the effective instability and/or coupling parameters, so we
ignore these data.) Although the range of � values obtained
is not large enough to accurately fit any scaling laws to the
data, we observe that λs grows approximately linearly with �

for BCL = 330 ms, while a negative concavity is apparent for
BCL = 345 ms, suggesting a possibly sublinear scaling.

The data presented here were obtained by simulations on
a cable of length L = 30 cm. We note that more accurate
measurements of the spatial wavelength require both a long
cable as well as a fine spatial discretization. Due to the slow
transient dynamics (approximately 10 000–50 000 beats are
required to obtain near steady-state behavior, depending on
the cable length L) this makes further investigations extremely
computationally expensive, which we leave open for future
work.

VII. CONCLUSIONS AND OUTLOOK

In this paper we have derived a system of equations that
describes the spatiotemporal dynamics of voltage and calcium
alternans along a one-dimensional paced cable, assuming
a calcium-mediated instability. Our formulation is based
on several properties including APD and CV restitution,
bidirectional coupling between voltage and calcium dynamics,
and diffusive cell-to-cell coupling. The resulting system is
given by Eqs. (19) and (20) and comprises two coupled
integrodifferential equations that describe the beat-to-beat
dynamics of alternans along the cable.

By performing a linear stability analysis around the period 1
solution, we found a first bifurcation corresponding to the onset
of alternans. This bifurcation occurs at a degree of calcium
instability that is less than that for the onset of alternans in
a single cell due to the combination of the local coupling
between calcium and voltage dynamics and voltage diffusion.
Above onset, solutions take the form of smooth traveling
or stationary wave patterns depending on the asymmetry of

voltage diffusive coupling, as in the case of voltage-driven
alternans. Furthermore, the spatial wavelength λs of smooth
SDA patterns and the velocity of traveling patterns obey
similar scaling laws as for the voltage-driven case up to the
introduction of the bidirectional coupling parameters [i.e.,
λs ∼ (ξ 2�)1/3 or λs ∼ (w�)1/2 depending on whether the
pattern is traveling or stationary, respectively]. This shows
that smooth SDA patterns behave similarly in the voltage- and
calcium-driven cases close to the alternans bifurcation.

A more novel aspect of the present work is the characteri-
zation of the second bifurcation from smooth to discontinuous
SDA patterns at a larger degree of calcium instability. We
have found numerically that the width of the spatial profile
of calcium alternans varies smoothly from a finite value at
the alternans bifurcation to zero at this second bifurcation.
Furthermore, we have shown analytically that this width
increases linearly with distance away from the second bi-
furcation towards the smooth side and that the magnitude
of the jump in calcium alternans amplitude increases with
square root of distance on the discontinuous side. In addition
to exhibiting a jump in calcium alternans amplitude, we
have shown that discontinuous SDA patterns display two key
properties distinguishing them from smooth SDA patterns.
First, discontinuous patterns have a wavelength that scales
linearly with the CV-restitution scale (i.e., λs ∼ �), as opposed
to sublinearly [λs ∼ (ξ 2�)1/3 or λs ∼ (w�)1/2]. Second, node
motion for those patterns is pinned unidirectionally. Namely,
in response to a change of pacing frequency or physiological
parameter, nodes can be induced to move towards, but not away
from, the pacing site. This is in contrast to smooth patterns
whose nodes can move in both directions. We have also
investigated the combined effect of subcellular fluctuations of
Ca2+ cycling (highlighted by recent computational work [43])
and node dynamics. Such fluctuations typically give rise to
nodal areas containing many fine-scale phase reversals instead
of an isolated node. We have illustrated that inducing nodal
movement causes each nodal area to agglomerate into a single
node, effectively washing away the remnant effects of the Ca2+
fluctuations.

We have validated the theoretical results with ionic model
simulations. By varying certain key parameters in the ionic
model, we observed both unidirectional pinning and predicted
changes of alternans profile shapes. In particular, we show
that in simulations unidirectional pinning can be observed by
changing the pacing frequency or physiological parameters.
This prediction could be readily tested in laboratory exper-
iments. However, interpretation of the results requires some
care. This is because the direction of the node motion can
be nontrivially related to the pacing frequency that can affect
both CV restitution and several parameters that characterize
the degree of calcium-driven instability and the strength of the
bidirectional coupling between APD and Ca alternans. Hence,
while an increase of the pacing frequency tends to steepen CV
restitution, which alone tends to move the node closer to the
pacing site as for voltage-driven alternans [22,23], this increase
can also affect one or several of those parameters to cancel this
effect. As a result, node motion towards the pacing site can be
induced by either a decrease or increase of pacing frequency.
In one example of the ionic model simulations presented here
(see Fig. 20), we found that node motion towards the pacing
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site was induced by a decrease of pacing frequency, which
reduced the degree of calcium-driven instability (reduced
the amplitude of Ca alternans) while having little effect on
the CV restitution slope. This finding is consistent with the
prediction of amplitude equations that decreasing the degree
of calcium-driven instability pulls the node closer to the
pacing site. We have also found that the scaling of the spatial
wavelength with the CV-restitution length scale in ionic model
simulations is in good qualitative agreement with the linear
behavior (λs ∼ �) predicted by the amplitude equations.

This work extends our theoretical understanding of cardiac
alternans to the common case of a calcium-driven instability
with both positive voltage-to-calcium and calcium-to-voltage
couplings. An important result is the understanding of the
regime of discontinuous solutions that are only present
when alternans is calcium driven and displays hysteresis. It
is plausible that due to the phenomenon of unidirectional
pinning, which makes it difficult to expel nodes from the cable,
calcium-driven alternans is potentially more arrhythmogenic
than voltage-driven alternans.

The present results further demonstrate that reduced models
can help understand complex behaviors observed in ionic
model simulations or experiments. However, a number of
questions remain. What spatiotemporal dynamics emerges
if the instability at the cellular level is both voltage and
calcium driven, e.g., due to the combination of steep APD
restitution and unstable calcium cycling? Does node motion
display hysteresis for the case of negative calcium-to-voltage
coupling? How is hysteresis in node motion modified by
tissue heterogeneities? There is experimental evidence that
anatomical heterogeneities influence the location of nodal
lines in tissue [14,15] but the combined effect of those hetero-
geneities and subtle dynamical effects such as unidirectional
pinning remain to be explored. Finally, what is the role
of hysteresis in higher dimensions where fiber anisotropy

influences propagation and in the more complex setting where
nodal lines form during reentry [56,57]? We hope that this
work will serve as both inspiration for more theoretical
advances as well as a guide for future experiments.
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APPENDIX A: GENERALIZATIONS OF THE LINEAR
STABILITY ANALYSIS

In this Appendix we present the generalizations to the
linear stability analysis presented in Sec. IV. In particular we
consider a nonzero APD restitution parameter β and a nonzero
asymmetry length scale w. For simplicity we consider each
case separately, beginning with nonzero β while still assuming
w = 0. After considering perturbations δcn(x) = cλneikx and
δan(x) = aλneikx to the zero solution, we recover Eq. (23) but
find that Eq. (24) is replaced by[

λ +
(

β − β�−1

ik + �−1

)
e−k2ξ 2/2

]
a = γ λce−k2ξ 2/2. (A1)

Next, we eliminate c and a by combining Eqs. (23) and (A1)
and find

ikηλ = −(ik + �−1)(λ + r)

(
β − β�−1

ik + �−1
+ λek2ξ 2/2

)
.

(A2)

Equation (A2) is quadratic in λ and therefore has two solutions.
To find the correct root, we choose that which recovers Eq. (25)
in the limit β → 0+, which is given by

2λ = −r − ik(β + η)

ik + �−1
e−k2ξ 2/2 −

√
r2(ik + �−1)2 − 2ie−k2ξ 2/2kr(ik + �−1)(β − η) − e−k2ξ 2

k2(β + η)2

ik + �
. (A3)

Surprisingly, applying the absolute instability condition ∂λ/∂k = 0 to Eq. (A3) yields the same condition as for β = 0, i.e.,
Eq. (26), which is solved to leading order by Eq. (27). Next, we insert Eq. (26) into Eq. (A3) to obtain the growth parameter

λ = −r − η − β −
√

(r − β)2 + 2(r + β)η + η2

2
+ 3i−2/3

4

[
η + β + r(η − β) + (η + β)2√

r2 + 2r(η − β) + (η + β)2

] (
ξ

�

)2/3

− 13i−4/3

16

[
r3(η − β) + 3r(η − β)(η + β)2 + (η + β)4 + r2(3η2 + 10

13ηβ + 3β2)

(r2 + 2r(η − β) + (η + β)2)3/2

] (
ξ

�

)4/3

+ O
[(

ξ

�

)2]
. (A4)

Finally, the onset of alternans is found by setting |λ| = 1 and is given implicitly to leading order by

1 = 1

4
[r + η + β +

√
(r − β)2 + 2(r + β)η + η2]2

+ 3

8
[−r − η − β −

√
(r − β)2 + 2(r + β)η + η2]

[
η + β + r(η − β) + (η + β)2√

(r − β)2 + 2(r + β)η + η2

] (
ξ

�

)2/3

. (A5)

To find the spatial wavelength λs and velocity v of smooth solutions near the onset of alternans, we recall that λs = 2π/kRe and
v = �/kRe and � ≈ −λIm. Since the wave number k was found to be the same for β 
= 0 as for β = 0, the spatial wavelength λs

is also the same, given by Eq. (30). However, the velocity v depends on the growth parameter, which is not the same. Combining
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Eq. (A4) with Eq. (27) yields a velocity that is to second order

v = 3ξ

4

[
η + β + r(η − β) + (η + β)2√

r2 + 2r(η − β) + (η + β)2

] (
ξ

�

)1/3

− 13ξ

16

{
η + β + r3(η − β) + 3r(η − β)(η + β)2 + (η + β)4 + r2

(
3η2 + 10

13ηβ
) + 3β2

[r2 + 2r(η − β) + (η + β)2]3/2

}(
ξ

�

)
. (A6)

We validate these results by plotting in Figs. 23(a)–23(c) the
critical onset value r1(�), spatial wavelength λs , and velocity
v of solutions near onset computed directly from simulations
of Eqs. (19) and (20) (blue circles) compared to the theoretical
predictions given by Eqs. (A5), (30), and (A6) (dashed red) for
β = 0.2. Other parameters are α,γ = √

0.3, ξ = 1, and w =
0. We note that the agreement between theory and simulations
is excellent.

We now consider a nonzero asymmetry length scale w 
= 0.
For simplicity, we again choose the APD restitution parameter
β to be zero. Inserting perturbations of the form δcn(x) =
cλneikx and δan(x) = aλneikx into Eqs. (19) and (20), we
recover Eq. (23) but find that Eq. (24) is replaced by

a = γ ce−k2ξ 2/2

[
1 − ikw

(
1 − k2ξ 2

2

)]
. (A7)
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FIG. 23. (Color online) (a) The critical onset value r1(�), (b)
spatial wavelength λs , and (c) velocity v of smooth solutions near the
onset of alternans as observed from numerical simulations of Eqs. (19)
and (20) (blue circles) compared to our theoretical predictions given
by Eqs. (A5), (30), and (A6) (dashed red) for nonzero APD restitution
β = 0.2. Other parameters are α,γ = √

0.3, ξ = 1, and w = 0.

Combining Eqs. (23) and (A7), we eliminate a and c and find
that the growth parameter satisfies

λ = −r − η

(
1 − �−1

ik + �−1

)
e−k2ξ 2/2

×
[

1 − ikw

(
1 − k2ξ 2

2

)]
. (A8)

Next, imposing the absolute instability condition ∂λ/∂k = 0
on Eq. (A8) then yields the equation

0 = 2i�−1 + 4kw�−1 + 2i(w − �−1ξ 2)k2

+ (2ξ 2 − 6w�−1ξ 2)k3 − 5iwξ 2k4

+ w�−1ξ 4k5 + iwξ 4k6. (A9)

To leading order, Eq. (A9) is balanced by the wave
number

k = −1/
√

w�, (A10)

which can be inserted into Eq. (A8) to yield to leading order
the growth rate

λ = −r − η + η
ξ 2

2w�
. (A11)

The onset of alternans can then be found by setting λ = −1 in
Eq. (A11), yielding to leading order

r1(�) = 1 − η + η
ξ 2

2w�
. (A12)

Since the growth rate given in Eq. (A11) is purely real,
solutions near onset have zero velocity v = 0. However, the
spatial wavelength λs is given by 2π/|kRe|, which yields to
leading order

λs = 2π
√

w�. (A13)

We validate these results by plotting in Figs. 24(a) and 24(b)
the critical onset value r1(�) and spatial wavelength λs of
solutions near onset computed directly from simulations of
Eqs. (19) and (20) (blue circles) compared to the theoretical
predictions given by Eqs. (A12) and (A13) (dashed red) for
w = 0.4. Other parameters are α,γ = √

0.3, β = 0, and ξ =
1. As predicted by our theory, solutions are stationary. The
agreement between theory and simulations for both r1(�) and
λs is excellent.

APPENDIX B: TRANSIENT NODE DYNAMICS

In this Appendix we investigate the transient node dynamics
of solutions in the discontinuous regime. Specifically, we
study the evolution of node locations as movement is induced
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FIG. 24. (Color online) (a) The critical onset value r1(�) and (b)
spatial wavelength λs of smooth solutions near the onset of alternans
as observed from numerical simulations of Eqs. (19) and (20) (blue
circles) compared to our theoretical predictions given by Eqs. (A12)
and (A13) (dashed red) for nonzero asymmetry w = 0.4. Other
parameters are α,γ = √

0.3, β = 0, and ξ = 1.

towards the pacing site. We also address here the effect that
using different spatial discretization �x has on the the transient
dynamics of Eqs. (19) and (20).

We present here the results from an experiment where we
track the first node location after node movement is induced
towards the pacing site. Specifically, we consider a cable of
length L = 20 at steady state with r = 1.15 and � = 50 and
track the first node location x1 after � is decreased to 20.
Importantly, we run the experiment with two different spatial
discretizations, �x = 0.05 and 0.005, corresponding to the
most coarse and most refined discretization used throughout
this paper. Other parameters are α,γ = √

0.3, β = 0, ξ = 1,
and w = 0. In Fig. 25(a) we plot the evolution of x1 as a
function of beat number after the change in �, plotting the
results from �x = 0.05 and 0.005 in solid blue and dashed
red, respectively. We emphasize that the node location x1 is
computed using a linear interpolation between the adjacent
point on either side of the node. Even with the interpolation,
the node location x1 decreases in a steplike fashion that is most
evident for coarser �x. We find that this nonlinear effect is a
result of the following process. As described by the potential
well framework in Sec. V C, node movement is driven by
points switching from c− to c+. This switching process occurs
quickly, resulting in a sharp decrease in x1, and is then followed
by a slow nonlocal recovery of the surrounding profile, until
the next point switches and the process repeats.

Importantly, we also observe from Fig. 25(a) that although
the spatial discretization �x affects the transient behavior
of x1, it does not cause a significant change in the overall
convergence rate. In Fig. 25(b) we investigate the convergence
rate further. Denoting the steady-state first-node locations for
� = 50 and � = 20 by x ′

1 and x ′′
1 , we define the new variable

y1 = x1 − x ′′
1

x ′
1 − x ′′

1

, (B1)
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FIG. 25. (Color online) (a) Transient dynamics of the first node
x1 after node movement is induced by decreasing � = 50 to � = 20
for coarse and refined spatial discretizations �x = 0.05 (solid blue)
and 0.005 (dashed red). (b) Decay of the transformed variable y1

(see text for the definition of y1). Other parameters are r = 1.15,
α,γ = √

0.3, β = 0, and ξ = 1 with L = 20.

i.e., image of the affine transformation that maps x1 = x ′
1 and

x1 = x ′′
1 to 1 and zero, respectively. We note that the values

x ′
1 and x ′′

1 depend on the discretization used and should be
computed separately for different discretizations. For instance,
here we have found that x ′

1 = 4.4953 and x ′′
1 = 2.4241 for

�x = 0.05 and x ′
1 = 4.4817 and x ′′

1 = 2.3907 for �x =
0.005. We note that the difference between the two values of
both x ′

1 and x ′′
1 is less than 0.05, the largest of the two spatial

discretizations used. The transformation x1 �→ y1 allows us to
investigate the convergence of x1 to x ′′

1 by studying the decay
of y1. In Fig. 25(b) we plot y1 versus the beat number for
�x = 0.05 (solid blue) and �x = 0.005 (dashed red), noting
the logarithmic vertical axis, which reveals approximately
exponential convergence. Figure 25(b) also highlights the
effect of using a larger discretization as the steplike behavior
becomes evident when y1 decreases to be of the order of
�x. We find here that for �x = 0.05 and 0.005 this occurs
approximately at beats 700 and 1800, respectively.

APPENDIX C: ANALYSIS OF THE FLAT CV LIMIT

In this Appendix we present the analysis of the dynamics
of Eqs. (19) and (20) in the flat CV limit where � → ∞. In
particular, we are interested in the steady-state behavior of
solutions near a node. For simplicity we consider the case of
a purely symmetric Green’s function, i.e., w = 0. In this case,
Eqs. (19) and (20) simplify to

cn+1(x) = −rcn(x) + c3
n(x) − αan(x), (C1)

an+1(x) =
∫

G(x,x ′)[−βan(x ′) + γ cn+1(x ′)]dx ′. (C2)

Due to the absence of the CV terms, node formation relies
entirely on initial conditions. Analytical results then can be
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FIG. 26. (Color online) Example solutions for the limit of flat CV
restitution (� → ∞) on a bi-infinite cable with a node at x = 0 for r

ranging from 0.7 (blue curve with the smallest amplitude) to 1.3 (red
curve with the largest amplitude). Other parameters are α,γ = √

0.3,
β = 0, ξ = 1, and w = 0.

obtained by studying the case of a bi-infinite cable with a
single node located at x = 0. Thus, from this point we will use
for the Green’s function G(x,x ′) = G(x ′ − x), assuming that
the integration of Eq. (C2) is over the whole real line. In Fig. 26
we plot several example solutions obtained from simulations
over a range from 0.7 (blue curve with the smallest amplitude)
to 1.3 (red curve with the largest amplitude) using α,γ =√

0.3, β = 0, and ξ = 1. Note that after the onset of alternans
c(x) remains smooth through the node but then develops a
discontinuity at sufficiently large r , much like what we have
seen for finite CV restitution. Furthermore, we observe that
solutions are antisymmetric about x = 0, i.e., c(−x) = −c(x).

To find a steady-state description of solutions we begin by
repeatedly inserting Eq. (C2) into Eq. (C1). After rearranging
the order of integration and using the fact that the convolution
of two Gaussians with variances σ 2

a and σ 2
b is another Gaussian

with variance σ 2
a + σ 2

b , we obtain

cn+1(x) = −rcn(x) + c3
n(x) − η

∫
Ĝξ 2 (x ′ − x)cn(x ′)dx ′,

(C3)

where

Ĝξ 2 (x) =
∞∑

m=0

βmG(m+1)ξ 2 (x), (C4)

and Gξ 2 (x) denotes a Gaussian with variance ξ 2. We note that
the sum in Eq. (C4) converges uniformly because 0 � β <

1. For the sake of calculating the critical bifurcation values
and the shape (i.e., length scale) of the phase reversal, it is
convenient to define

c0 = lim
x→0+|c(x)|

and c∞ = lim
x→∞ |c(x)| (C5)

as the limiting values of c(x) near and far from the node,
respectively. We next assume antisymmetric periodic steady-
state solutions −cn+1(x) = cn(x) = c(x) and use the fact that
Ĝ is symmetric to find

lim
x→0+

∫
Ĝξ 2 (x ′ − x)c(x ′)dx ′ = 0, (C6)

lim
x→∞

∫
Ĝξ 2 (x ′ − x)c(x ′)dx ′ = lim

x→∞
c(x)

1 − β
= ±c∞

1 − β
. (C7)

Thus, the steady-state values of c∞ and c0 are given by

c∞ =
{

0 if r � 1 − η

1−β√
r − 1 + η

1−β
if r > 1 − η

1−β

, (C8)

c0 =
{

0 if r � 1√
r − 1 if r > 1

. (C9)

Thus, the critical bifurcation corresponding to the onset of
alternans and the formation of the discontinuity are given by
r∞

1 = 1 − η

1−β
and r∞

2 = 1.
We now derive the length scale l of phase reversals

for smooth solutions assuming r∞
1 < r < r∞

2 . Recall that l

[defined in Eq. (35)] depends on the derivative c′(x) evaluated
at the node. To calculate c′(0) we consider periodic solutions
of Eq. (C3) and take a derivative with respect to x, obtaining

(r − 1)c′(x) = 3c2(x) − η

∫
∂xĜξ 2 (x ′ − x)c(x ′)dx ′.

(C10)

Next, we use the fact that ∂xĜξ 2 (x ′ − x) = −∂x ′Ĝξ 2 (x ′ − x),
integrate Eq. (C10) by parts, and evaluate at x = 0 to obtain

c′(0) = ±η

1 − r

∫
Ĝξ 2 (x ′)c′(x ′)dx ′. (C11)

Finally, expanding the Green’s function to Ĝξ 2 (x ′) =
1/

√
2π (m + 1)ξ 2 + O(x ′2) and integrating Eq. (C11) yields

c′(0) ≈ ±2ηc∞Li1/2(β)

(1 − r)β
√

2πξ 2
, (C12)

where Lis(z) = ∑∞
m=1 zm/ms is the polylogarithm function.

Thus, the length scale l of phase reversals is given by

l ≈ (1 − r)
√

2πξ 2

ηLi1/2(β)/β
. (C13)

We note that the approximation of Ĝξ 2 (x ′) as a constant used
in obtaining the approximations for c′(0) and l in Eqs. (C12)
and (C13) is valid provided that l remains smaller than the
width of Ĝξ 2 (x ′). Thus, Eq. (C13) is most accurate when r

approaches 1.
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