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Hierarchical synchrony of phase oscillators in modular networks
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We study synchronization of sinusoidally coupled phase oscillators on networks with modular structure and
a large number of oscillators in each community. Of particular interest is the hierarchy of local and global
synchrony, i.e., synchrony within and between communities, respectively. Using the recent ansatz of Ott and
Antonsen [Chaos 18, 037113 (2008)], we find that the degree of local synchrony can be determined from a set
of coupled low-dimensional equations. If the number of communities in the network is large, a low-dimensional
description of global synchrony can be also found. Using these results, we study bifurcations between different
types of synchrony. We find that, depending on the relative strength of local and global coupling, the transition
to synchrony in the network can be mediated by local or global effects.
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I. INTRODUCTION

Large networks of coupled oscillators are pervasive in
science and nature and serve as an important model for
studying emergent collective behavior. Some examples include
synchronized flashing of fireflies [1], cardiac pacemaker cells
[2], walker-induced oscillations of some pedestrian bridges
[3], Josephson junction circuits [4], and circadian rhythms
in mammals [5]. A paradigmatic model of the emergence of
synchrony in systems of coupled oscillators is the Kuramoto
model [6], in which each oscillator is described by a phase
angle θn that evolves as

θ̇n = ωn + 1

N

∑
Anm sin(θm − θn), (1)

where ωn is the intrinsic frequency of oscillator n, Anm repre-
sents the strength of the coupling from oscillator m to oscillator
n, and n,m = 1, . . . ,N . The classical all-to-all Kuramoto
model corresponds to Anm = k. The study of generalizations
of the Kuramoto model has become an important area of
research. Some examples of such generalizations include
systems with time delays [7], network structure [8,9], nonlocal
coupling [10], external forcing [11], nonsinusoidal coupling
[12], cluster synchrony [13], coupled excitable oscillators [14],
bimodal distributions of oscillator frequencies [15], phase
resetting [16], time-dependent connectivity [17], noise [18],
and communities of coupled oscillators [19–22].

In this paper we study the case where the coupling
strength is not uniform, but rather defines a network that
has strong modular, or community, structure. Synchrony on
heterogeneous networks has been studied in the past, both for
phase oscillator systems [8] and other dynamical systems [23].
Much recent work has focused on the synchronization of phase
oscillators on networks with modular structure [19–22]. While
the link between community topology and synchronization
is well established [24], there are few analytical results that
describe synchronization in modular networks. Reference
[19] developed a framework to study a general number of
communities, assuming that oscillators within communities
are identical. Reference [20] analyzed the linear stability of the
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incoherent state for a system of coupled communities of het-
erogeneous phase oscillators. The same system was considered
in Ref. [25], where a set of coupled low-dimensional equations
governing the dynamics of the community order parameters
was formulated. Here, we study this system of equations,
finding for some important cases analytical expressions for
local and global order parameters describing synchronization
within communities and on the whole network, respectively.
We find that, in the limit of a large number of communities,
the Ott-Antonsen ansatz introduced in Ref. [25] can be
used to obtain a low-dimensional description of community
synchrony. Using this description, we characterize the phase
space of the system where the parameters are the local and
global coupling. One of our results is that, depending on the
relative strength of local and global coupling, the transition to
synchrony in the network can be mediated by local or global
effects.

This paper is organized as follows. In Sec. II we describe
the model. In Secs. III and IV we present in detail the local
and global dimensionality reductions, respectively. In Sec. V
we discuss the effect of community structure of the network
on the dynamics and how it promotes hierarchical synchrony.
In Sec. VI we discuss how our results generalize when certain
heterogeneities are introduced into the network. In Sec. VII
we conclude this paper by discussing our results.

II. MODEL DESCRIPTION

We are interested in studying coupled oscillators in a
network with strong community structure such that (i) the
coupling strength between oscillators within the same com-
munity is much larger than the coupling strength between
oscillators in different communities and (ii) the intrinsic
frequency for an oscillator is drawn from a distribution
specific to the community to which that oscillator belongs.
Condition (i) serves as a model of situations where all the
coupling strengths have similar magnitude, but the density of
connections between communities is less than the density of
connections within a community. The motivation for condition
(ii) is that oscillators in different communities could have
different frequency distributions due to different functional
needs (e.g., as in cardiac myocytes in different regions of the
heart [26]), or as an approximation to fluctuations inherent
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to large but finite communities. Thus, for a network with
C communities labeled σ = 1,2, . . . ,C, where community σ

contains Nσ oscillators, we assume that the coupling matrix
A in Eq. (1) can be written in block form as Anm = Kσσ ′

,
where σ and σ ′, respectively, denote the communities to which
oscillators n and m belong. Furthermore, we assume that the
intrinsic frequencies for oscillators in community σ are drawn
from a distribution particular to that community, denoted by
gσ (ω). We denote the fraction of oscillators in community σ

by ησ = Nσ/N , where N is the total number of oscillators in
the whole network.

With this notation, Eq. (1) results in the following system,
considered in Refs. [20,25]:

θ̇ σ
n = ωσ

n +
C∑

σ ′=1

ησ

Kσσ ′

Nσ ′

Nσ ′∑
m=1

sin
(
θσ ′
m − θσ

n

)
, (2)

where θσ
n denotes the phase of an oscillator in community σ ,

σ = 1, . . . C, n = 1, . . . ,Nσ , and the intrinsic frequency ωσ
n

is randomly drawn from the distribution gσ (ω). Next, in order
to measure synchrony within and between communities we
define the local and global order parameters

zσ = rσ eiψσ = 1

Nσ

Nσ∑
m=1

eiθσ
m , (3)

Z = Rei� =
C∑

σ=1

ησ zσ , (4)

respectively, such that rσ measures the degree of local
synchrony in community σ and R measures the degree of
global synchrony over the entire network. We note that the
linear stability of the incoherent state in this model was studied
in Ref. [20] (see also Ref. [21]).

III. LOCAL DIMENSIONALITY REDUCTION

In this section, we study local synchrony by assuming there
are a large number of oscillators Nσ in each community. Using
the definition of zσ in Eq. (3), we simplify Eq. (2) to

θ̇ σ
n = ωσ

n + 1

2i

C∑
σ ′=1

ησ ′Kσσ ′(
zσ ′e−iθσ

n − z∗
σ ′e

iθσ
n

)
, (5)

where ∗ denotes a complex conjugate. We now move to a
continuum description by taking the limit N,Nσ → ∞ in such
a way that all ησ remain constant. Accordingly, we introduce
the density function fσ (θ,ω,t) that represents the density of
oscillators in community σ with phase θ and natural frequency
ω at time t . Since the number of oscillators in each community
is conserved, fσ satisfies the local continuity equation, ∂tfσ +
∂θσ (fσ θ̇σ ) = 0, or

∂tfσ + ∂θσ

{
fσ

[
ωσ +

C∑
σ ′=1

ησ ′Kσσ ′
Im

(
zσ ′e−iθσ )]}

= 0.

(6)

Following Ott and Antonsen [25], we expand
fσ (θ,ω,t) in a Fourier series, fσ (θ,ω,t) = gσ (ω)

2π

(1 + ∑∞
n=1 f̂σ,n(ω,t)einθ + c.c.), and make the ansatz

f̂σ,n(ω,t) = an
σ (ω,t), namely,

fσ (θ,ω,t) = gσ (ω)

2π

(
1 +

∞∑
n=1

an
σ (ω,t)einθ + c.c.

)
, (7)

which, when introduced in Eq. (6), yields a single ordinary
differential equation (ODE),

ȧσ + iωaσ + 1

2

C∑
σ ′=1

ησ ′Kσσ ′(
zσ ′a2

σ − z∗
σ ′

) = 0, (8)

where zσ in the continuum limit is given by

zσ =
∫ ∞

−∞

∫ 2π

0
fσ (θ,ω,t)eiθdθdω

=
∫ ∞

−∞
gσ (ω)a∗

σ (ω,t)dω. (9)

Finally, by letting the distribution of frequencies gσ be a
Lorentzian with spread δσ and mean �σ , i.e., gσ (ω) = δσ /

{π [δ2
σ + (ω − �σ )2]}, we can calculate zσ by closing the ω

contour of integration with the lower-half semicircle of infinite
radius in the complex plane and evaluating a∗

σ (ω,t) at the
enclosed pole of gσ :

zσ = a∗
σ (�σ − iδσ ,t). (10)

Thus, by evaluating Eq. (8) at ω = �σ − iδσ , we close the
dynamics for zσ :

żσ + (δσ − i�σ )zσ + 1

2

C∑
σ ′=1

ησ ′Kσσ ′(
z∗
σ ′z

2
σ − zσ ′

) = 0, (11)

which defines C complex ODEs, or equivalently 2C real
ODEs, given by

ṙσ = −δσ rσ + 1 − r2
σ

2

C∑
σ ′=1

ησ ′Kσσ ′
Re(zσ ′e−iψσ ), (12)

ψ̇σ = �σ + r2
σ + 1

2rσ

C∑
σ ′=1

ησ ′Kσσ ′
Im(zσ ′e−iψσ ). (13)

Equation (11) was formulated originally in Ref. [25], but its
consequences for hierarchical synchrony have not been studied
in detail. Equations (12) and (13) describe the dynamics of
local synchrony. The synchrony of community σ is described
by the magnitude of its order parameter rσ and phase ψσ .
The phase variable ψσ obeys an equation similar to that
of the network-coupled Kuramoto model, Eq. (1), but the
effect of community σ ′ on community σ is modulated by
the degree of synchrony of community σ ′, rσ ′ , and its relative
size ησ ′ . In contrast to the Kuramoto model, each community
has an additional variable rσ which evolves in conjunction
with the phase variable ψσ . In this sense, the dynamics of the
community order parameters resembles a network of coupled
complex Ginzburg-Landau oscillators [27].

In what follows, we consider the illustrative case in which
all communities have the same size and spread in natural
frequencies, i.e., ησ = C−1 and δσ = δ. Furthermore, we let
the coupling strength within each community be the same,
as well as the coupling strength between oscillators in dif-
ferent communities. We assume the coupling strength within
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communities is much larger than that between communities,
namely,

Kσσ ′ =
{
Ck if σ = σ ′,
K otherwise,

(14)

where k and K are of the same order. We clarify that the
local coupling strength Ck is chosen so that the local coupling
within a community is of the same order as the sum of the
coupling to every other community. More generally, a local
coupling strength of the form Kσσ = k/ε with ε � 1 can be
analyzed from our results by rescaling k by a factor of Cε.
In Sec. VI we relax these assumptions and discuss the case
where community sizes, spread in frequency distributions, and
coupling strengths vary from community to community. We
now use the definition of Z in Eq. (4) to rewrite the system in
Eqs. (12) and (13) as

ṙσ = −δrσ +
(
k − K

C

)
rσ

1 − r2
σ

2
+K

1 − r2
σ

2
R cos(�−ψσ ),

(15)

ψ̇σ = �σ + K

(
r2
σ + 1

2rσ

)
R sin(� − ψσ ). (16)

We note that although we let C → ∞ in the next section,
Eqs. (15) and (16) are valid when C is any positive integer
and can be used to study synchrony in networks with a small
number of communities.

Finally, we assume that the mean frequencies �σ are drawn
from a distribution G(�), which we assume to be Lorentzian
with spread 
 and mean �. However, by entering a rotating
frame, we can set � = 0 without any loss of generality. We
note that choosing a Lorentzian distribution for G(ω) is a
natural choice if the heterogeneity in the distributions gσ (ω)
is assumed to originate from fluctuations arising from the
random sampling of frequencies from the same Lorentzian
distribution. In this case, since a sum of Lorentzian random
variables has a Lorentzian distribution, the distribution of the
average frequencies in finite communities is Lorentzian.

Before analyzing Eqs. (15) and (16), we illustrate the
behavior of the local and global order parameters δ = 
 = 1
over a range of values for K and k. We define r = C−1 ∑C

σ=1 rσ

as a measure of local synchrony and show the behavior of r

and R in Fig. 1. While this behavior will be deduced from the
analysis that follows, we find it convenient to present the phase
space now to provide a framework for our subsequent analyses.
We note that although the diagram above is theoretical, we
present plots of R and r̄ following various paths in the
diagram, and all show excellent agreement with the theory.
In the parameter space (K,k), we find the following four
regions: region A where r,R = 0 (bottom left red), region
B where r > 0 and R = 0 (top left yellow), and regions C
and D where r,R > 0 (bottom right green and top right blue,
respectively). In region A there is neither local nor global
synchrony, in region B there is local synchrony but no global
synchrony, and in both regions C and D there is both local and
global synchrony. We note that although both r,R > 0 in both
regions C and D, the nature of solutions for rσ are qualitatively
different, as is discussed later. Finally, solid and dashed curves
indicate bifurcations between these regions and are discussed
as we proceed with the analysis. In the rest of this section,

0 1 2 3 4 5
0

1

2

3

4

5

K

k

R = 0
r > 0B: r > 0

R > 0
D:

A: r = 0
R = 0

r > 0
R > 0

C:

(iv)

(iii)

(i) (ii)

FIG. 1. (Color online) Bifurcation diagram in (K,k) parameter
space for Eq. (2) with δ = 
 = 1. Regions A, B, C, and D (described
in the text) are denoted in red, yellow, green, and blue, respectively,
with bifurcations (i)–(iv) indicated by solid and dashed curves.

we study local synchrony, characterized by the community
order parameters zσ . We do this by assuming a given value of
the global synchrony order parameter Z = Rei� . In the next
section, we study the dynamics of Z using a dimensionality
reduction on the global scale. We note here that in the rest of the
figures in this paper, since we are interested in networks with a
large number of communities and a large number of oscillators
per communities, we compare the results from direct numerical
simulation of Eq. (2) in networks with large Nσ and C with the
theoretical curves obtained from our analysis of the continuum
limit.

First we study local synchrony when R = 0. In this case,
from Eqs. (15) and (16) we see that each community decouples
from all others and evolves independently. The phase ψσ of
community σ moves with velocity �σ , and the stable fixed
points of Eq. (15) are

rσ =
{

0 if k − K/C � 2δ,√
1 − 2δ

k−K/C
otherwise,

(17)

so that all rσ are equal. Bifurcation (i), indicated as a solid
black line in Fig. 1, is described by this analysis and occurs
at k − K/C = 2δ. To illustrate this bifurcation, we plot in
Fig. 2 the results of simulating the system as k is varied from
0 to 6 with Nσ = C = 400, δ = 
 = 1, and fixed K = 1
and we plot the resulting r from simulation (blue circles)
against the theoretical prediction of Eq. (17) (dashed red).
The interpretation of this result is that the oscillators in each
community synchronize as in the all-to-all Kuramoto model,
but with an effective coupling strength, k − K/C, which
shows that the weak coupling to other independently evolving
communities slightly inhibits synchrony.

The analysis above assumes R = 0. Now, we analyze local
synchrony when R > 0. In this case some of the communities
become synchronized with each other. Given a value of
Z (which can be obtained using another dimensionality
reduction, as we show in the next section), community σ
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FIG. 2. (Color online) Average degree of local synchrony r versus
k from simulation (blue circles) with C = Nσ = 400, δ = 
 = 1, and
K = 1 compared to the theoretical prediction in Eq. (17) (dashed red
line).

synchronizes with the mean field [i.e., a solution ψ̇σ = 0,ṙσ =
0 for Eqs. (15) and (16) exists] if

|�σ | � KR
r2
σ + 1

2rσ

, (18)

in which case

ψσ − � = arcsin

[
2�σ rσ

KR
(
r2
σ + 1

)]
, (19)

and otherwise the community drifts indefinitely. The degree
of local synchrony rσ for locked communities can be found by
setting ṙσ in Eq. (15) to zero and using Eq. (19), which gives
the implicit equation

rσ δ =
(

k − K

C

)
rσ

1 − r2
σ

2

+KR
1 − r2

σ

2

√
1 − 4�2

σ r2
σ

K2R2
(
r2
σ + 1

)2 . (20)

Equation (20) determines the steady-state value of rσ for
locked communities and yields two possible kinds of solutions
for rσ : either Eq. (20) has a real solution for every �σ , or it
has a real solution for only some �σ . It can be shown that
when k − K/C � 2δ, Eq. (20) has a real solution for all �σ ,
and thus each community becomes phase-locked and each
rσ reaches a fixed point as t → ∞. On the other hand, if
k − K/C > 2δ, there is a real solution for only some �σ

with magnitude less than a critical locking frequency, which
we denote as �̃. In this case communities with |�σ | � �̃

phase-lock and rσ is given by the solution of Eq. (20), while
other communities continue drifting indefinitely. The phase
angle ψσ of a drifting community σ increases or decreases
monotonically and therefore its order parameter rσ might be
time dependent, according to Eq. (15). However, assuming
a stationary global order parameter with constant R and �

(as is discussed in the next section), the solution of the two-
dimensional autonomous system in Eqs. (15) and (16) must
approach a limit cycle (this can be shown, for example, using
the Poincare-Bendixson theorem [28]). To estimate the time-
averaged value of rσ in this limit cycle, we neglect the effect
of the cosine term in Eq. (15) over one period and find that
the time-averaged order parameter for drifting communities is

approximated by 〈rσ 〉 =
√

1 − 2δ
k−K/C

. This value agrees with

the solution of Eq. (20) when �σ is the locking frequency in
Eq. (18). Therefore, the community locking frequency can
be determined by inserting the expression for 〈rσ 〉 above
into Eq. (18), obtaining that communities lock when their
frequency �σ satisfies

|�σ | � �̃ = KR

(
1 − δ2(

k − K
C

− δ
)2

)−1/2

. (21)

The locking frequency only is defined for k − K/C > 2δ,
which defines a new bifurcation. When k − K/C > 2δ (region
D), the locking frequency �̃ is finite and only some communi-
ties phase-lock. As k − K/C approaches 2δ from above, the
locking frequency diverges. For k − K/C < 2δ (region C), all
communities phase-lock. The boundary between these two re-
gions for larger K is denoted as bifurcation (ii) and is indicated
as a solid black line in Fig. 1. A heuristic interpretation of this
transition is that, when k is increased through bifurcation (ii),
communities with large |�σ | desynchronize because the local
coupling strength k causes them to prefer an angular velocity
�̇ much closer to their own mean frequency �σ than the mean
frequency of the entire network.

To test Eqs. (17), (20), and (21), we simulate the system with
Nσ = C = 400 and δ = 
 = 1 with (K,k) = (1,8), (8,1), and
(4,8) (parameters from regions B, C, and D, respectively) and

−4 −2 0 2 4
0.8

0.85

0.9

0.95

1

Ω

r
(Ω

)

simulation

theory

(a)

−15 −10 −5 0 5 10 15
0

0.2
0.4
0.6
0.8

1

Ω

r
(Ω

)

simulation

theory

(b)

−4 −2 0 2 4
0.8

0.85

0.9

0.95

1

Ω

r
(Ω

)

simulation

theory

(c)

FIG. 3. (Color online) Time-averaged r vs � from simulation
(blue circles) with C = Nσ = 400 and δ = 
 = 1 compared to
theoretical prediction (dashed red) for (K,k) = (1,8) (a), (8,1) (b),
and (4,8) (c). The vertical arrows indicate the theoretical value for
the locking frequency obtained from Eq. (21).
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plot time-averaged rσ as a function of �σ in Figs. 3(a)–3(c),
respectively. Results from direct simulation are plotted in
blue circles and compared to theoretical predictions, which
are plotted as dashed red curves. Figure 3(a) corresponds to
region B, where R = 0 and rσ is given by Eq. (17) and is
therefore independent of σ . Figure 3(b) corresponds to region
C, where all communities lock and their order parameter rσ

is a solution of Eq. (20). Figure 3(c) corresponds to region D,
where some communities lock and their order parameter rσ is
a solution of Eq. (20), and other communities drift and their
order parameter rσ is independent of σ and given by 〈rσ 〉. The
vertical arrows indicate the theoretical value for the locking
frequency obtained from Eq. (21). Theoretical results match
very well with the numerical simulations.

IV. GLOBAL DIMENSIONALITY REDUCTION

In the previous section, we studied local synchrony by
assuming a steady-state value for the global synchrony order
parameter Z = Rei� . We now discuss how the global order
parameter can be found by making a second dimensionality
reduction on a global scale. As we previously let Nσ tend to
infinity in order to enter a continuum description within each
community, we now consider the limit C → ∞ and introduce
the density function F (ψ,�,r,t) that describes the density of
communities with average phase ψ , mean natural frequency
�, and degree of local synchrony r at time t . In analogy
with individual oscillators, the number of communities is
conserved and F must satisfy the continuity equation ∂tF +
∂ψ (Fψ̇) + ∂r (F ṙ) = 0. However, we find that the degrees of
local synchrony r quickly reach a stationary distribution, so we
seek solutions where ∂r (F ṙ) = 0. In analogy to the classical
Kuramoto model, we find that rσ approaches a fixed point
if community σ phase-locks or otherwise forms a stationary
distribution with other drifting r’s. With Eq. (16) the continuity
equation becomes

∂tF + ∂ψ

{
F

[
� + K

(
r2 + 1

2r

)
Im(Ze−iψ )

]}
= 0, (22)

where r = r(�,R) is the steady-state value of r given by
Eq. (17) or implicitly by Eq. (20).

Like Eqs. (6) and (22) is of the form studied by Ott and
Antonsen in Refs. [25,29] and can be solved with a similar
ansatz. Thus, we make the ansatz

F (ψ,�,r,t) = G(�)

2π

(
1 +

∞∑
n=1

An(�,r,t)einψ + c.c.

)
. (23)

Inserting Eq. (23) into Eq. (22), we find that

Ȧ + i�A + K

4

(
r2 + 1

r

)
(A2Z − Z∗) = 0. (24)

We calculate Z as

Z =
∫ ∞

−∞

∫ 2π

0
F (ψ,�,r,t)reiψdψd�

=
∫ ∞

−∞
G(�)A∗(�,r,t)rd�. (25)

Since r(�,R) is defined implicitly by Eq. (20) for locked
communities and by Eq. (17) for any drifting communities, it

is potentially piecewise-defined and not smooth. However, to a
very good approximation we can do this integral using residues
by considering the solution r̃(�,R) of Eq. (20) for |�| < �̃

which is real and positive for Im(�) → 0− as a function of
complex �. The function r̃ is analytic when Im(�) < 0, and
its real part converges to r(�,R) as Im(�) → 0− with |�| <

�̃, while its imaginary part converges to an odd function.
As Im(�) → 0− for |�| > �̃, the real part of r̃ differs from
Eq. (17) by a bounded amount. If G(�) decays so quickly that
the error in approximating r by r̃ for |�| > �̃ can be neglected
when computing the integral, we can approximate the integral
above by the integral which has r̃ instead of r (due to the
symmetry of G, the imaginary part of r̃ does not contribute to
the integral). The integral with r̃ on the real line can be done
by deforming the contour of integration to the line connecting
z1 = −B − iε to z2 = B − iε, where B, ε > 0, and closing
the contour with the semicircle in the negative complex plane
connecting z2 to z1. Using the residue theorem, and taking
B → ∞ and ε → 0, we obtain

Z ≈ r̂A∗(−i
,̂r,t), (26)

where we have defined r̂ ≡ r̃(−i
,R). For the Lorenzian
distribution with 
 = 1, we expect this approximation to
be excellent when �̃ � 4, but the agreement between the
direct numerical simulation of Eqs. (2) and the theoretical
predictions is very good even for situations in which �̃ is
smaller [e.g., Fig. 5(a) close to the transition for R]. We note
that if (k,K) is in region C [see Fig. 1] using r̃ to evaluate the
integral in Eq. (25) is exact since all communities lock and
are described by Eq. (20).

Evaluating Eq. (24) at � = −i
 and r = r̂ closes the
complex dynamics for Z:

Ż + 
Z + K

4
(̂r2 + 1)

(
Z2

r̂2
Z∗ − Z

)
= 0. (27)

The evolutions of R and � are given by

Ṙ = −
R + K

4
R(̂r2 + 1)

(
1 − R2

r̂2

)
, (28)

�̇ = 0. (29)

We note that these equations are valid provided that (a) F is in
the manifold of Poisson kernels [i.e., is of the form in Eq. (23)]
and (b) the distribution of degrees of local synchrony r remains
stationary as the system evolves. Regarding assumption (a),
Ref. [29] shows that in the Kuramoto model all solutions
approach this manifold as t → ∞. The stable fixed points
of Eq. (28) are

R =
⎧⎨⎩ 0 if K � 4


r̂2+1 ,

r̂
√

1 − 4

K (̂r2+1) otherwise.

(30)

To eliminate r̂ we assume nonzero R (and thus r̂ �√
4
/K − 1) and insert Eq. (30) into Eq. (20) with �σ =

−i
. We choose the real, positive solution given by

r̂ =
√


 − δ +
√

(k + K − δ)2 − 2(k + K + δ)
 + 
2

k + K
,

(31)
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FIG. 4. (Color online) Degree of global synchrony R (main) and
average local synchrony r (inset) versus K from simulation (blue
circles) with Nσ = C = 400, δ = 
 = 1, and k = 4 compared to
theoretical prediction from Eqs. (30)–(33) (dashed red line).

which we insert back into Eq. (30) to obtain R. We note that
other solutions for r̂ are purely imaginary or negative. From
the top line of Eq. (30), the imaginary solutions for r̂ result in a
critical value for K larger than 4
, while real solutions result
in a critical value smaller than 4
, and thus we choose the
positive real solution (the negative solution results in R < 0).
Finally, to calculate the bifurcation curve for the onset of global
synchrony, we let r̂ → √

4
/K − 1
+

, which yields the curve
k = δK

K−2

− K

2 . This curve is indicated as a dashed black curve
in Fig. 1 and gives bifurcation (iii) from region A to region C
and bifurcation (iv) from region B to region D.

We now seek to compute the mean degree of local
synchrony r . In the large C limit we consider here, r is given by
an integral equation. If (K,k) is in region C, i.e., k � 2δ, then
since each community becomes phase-locked, we simply have

r =
∫ ∞

−∞
G(�)r(�,R)d�. (32)

However, if (K,k) is in region D, i.e., k > 2δ, then because
some communities phase-lock and some do not, we have that

r =
∫

|�|��̃(R)
G(�)r(�,R)d� +

∫
|�|>�̃(R)

G(�)〈r〉d�,

(33)

where �̃ is the locking frequency given by Eq. (21).
To illustrate these results, we simulate the system with

Nσ = C = 400, δ = 
 = 1, and k = 4, and we let K vary
between 0 and 6. In Fig. 4 we plot R (main) and r (inset) from
simulation with blue circles and the theoretical predictions
from Eqs. (30)–(33) with a dashed red line. Theoretical
predictions agree well with simulations.

V. HIERARCHICAL SYNCHRONY

With a complete understanding of both local and global
synchrony in the system studied above, we now discuss hi-
erarchical synchrony. We consider moving slowly (compared
with 
−1) along some path in the (K,k) parameter space,
restricting paths to lines starting at (0,0) for simplicity. From
our analysis we find that bifurcations intersect at (K,k) =
(
 − δ + √


2 + δ2 + 6
δ,2δ). Thus, for lines k = mK , if

0 2 4 6
0

0.5

1

K

R
r

(a)

0 2 4 6
0

0.5

1

K

R
r

(b)

FIG. 5. (Color online) Degrees of global synchrony R (blue
circles) and average local synchrony r (red triangles) along paths
(a) k = 3K/2 and (b) k = K/2 from simulation with Nσ = C =
1000 and δ = 
 = 1.

m > mc = 2δ


−δ+√

2+δ2+6
δ

, the onset of local synchrony
occurs before the onset of global synchrony. On the other
hand, if m < mc, the onset of local and global synchrony
occur simultaneously. Choosing m1 = 3/2 and m2 = 1/2, in
Figs. 5(a) and 5(b) we plot the steady-state values of R

and r resulting from moving along the lines k = m1K and
k = m2K , respectively, for Nσ = C = 1000 and δ = 
 = 1.
We note that Nσ = C = 1000 is used in these simulations
rather than 400 as in the previous simulations because we find
that finite-size effects are more prevalent near bifurcation (iii).
This is most likely due to the fact that at this bifurcation the
onset of local synchrony and and the onset of global synchrony
occur simultaneously. The values of R and r from simulation
are plotted with blue circles and red triangles, respectively,
with theoretical predictions plotted with black dashed and dot-
dashed lines, respectively. Note that for these parameters mc =
1/

√
2, so m1 > mc > m2, and accordingly we see a separation

of local and global onset in Fig. 5(a), but not in Fig. 5(b).
We interpret these results as follows. Along paths where

k > mcK , local coupling effects dominate global coupling
effects. In this case the community structure is strong enough
to yield a hierarchical ordering of synchrony, i.e., a separation
in the onset of local and global synchrony. However, when
k < mcK , global coupling effects dominate local coupling
effects. In this case the community structure is weak enough
to yield a simultaneous onset of local and global synchrony.

VI. HETEROGENEITIES

We now discuss how the results above generalize when
some of the assumptions previously used are relaxed. We allow
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for heterogeneities in both the sizes of communities and the
spread in frequency distributions gσ (ω); i.e., we allow ησ and
δσ to vary from community to community. We also allow the
local and global coupling strengths to vary, letting Kσσ ′ = kσ

for σ = σ ′ and Kσ for σ �= σ ′.
Beginning with local synchrony, we carry out a dimen-

sionality reduction on the local scale and obtain the following
ODEs:

ṙσ = −δσ rσ + Cησ

(
kσ − Kσ

C

)
rσ

1 − r2
σ

2

+Kσ 1 − r2
σ

2
R cos(� − ψσ ), (34)

ψ̇σ = �σ + Kσ

(
r2
σ + 1

2rσ

)
R sin(� − ψσ ). (35)

Thus, when R = 0, we have that

rσ =
{

0 if Cησ (kσ − Kσ/C) � 2δσ ,√
1 − 2δσ

Cησ (kσ −Kσ /C) otherwise.
(36)

The onset of local synchrony in community σ occurs at
kσ − Kσ/C = 2δσ /(Cησ ); i.e., in general synchrony occurs
at different values for different communities. When R > 0,
community σ becomes phase-locked if

|�σ | � KσR
r2
σ + 1

2rσ

, (37)

in which case rσ satisfies

δσ rσ = Cησ

(
kσ − Kσ

C

)
rσ

1 − r2
σ

2

+KσR
1 − r2

σ

2

√
1 − 4�2

σ r2
σ

Kσ2R2
(
r2
σ + 1

)2 , (38)

otherwise community σ will drift. Note that for a given value
of R, the behavior of rσ depends not only on �σ but also on
Cησ , δσ , kσ , and Kσ , so in general there is no single locking
frequency �̃ that separates locked and drifting communities at
�σ = ±�̄.

To study global synchrony, we again perform a dimension-
ality reduction on the global scale. Since ησ , δσ , kσ , and Kσ

vary from community to community, after sending C → ∞
we introduce the density function F (ψ,�,r,η,δ,k,K,t) that
represents the fraction of communities with phase ψ , mean
natural frequency �, degree of local synchrony r , size η,
frequency distribution spread δ, and local and global coupling
strengths k and K at time t . Noting that rσ depends on ησ , δσ ,
kσ , and Kσ and again looking for solutions with stationary rσ ,
F satisfies the continuity equation

∂tF + ∂ψ

{
F

[
� + K

(
r2 + 1

2r

)
Im(Ze−iψ )

]}
= 0, (39)

where now r depends on η, δ, k, and K in addition to � and R.
We assume that for each community the mean frequency �σ ,
size ησ , frequency distribution spread δσ , and local and global
coupling strengths kσ and Kσ are all chosen independently

and make the ansatz

F (ψ,�,r,η,δ,k,K,t)

= G(�)H (η)D(δ)J (k)L(K)

2π

×
(

1 +
∞∑

n=1

An(�,r,η,δ,k,K,t)einψ + c.c.

)
, (40)

which yields the ODE

Ȧ + i�A + K

4

(
r2 + 1

r

)
(A2Z − Z∗) = 0. (41)

Finally in the continuum limit Z can be calculated by the
integral

Z =
∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ 1

0

∫ ∞

−∞

∫ 2π

0
F (ψ,�,r,η,δ,k,K,t)

× reiψdψd�dηdδdkdK

=
∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ 1

0
H (η)D(δ)J (k)L(K)

× r̂A∗(−i�,̂r,η,δ,k,K,t)dηdδdkdK. (42)

Equations (41) and (42) govern the global synchrony of
the system and must be solved self-consistently with the
local dynamics, governed by Eqs. (34) and (35). For arbitrary
distribution functions H (η), D(δ), J (k), and L(K) the integral
in Eq. (42) might need to be evaluated numerically, but for
certain choices, e.g., exponentials or linear combinations of
Dirac δ functions, further analytical results are attainable but
not presented here.

VII. DISCUSSION

We have described and solved fully the steady-state dy-
namics of coupled phase oscillators on a modular network
with a large number of oscillators in each community and a
large number of communities. In particular, we have studied
local and global synchrony, i.e., synchrony within and between
communities, respectively. First we assumed a large number of
oscillators in each community and used a local dimensionality
reduction to study local synchrony. Next, when the number of
communities was large, we showed that a global dimension-
ality reduction could be done to study global synchrony. Our
analytical results shed light on the phenomenon of hierarchical
synchrony, characterized by synchronization on a local scale
before it occurs on a global scale, which occurs when the
community structure of the network is strong enough. The
system analyzed in this paper modeled synchrony on a network
with two community levels, but synchrony on networks with
more levels, e.g., communities with subcommunities, can be
modeled in a similar way and analogous analytical results can
be obtained.

Although we have assumed strong uniform coupling
within communities and weak uniform coupling between
communities, we conjecture, based on preliminary numerical
experiments, that the system studied in this paper is in some
cases a good quantitative model for networks where links
between oscillators in the same community are dense and links
between oscillators in different communities are sparse.
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An interesting result is that the system of planar oscillators
representing community interactions Eqs. (15) and (16) admits
an approximate low-dimensional description. The analysis
of community synchrony in Sec. IV is a low-dimensional
description of oscillator systems in which each oscillator has a
phase and an associated oscillation amplitude. Other systems

of coupled planar oscillators could be analyzed in the same
way.
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