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Cluster synchrony in systems of coupled phase oscillators with higher-order coupling

Per Sebastian Skardal,1,* Edward Ott,2 and Juan G. Restrepo1

1Department of Applied Mathematics, University of Colorado at Boulder, Colorado 80309, USA
2Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA

(Received 7 July 2011; published 16 September 2011)

We study the phenomenon of cluster synchrony that occurs in ensembles of coupled phase oscillators when
higher-order modes dominate the coupling between oscillators. For the first time, we develop a complete analytic
description of the dynamics in the limit of a large number of oscillators and use it to quantify the degree of
cluster synchrony, cluster asymmetry, and switching. We use a variation of the recent dimensionality-reduction
technique of Ott and Antonsen [Chaos 18, 037113 (2008)] and find an analytic description of the degree of
cluster synchrony valid on a globally attracting manifold. Shaped by this manifold, there is an infinite family of
steady-state distributions of oscillators, resulting in a high degree of multistability in the cluster asymmetry. We
also show how through external forcing the degree of asymmetry can be controlled, and suggest that systems
displaying cluster synchrony can be used to encode and store data.
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I. INTRODUCTION

Large systems of coupled oscillators occur in many ex-
amples throughout science and nature and serve as a basic
model for emergent collective behavior. Examples include
synchronized flashing of fireflies [1], cardiac pacemaker cells
[2], walker-induced oscillations of the Millennium Bridge
[3], and circadian rhythms in mammals [4]. Under certain
conditions, these limit cycle oscillators can be approximately
described entirely in terms of their phase angles θ . Kuramoto
showed [5] that the evolution of the phases in an ensemble of
N weakly coupled oscillators obeys

θ̇n = ωn +
N∑

m=1

Hnm(θm − θn), (1)

where θn and ωn are the phase and intrinsic frequency of
oscillator n, and Hnm is a 2π -periodic function. The choice of
Hnm(θ ) = (K/N) sin(θ ), which leads to the Kuramoto model
[5], is well motivated because the expansion of several coupled
oscillators about a Hopf bifurcation generically leads to sinu-
soidal coupling. This choice has also become a paradigm for
the study of emergence of synchrony in coupled heterogeneous
oscillators [6]. Many generalizations of the Kuramoto model
have been studied. Some examples are systems that account
for time delay [7], network structure [8], nonlocal coupling [9],
external forcing [10], nonsinusoidal coupling [11], Josephson
junction circuits [12], coupled excitable oscillators [13],
bimodal distributions of oscillator frequencies [14], phase
resetting [15], time-dependent connectivity [16], noise [17],
and communities of coupled oscillators [18]. Recent analytical
work [19–21] [in particular the Ott-Antonsen (OA) ansatz [19]]
has allowed for the simplification of the analysis of these
systems to the study of reduced low-dimensional equations
and made many of these systems analytically tractable.

While the choice Hnm(θ ) = (K/N) sin(θ ) that yields the
Kuramoto model is the simplest, describes many situations of
interest, and has the advantage of being analytically tractable,
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more general choices can result in additional dynamical
features. If there are higher harmonics in Hnm, but the
sinusoidal term is dominant, there is a transition to synchrony
as in the Kuramoto model as the coupling between the
oscillators increases [11]. In this case, the synchronous state
is characterized by the phases of a large fraction of the
oscillators clustering around a common phase. When higher
harmonic terms are dominant, however, the synchronous state
is characterized by the formation of multiple synchronized
groups (or “clusters”) of oscillators, each with a common
phase [22]. This phenomenon has also been called multibranch
entrainment in previous work [23]. Cluster synchrony occurs
in many applications in nature, including networks of neuronal,
photochemical, and electrochemical oscillators [24–26], as
well as genetic networks [27]. In this paper we will study
Eq. (1) with

Hnm(θ ) = K

N
sin(qθ ) (2)

for integer q � 2, which, as we will see, leads generically to
the formation of q clusters. There are various experimental
and theoretical motivations for the study of this model. In
Ref. [25], experiments with systems of globally coupled
photochemical oscillators were performed in which two syn-
chronized clusters emerged. In Ref. [26], the coupling function
between electrochemical oscillators n and m was directly
measured and found to be qualitatively equivalent to either
Hnm(θ ) = (K/N) sin(θ ) at a lower voltage, which is equivalent
to the classical Kuramoto model, or Hnm(θ ) = (K/N) sin(2θ )
at higher voltage, which is equivalent to Eq. (2) with q = 2. In
some Kuramoto-type models of neuronal networks, a coupling
function of the form in Eq. (2) and the associated cluster
synchrony arises as a result of learning and network adaptation.
It has been proposed that the coupling between oscillators
in such networks evolves according to a Hebbian learning
rule [28]. If this learning is fast, Eq. (2) is recovered with
q = 2 [29]. We note that the applications mentioned above all
use q = 2, but larger q values are also relevant. For instance,
cases of three or more clusters have appeared in the study of
synthetic gene networks [27].
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Cluster synchrony has been studied in many contexts, for
example, in networks of phase oscillators with [22] and without
noise [30,31], networks of integrate-and-fire oscillators [32],
and more general cases [33]. Reference [28] studied Eqs. (1)
and (2) in steady state using a self-consistent approach to
characterize the phase distribution and stability of the clusters.
Reference [22] studied the dynamics of clusters in ensembles
of oscillators when the coupling function H has two Fourier
modes under the effect of small noise. Despite these and other
studies [30], a complete analytical treatment of Eqs. (1) and
(2) is lacking. For example, Ref. [28] studies the steady-state
solution using a self-consistent approach but does not analyze
the dynamics, while Refs. [22,30] assume identical oscillators.
In this paper we will use the Ott-Antonsen ansatz to obtain a
low-dimensional description of cluster dynamics and a full
solution to Eqs. (1) and (2). Thus, our solution of Eqs. (1) and
(2) is analogous to the recent solution [19,20] of the Kuramoto
model in that, even though partial solutions existed previously,
our solution fully characterizes the dynamics (with the same
caveats as in Refs. [19,20]).

Two interesting phenomena that are particular to systems
displaying cluster synchrony are asymmetric clustering [34]
and switching [22,25]. Asymmetric clustering is characterized
by a nonuniform distribution of oscillators in different clusters,
and switching refers to oscillators moving between clusters.
We find that asymmetric clustering emerges from nonuniform
initial conditions, to which systems with a coupling function
of the form of Eq. (2) with q � 2 are very sensitive. Switching
can be achieved by introducing an external forcing term,
F sin(� − ω0t − θn) (where ω0 is the average oscillator
frequency), on the right-hand side of Eq. (1) with F �= 0
nonzero for a finite amount of time. This results in a fraction
of oscillators switching to a cluster around θ = �. If different
values of � are chosen for different oscillators (i.e., � �→ �n),
then if F is large enough with respect to |ωn| and K , the phase
of oscillator n will converge to a value near �n.

This paper is organized as follows. In Sec. II we solve for the
dynamics of the system with Eq. (2) and q = 2. In Sec. III we

discuss the effect of external forcing on asymmetric clustering
and switching, the presence of hysteresis when the coupling
strength is changed, as well as how asymmetric clustering can
be used to store information. In Sec. IV we discuss how results
generalize to the case q > 2. Finally, in Sec. V we conclude
this paper by discussing our results.

II. LOW-DIMENSIONAL DESCRIPTION OF THE
TWO-CLUSTER STATE

In this section, we will study in detail Eqs. (1) and (2) with
q = 2, which leads to the system

θ̇n = ωn + K

N

N∑
m=1

sin[2(θm − θn)], (3)

where the intrinsic frequencies ωn are drawn randomly from a
distribution g(ω). Also, we define the set of generalized order
parameters

rk = |rk|eiψk = 1

N

N∑
m=1

eikθm (4)

for k ∈ N. These generalized order parameters were intro-
duced in previous work [35] where coupling functions with
higher harmonics were studied. We will see that when more
than one cluster emerges, more than one rk is needed to
describe the dynamics of the system. In this case of q = 2,
two clusters emerge. The order parameter |r2| measures the
degree of cluster synchrony in the system while |r1| measures
the degree of asymmetry in clustering (Fig. 1). Equation (3)
can be rewritten in terms of r2 as

θ̇n = ωn + K

2i
(r2e

−2iθn − r∗
2 e2iθn ), (5)

where ∗ denotes complex conjugate.
Following Ref. [19], we let N → ∞ and move to a

continuum description. Accordingly, we introduce the density
function f (θ,ω,t), which describes the density of oscillators
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FIG. 1. (Color online) Example oscillator configurations of a system with (a) no synchrony (|r1|,|r2| ≈ 0), (b) symmetric (|r1| ≈ 0) cluster
synchrony (|r2| > 0), and (c) asymmetric (|r1| > 0) cluster synchrony (|r2| > 0) and corresponding density functions (d), (e), and (f).
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with phase θ and natural frequency ω at time t . Since
oscillators are conserved f must satisfy the continuity equation
∂tf + ∂θ (f θ̇ ) = 0, giving

∂tf +∂θ

{
f

[
ω + K

2i
(r2e

−2iθ − r∗
2 e2iθ )

]}
= 0. (6)

To analyze Eq. (6), we find it convenient to define the
symmetric and antisymmetric parts of f , fs , and fa , as

fs/a(θ,ω,t) = [f (θ,ω,t) ± f (θ + π,ω,t)]/2, (7)

where fs and fa are symmetric and antisymmetric with respect
to translation by π , respectively, in the sense that fs(θ +
π,ω,t) = fs(θ,ω,t) and fa(θ + π,ω,t) = −fa(θ,ω,t). We
note that f is a solution of Eq. (6) if f = fs + fa and fs and
fa are both solutions of Eq. (6). Thus, we can study separately
the symmetric and antisymmetric dynamics of solutions f .

A. Symmetric dynamics

We now use a variation of the OA ansatz to find a
low-dimensional analytical solution for the dynamics of the
symmetric part of f , which evolves independently from the
antisymmetric part. For the Kuramoto model, after expanding
the distribution f in Fourier series,

f (θ,ω,t) = g(ω)

2π

[
1 +

∞∑
n=1

f̂n(ω,t)einθ + c.c.

]
, (8)

where c.c. denotes complex conjugate terms, Ref. [19] intro-
duces the ansatz f̂n(ω,t) = an(ω,t), which yields a solution
for systems with sinusoidal coupling provided a evolves
according to a simple ordinary differential equation (ODE).
Solutions of this kind turn out to form a low-dimensional,
globally attracting, invariant manifold to which solutions
converge quickly given that the spread in g(ω) is nonzero [20].
This manifold is the set of Poisson kernels:

f (θ,ω,t) = g(ω)

2π

1 − |a|2
1 + |a|2 − 2|a| cos[arg(a) − θ ]

. (9)

In terms of the Fourier series (8), the symmetric part of f

is given by

fs(θ,ω,t) = g(ω)

2π

[
1 +

∞∑
n=1

f̂2n(ω,t)e2inθ + c.c.

]
. (10)

For the new system defined by Eq. (3), we use the following
variation of the OA ansatz on the symmetric part of f :
f̂2n(ω,t) = an(ω,t). When Eq. (10) with this ansatz is inserted
into Eq. (6) and projected onto the subspace spanned by einθ ,
all equations reduce to the following ODE for a:

ȧ + 2iωa + K
(
r2a

2 − r∗
2

) = 0. (11)

In the continuum limit, we have

r2(t) =
∫ ∞

−∞

∫ 2π

0
e2iθ f (θ,ω,t) dθ dω

=
∫ ∞

−∞
g(ω)a∗(ω,t) dω. (12)

We now assume that g(ω) is Lorentzian with mean ω0 and
spread �, i.e., g(ω) = �

π(�2+(ω−ω0)2) . Furthermore, by entering

the rotating frame θ �→ θ + ω0t we can assume without loss
of generality that ω0 = 0. With this choice of g(ω) we can
integrate Eq. (12) exactly by closing the contour with the
semicircle of infinite radius in the lower-half complex plane
and evaluating a at the enclosed pole (see Refs. [19,20] for the
validity of this procedure):

r2(t) = a∗(−i�,t) ≡ a∗(t), (13)

where we have defined a(t) ≡ a(−i�,t) to simplify notation.
By evaluating Eq. (11) at ω = −i�, close the dynamics for r2:

ṙ2 = −2�r2 + K
(
r2 − r∗

2 r2
2

)
. (14)

In polar coordinates, r2 = |r2|eiψ2 , we find

˙|r2| = −2�|r2| + K|r2|(1 − |r2|2), (15)

ψ̇2 = 0. (16)

Thus, the unsynchronized state (i.e., |r2| = 0) is stable for K <

2�, at which point it loses stability and the stable synchronized
branch |r2| = √

1 − 2�/K emerges.
We now show that solutions of the form given in Eq. (10)

with fn(ω,t) = an(ω,t), where a obeys Eq. (11), are globally
attracting. An alternative way of solving for the dynamics of
r2 is to make the change of variable φ = 2θ , which yields a
new continuity equation:

∂tfs + ∂φ

{
2fs

[
ω + K

2i
(r2e

−iφ − r∗
2 eiφ)

]}
= 0, (17)

which is of the same form of the equation studied in Ref. [20].
There it is shown that the dynamics of r2 given by Eq. [14] are
globally attracting provided that the spread of g(ω) is nonzero.
Thus, the globally attracting invariant manifold for fs is the
set of double Poisson kernels centered at ψ2, fs(θ,ω,t) =
P (2θ − ψ2,|r2(t)|,ω), where

P (θ,ρ,ω) = g(ω)

2π

1 − ρ2

1 + ρ2 − 2ρ cos(θ )
. (18)

Since the system is invariant to rotations θ �→ θ + ϕ, hereafter
we assume without loss of generality that ψ2 = 0.

B. Steady-state solution

We first find the steady-state solutions of the system
described by Eq. (3). Recall that the symmetric and antisym-
metric parts of f satisfy the partial differential equation (PDE)

∂tfs/a + ∂θ {fs/a [ω − K|r2| sin(2θ )]}. (19)

To find the steady-state solution f ss
s/a , we set ∂tf

ss
s/a = 0.

For |ω| � K|r2| we find that f ss
s/a/g(ω) = c1,s/aδ(θ −

φ(ω)) + c2,s/aδ(θ − φ(ω) − π ), where φ(ω) and φ(ω) + π

are the stable fixed points of Eq. (5) defined by φ(ω) =
1
2 arcsin[ω/(K|r2|)]. (Recall that we assume ψ2 = 0.) Impos-
ing symmetric and antisymmetric conditions, we have that
c1,s = c2,s = 1/2 and c1,a = −c2,a = c with |c| � 1/2.

For |ω| > K|r2|, we find that f ss
s /g(ω) = C(ω)/|ω −

K|r2| sin(2θ )|, where C(ω) = 2
√

ω2 − K2|r2|2/π and f ss
a =

0. Thus, the complete steady-state distribution of oscillators is
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f ss(θ,ω) =
{

g(ω){(1/2 + c)δ[θ − φ(ω)] + (1/2 − c)δ[θ − φ(ω) − π ]} if |ω| � K|r2|,
2g(ω)

√
ω2 − K2|r2|2/|π [ω − K|r2| sin(2θ )]| if |ω| > K|r2|,

(20)

with |r2| = √
1 − 2�/K . The interpretation of the different

terms in Eq. (20) is the following. For |ω| � K|r2| f ss is
comprised of two delta functions representing the two clusters
of phase-locked oscillators at θ = φ(ω) and φ(ω) + π . For
|ω| > K|r2| oscillators drift for all time, and the second line
in Eq. (20) is their steady-state distribution.

While the symmetric part of the distribution is only
dependent on the value of K , the antisymmetric part of the
distribution depends on the free parameter c, which must be
determined from initial conditions. Thus, different solutions
with different degrees of cluster asymmetry coexist.

Now we compute the degree of cluster synchrony and
asymmetry in the system at steady state in terms of initial
conditions. The degree of cluster synchrony is exactly |r2| =√

1 − 2�/K , but the degree of asymmetry, measured by |r1|,
depends on the free parameter c, which must be determined
from initial conditions. To calculate r1, we note that only the
locked portion (|ω| � K|r2|) of f contributes to r1, so

r1 =
∫ K|r2|

−K|r2|

∫ 2π

0
f ss(θ,ω)eiθ dθ dω (21)

= 2c

∫ K|r2|

−K|r2|
g(ω)eiφ(ω) dω. (22)

Through a series of substitutions, this integral can be evaluated
exactly:

|r1| = 2
√

2c

π

[
arctan(A−)

A+ − arctanh(A+)

A−

]
, (23)

where A± =
√

K|r2|√
K2|r2|2 + �2 ± K|r2|

. (24)

As an example illustrating the dependence of c on initial
conditions we assume for simplicity that the symmetric
dynamics are at steady state by time t = t0 so that |r2| =√

1 − 2�/K , but the antisymmetric part may still not be at

2 1 1 2 ω

3

2

1

1

2

3

θ

FIG. 2. (Color online) Stable (solid blue) and unstable (dashed
red) equilibria of θ as a function of ω for phase-locked oscillators.
Boundaries between locked and drifting regions (ω = ±K|r2|) are
plotted with black dotted lines.

rest. Thus, phase-locked oscillators with natural frequency
ωn settle to one of the two stable equilibria of θ̇n = ωn −
K|r2| sin(2θn), while the unstable equilibria serve as bound-
aries for the basins of attraction. In Fig. 2 we plot the stable
equilibria in blue solid lines and the unstable equilibria in
red dashed lines for K = 4 and � = 1. Boundaries between
locked and drifting regions, ω = ±K|r2|, are plotted in dotted
black lines. We denote the unstable equilibria by 1,2 =
− 1

2 arcsin[ω/(K|r2|)] ∓ π
2 . From Eq. (20) we find that c + 1/2

is just the fraction of oscillators in the locked region between
1 and 2, so c in terms of the initial density f (θ,ω,t0) is

c + 1

2
=
∫ K|r2|
−K|r2|

∫ 2

1
f (θ,ω,t0) dθ dω∫ K|r2|

−K|r2|
∫ π

−π
f (θ,ω,t0) dθ dω

. (25)

To test this result, we choose initial conditions:

f (θ,ω,t0) = P (2θ,ρ2,ω)[1 + b cos(θ )], (26)

which have symmetric and antisymmetric parts fs =
P (2θ,|r2|,ω) and fa = bP (2θ,|r2|,ω) cos(θ ), respectively.

Choosing K = 4 and � = 1 we integrate Eq. (25) nu-
merically to get c ≈ 0.442351b. In Fig. 3 we plot results
from a direct numerical simulation of Eq. (3) compared
with the analytical prediction above. We simulate N = 10 000
oscillators with K = 4 and � = 1 and plot |r1(t)| for b = 0,
0.4, and 0.8 in blue, red, and green solid lines (labeled in
Fig. 3), respectively, with the predicted value of limt→∞ |r1(t)|
for each in black dot-dashed. We also plot |r2(t)| for each
value and the predicted value of limt→∞ |r2(t)| = 1/

√
2 in

black dashed curves. Simulations agree very well with the
theory. Note that, unlike |r1|, |r2| (both predicted and from
simulation) does not depend on b.
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|r
1
(t)|, b = 0

|r
2
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FIG. 3. (Color online) Order parameters |r1(t)| (solid colored
curves) and |r2(t)| (dashed colored curves) for b = 0, 0.4, and 0.8
from a simulation of Eq. (3) with N = 10 000 oscillators and analytic
predictions of steady-state (black dot-dashed lines). Parameters are
K = 4, � = 1.
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FIG. 4. (Color online) Example characteristics θ (t) from Eq. (A1)
for K = 4 and � = 1 of (a) locked oscillators (ω = 1) and (b) drifting
oscillators (ω = 3).

C. Transient dynamics

From Fig. 3 we see that the |r1| dynamics reach steady state
quickly. To capture the transient dynamics we can solve the
PDE (6)

∂tf + [ω − K|r2| sin(2θ )]∂θf = 2K|r2| cos(2θ )f (27)

coupled with the |r2| dynamics, which evolve independently,
via the method of characteristics [36]. The characteristic
equations (along with ω̇ = 0) are

θ̇ = ω − K|r2| sin(2θ ), (28)

ḟ = 2K|r2| cos(2θ ), (29)

˙|r2| = 2[−�|r2| + K

2
|r2|(1 − |r2|2)]. (30)

When |r2| is at steady state Eqs. (28)–(30) can be solved
analytically. Analytic expressions for the characteristic curves
θ (t,θ0) starting at the initial phase θ0 and the distribution
f (θ,ω,t), starting with initial condition f (θ,ω,t0) = g(ω)h(θ )
are given in the Appendix.

Using K = 4 and � = 1, we plot some example charac-
teristics using the analytic solution for ω = 1 and ω = 3 in
Figs. 4(a) and 4(b), respectively. For these parameter values
ω = 1 is in the locked population and ω = 3 is drifting. For
ω = 1, characteristics (solid colored lines) quickly converge
to one of the two stable fixed points, with basins of attraction
separated by unstable fixed points (black dotted lines). Thus, f
evaluated at ω = 1 converges very quickly to two point masses.
However, for ω = 3, the characteristics continue drifting with
a finite velocity for all time.

In principle, we could calculate r1(t) through the integral

r1(t) =
∫ ∞

−∞

∫ π

−π

f (θ,ω,t)eiθ dθ dω, (31)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

time t

|r 1|

a = 0.0

a = 0.4

a = 0.8

FIG. 5. (Color online) Transient dynamics of |r1(t)| for initial
conditions f (θ,ω,0) = P (2θ,|r2|,ω)[1 + b cos(θ )] from simulation
with N = 10 000 and b = 0, 0.4, and 0.8 (blue, red, and green curves)
and from integrating Eq. (32) numerically (cyan, magenta, and black
dashed curves). Parameters are K = 4 and � = 1.

where f (θ,ω,t) is given by Eq. (A2) in the Appendix. How-
ever, given the quick convergence of f to delta functions in the
locked regime, Eq. (31) is difficult to integrate numerically, so
we rather calculate r1(t) via the integral

r1(t) =
∫ ∞

−∞

∫ π

−π

f [θ (t,θ0),ω,t]eiθ(t,θ0) ∂θ

∂θ0
dθ0 dω. (32)

In Fig. 5 we compare the results of integrating Eq. (32)
numerically with the simulations of Eq. (3) using N = 10 000
oscillators, K = 4, � = 1, and f (θ,ω,0) = P (2θ,|r2|,ω)[1 +
b cos(θ )]. For b = 0, 0.4, and 0.8, |r1| obtained from simu-
lations are plotted as solid lines, and results from integrating
Eq. (32) numerically are plotted as dashed lines. The results
from Eq. (32) capture the transient dynamics very well.

The example above leading to Fig. 5 was for a case with
|r2| initially at steady state. If |r2| is not initially at steady state,
the solution to Eq. (15) with initial condition |r2(0)| = ρ0 is
exactly [19]

|r2(t)| = P 2/

√
1 +

[(
P 2

ρ0

)2

− 1

]
e2(2�−K)t , (33)

where P 2 = √
1 − 2�/K .

In Fig. 6 we plot the evolution of f (θ,ω,t) obtained
from numerically solving Eq. (27) when the symmetric
dynamics are not at steady state. Starting with initial con-
ditions f (θ,ω,0) = P (2θ,0.1,ω)[1 + 0.4 cos(θ )] and param-
eters K = 4, � = 1 we plot the distributionf (θ,ω,t)/g(ω)
at t = 0.33 (a), t = 0.67 (b), and t = 1 (c). We see that
the distribution quickly localizes, in agreement with the
asymptotic form in Eq. (20). In Fig. 7 we compare |r1(t)| and
|r2(t)| calculated from the numerical solution of Eq. (27) (blue
circles and red triangles) with the same variables calculated
from a direct simulation of Eq. (3) with N = 10 000 oscillators
(cyan and magenta dashed lines). The analytic solution |r2(t)|
in Eq. (33) is plotted as a black dot-dashed line.

III. EXTERNAL DRIVING AND HYSTERESIS IN THE
TWO-CLUSTER STATE

As we have seen, Eq. (3) admits a family of steady-state
solutions characterized by a free parameter c. In this section,
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FIG. 6. (Color online) Numerically computed distribution f (θ,ω,t)/g(ω) obtained from numerically solving Eq. (27) at times t = 0.33
(a), t = 0.67 (b), and t = 1 (c) with initial conditions P (2θ,0.1,ω)[1 + 0.4 cos(θ )] and parameters K = 4 and � = 1.

we demonstrate that, by appropriately forcing Eq. (3) and
modulating the coupling strength, the system can be driven to
any of these solutions, thus allowing us to encode any desired
value of c in the state of the system. Assuming ω0 = 0, we
consider the forced system

θ̇n = ωn + K

N

N∑
m=1

sin[2(θm − θn)] + F (t) sin(�n − θn),

(34)

where F (t) =
{
F0 if t ∈ I

0 otherwise, (35)

for some forcing magnitude F0 and time interval I = [t1,t2].
For F0 sufficiently large in comparison with |ωn| and

K and duration d = t2 − t1 not too small, θn will approach
≈ arcsin(ωn/F0) + �n ≈ �n for F0 � |ωn| + K . Thus, if
�n = 0 for all n with d and F0 large enough (i.e. F0 �
K

√
1 − 2�/K), all locked oscillators are entrained to the

θ = 0 cluster and remain there after t = t2, thus creating a
completely asymmetric cluster state. On the other hand, if
�n are drawn from the distribution h(�) = dδ(�) + (1 −
d)δ(� − π ), then the ratio of the number of oscillators ending
up in the cluster centered at ψ = 0 to those in the cluster
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FIG. 7. (Color online) Comparison of |r1| and |r2| from the
numerically solved PDE (27) (blue circles and red triangles) and from
direct simulation of Eq. (3) with N = 10 000 oscillators (cyan and
magenta dashed lines) with the same initial conditions and parameters
used in Fig. 6.

centered at ψ = π is d/(1 − d), which forces c in Eq. (23) to
d − 1/2. Thus, by choosing appropriately the external forcing,
we can set any degree of asymmetry we wish.

To explore the effect of different F0 and d values, we
simulate Eq. (34) with N = 2000 oscillators with random
initial conditions and parameters K = 4 and � = 1 until
steady state (and attaining two clusters of approximately equal
size, |r1| ≈ 0), then force the system with a strength of F0 for
a duration d and all �n = 0, then allow the system to reach
steady state and plot the resulting |r1| value in Fig. 8(a). For
very small F0 or d, |r1| remains small, but as soon as both are
large enough the resulting |r1| increases quickly.

By forcing the system in this manner we achieve switching,
i.e., oscillator n switches to the cluster centered at phase �n

if ωn is not too large. We note here that this kind of forced
switching is qualitatively different than that in Ref. [25]. In
our original system given by Eq. (3), switching does not occur
spontaneously. Thus, external forcing is necessary to observe
the phenomenon. However, in Ref. [25] switching occurs
spontaneously due to a heteroclinic orbit between different
cluster states.

Next, we consider the effects of slowly (compared with
�−1) changing the coupling strength K after a steady
state with some asymmetry is reached. If steady state is
reached at t = t0 with a coupling strength K = K0, then
consider changing K to K1. We find hysteretic behavior in
|r1| but not |r2|. Regardless of whether K1 < K0 or vice
versa, |r2| converges quickly to the predicted value |r2| =√

1 − 2�/K1, but the dynamics of |r1| are more interesting:
If K1 < K0, then |r1| decreases significantly, but if K1 > K0,
then |r1| remains approximately constant. In this situation,
at time t0, the distribution of oscillators is given by Eq.
(20). If K1 < K0 the locked population loses all oscillators
with

√
K2

1 − 2�K1 < |ω| <
√

K2
0 − 2�K0 and |r1| changes

accordingly (maintaining the same c value, since these
oscillators are lost in equal proportions from both clusters).
On the other hand, if K1 > K0 the locked population will
gain oscillators with

√
K2

0 − 2�K0 < |ω| <
√

K2
1 − 2�K1.

However, at t = t0 the distribution for these drifting oscillators
is perfectly symmetric, so both clusters pick up an equal
number of oscillators and the symmetric density fs changes,
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while the antisymmetric density fa remains the same. Thus,
the only change in |r1| comes from the slight tightening of the
phases φ(ω) = 1

2 arcsin[ω/(K|r2|)] and φ(ω) + π about the
clusters at θ = 0 and π .

Extending this analysis to the case where K is both
increased and decreased, |r1| will never increase significantly,
and only decrease significantly when K is decreased below
a previous minimum. In Fig. 8(b) we plot |r1| and |r2| (blue
circles and black triangles, respectively) as we change K (red
dashed line). While |r2| follows the predicted behavior (green
dot-dashed line) without any hysteresis, it is clear that |r1|
behaves as described above.

We now suggest, as others have [37], that systems such
as that given by Eq. (3) provide ways for encoding and
storing data. These systems have the unique property that
the symmetric dynamics have a unique, (globally) stable
fixed point, while there is a high degree of multistability in
the antisymmetric dynamics. Furthermore, we have demon-
strated above that through forced switching and modulation
of the coupling strength, the asymmetry (i.e., |r1|) can
be controlled. Thus, we suggest that a continuous valued
variable could be stored and retrieved by representing it
by |r1|. Furthermore, in the general q case, which we
study next, we will see that in addition to one globally-
attracting symmetric part, there are q − 1 additional modes
that display multistability. Thus, through similar techniques
the q − 1 quantities |r1(t)|, . . . ,|rq−1(t)| can be controlled and
used to store and retrieve q − 1 different continuous valued
variables.
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FIG. 8. (Color online) (a) Steady state |r1| after forcing a
symmetric distribution with forcing magnitude F0 for a duration d

with K = 4 and � = 1. (b) Hysteretic behavior of |r1| (blue circles)
vs the nonhysteretic behavior of |r2| (black triangles) when K is
changed in time (red dashed line).

IV. GENERAL q � 2

We now discuss how the dynamics of the two state case
generalize to higher-order coupling functions. Thus, we study
the system

θ̇n = ωn + K

N

N∑
m=1

sin[q(θm − θn)]

= ωn + K

2i

(
rqe

−qiθn − r∗
q eqiθn

)
(36)

for integer q � 2 and ωn randomly drawn from the distribution
g(ω). We find in this situation that q clusters form.

Again, we introduce a continuum description and repre-
sent the distribution of oscillators with the density function
f (θ,ω,t), which satisfies the continuity equation

∂tf + ∂θ

{
f

[
ω + K

2i
(rqe

−qiθ − r∗
q eqiθ )

]}
= 0. (37)

In analogy with Eq. (10) we define the modes

fj (θ,ω,t) = 1

q

q−1∑
k=0

f (θ + 2kπ/q,ω,t) exp(2πijkθ/q) (38)

for j = 0, . . . ,q. These modes satisfy the symmetry relation
fj (θ + 2π/q,ω,t) = exp(2πijθ/q)fj (θ,ω,t).

In analogy with the q = 2 state, we will find that the mode
j = 0, corresponding to the symmetric part of f when q =
2, has a globally attracting low-dimensional description that
evolves independently from the other modes, leaving q − 1
free parameters to describe the distribution.

A. Dynamics of the j = 0 mode

A similar variation of the OA ansatz can be used to find
a low-dimensional description of the dynamics of the j = 0
mode dynamics. The ansatz

f0(θ,ω,t) = g(ω)

2π

[
1 +

∞∑
n=1

an(ω,t)eqinθ + c.c.

]
(39)

yields the following ODE for a:

ȧ + q

[
iωa + K

2
(rqa

2 − r∗
q )

]
= 0. (40)

As before, we let g(ω) be Lorentzian with zero mean and
spread �, such that rq(t) = a∗(−i�,t) ≡ a∗(t), which closes
the dynamics for rq = |rq |eiψq :

˙|rq | = q

[
−�|rq | + K

2
|rq |(1 − |rq |2)

]
, (41)

ψ̇q = 0. (42)

Thus, the manifold for the j = 0 mode dynamics, which
can be shown to be globally attracting [20,21], is the set
of q-tuple Poisson kernels P (qθ − ψq,|rq(t)|,ω). Again, we
assume without loss of generality that ψq = 0.
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B. Steady-state solution

With q potential clusters, the order-parameter |rq | measures
the degree of cluster synchrony in the system, while the lower
q − 1 order parameters |r1|, . . . ,|rq−1| measure the degree

of asynchrony. Note that the distribution is only perfectly
symmetric if r1 = · · · = rq−1 = 0. Thus, there are q − 1
different measures of the asymmetry.

Using a similar analysis as in the q = 2 case, we find that
at steady state

f ss(θ,ω) =
⎧⎨⎩g(ω)

∑q−1
j=0(1/q + cj )δ(θ − φ(ω) − 2kπ/q) if |ω| � K|rq |,

qg(ω)
√

ω2 − K2|rq |2/|π [ω − K|rq | sin(qθ )]| if |ω| > K|rq |,
(43)

with |rq | = √
1 − 2�/K and φ(ω) = arcsin( ω

K|rq | )/q. Note
that for f ss to be a distribution the coefficients cj must satisfy
cj � −1/q and

∑q−1
j=0 cj = 0, leaving q − 1 free parameters

that define the distribution. Note that in the q = 2 case there
was a single parameter [i.e., c in Eq. (20)] that characterized
the asymmetry between the two clusters.

The steady-state order parameters can be calculated using
the same methods that led to Eq. (25), and analogous
expressions (not presented here) can be obtained.

C. Transient dynamics

To capture the transient dynamics, we study the PDE and
corresponding characteristics given by

∂tf + [ω − K|rq | sin(qθ )]∂θf = qK|rq | cos(qθ )f, (44)

⇒ θ̇ = ω − K|rq | sin(qθ ), (45)

ḟ = qK|rq | cos(qθ ), (46)

˙|rq | = q

[
−�|rq | + K

2
|rq |(1 − |rq |2)

]
. (47)

When |rq | is at steady state, we can solve Eqs. (45) and (46)
exactly, yielding equations analogous to Eqs. (A1) and (A2)
in the Appendix for the characteristics of θ and solution f ,
which we do not present here.

When |rq | is not at steady state its evolution is given by

|rq(t)| = P q/

√√√√1 +
[(

P q

ρ0

)2

− 1

]
eq(2�−K)t , (48)

where P q = √
1 − 2�/K and Eq. (44) can be solved nu-

merically. In Fig. 9 we compare |r1|, |r2|, and |r3| from
the numerically computed PDE solution (blue circles, green
triangles, and red squares, respectively) to a numerical sim-
ulation of Eq. (36) with q = 3 and N = 10 000 oscillators
(cyan, yellow, and magenta dashed lines, respectively). The
analytic solution for |r3| is plotted as a dot-dashed black
line.

V. DISCUSSION

We have found an analytic description of both steady-
state and transient dynamics of a system that shows cluster

synchrony given by Eqs. (1) and (2). In the large N limit,
q = 2 solutions can be decomposed into symmetric and
antisymmetric parts. The symmetric part, which evolves
independently from the antisymmetric part and toward a steady
state independent of initial conditions, can be found using a
variation of the OA ansatz [19] and is globally attracting. The
antisymmetric part, however, is shaped by the evolution of the
symmertic part, is strongly dependent on initial conditions and
has a large degree of multistability.

We have demonstrated how to manipulate the degree of
asymmetry in the cluster states through the application of a
short duration forcing term and modulation of the coupling
strength. Starting from a symmetric state, any degree of asym-
metry can be established by choosing the appropriate duration
and strength of the forcing term. Furthermore, reducing the
coupling strength decreases the amount of asymmetry in the
cluster configuration, while increasing it does not have the
opposite effect, as shown in Fig. 8(a). Therefore, modulations
of the coupling strength can be used to “erase” information.
While we demonstrated this procedure using a system with q =
2, similar methods could be employed for q > 2. In particular,
q − 1 parameters describe the cluster configuration, and the
system could be driven to a configuration that encodes desired
values of these parameters by the application of appropriately
chosen forcing functions. Using these techniques, it is possible
to encode information in the state of the system, which might
find applications in the development of Kuramoto-type neural
models.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

time t

|r|

|r
1
|

|r
2
|

|r
3
|

FIG. 9. (Color online) Comparison of |r1|, |r2|, and |r3| from the
PDE (44) (blue circles, green triangles, and red squares) to simulation
with N = 10 000 oscillators (cyan and magenta dashed lines) with
the same initial conditions and parameters from Fig. 6.
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Problems that remain open include generalization such as
the presence of noise and coupling functions with two or
more harmonics. Thus far the work of Ott and Antonsen
[19] has not been generalized to these cases, and no low-
dimensional analytic solution has been found. However, we
hypothesize that when noise is added to Eq. (3) spontaneous
switching can occur. The case where the coupling function
has more than one harmonic has also been considered [11]. In
certain cases, e.g., Hnm(θ ) = [K1 sin(q1θ ) + K2 sin(q2θ )]/N
where K2 � K1, the resulting system is well approximated
to the class of systems studied in this paper, and re-
sults, such as clustering and asymmetry, are qualitatively
similar.

ACKNOWLEDGMENTS

The work of JGR was supported by NSF Grant No. DMS-
0908221. The work of EO was supported by ONR Grant No.
N 0014-07-0734.

APPENDIX: CHARACTERISTICS

In this appendix we present the results of solving the PDE
in Eq. (27) via the method of characteristics when |r2| is
at steady state (i.e. |r2| = √

1 − 2�/K). The characteristic
ODEs are Eqs. (28) and (29). Given an initial phase θ0, the θ

characteristics evolve as

θ (t,θ0) = arctan

⎧⎨⎩
K|r2| −

√
ω2 − K2|r2|2 tan

[
arctan

(
K|r2|−ω tan θ0√

ω2−K2|r2|2
)− t

√
ω2 − K2|r2|2

]
ω

⎫⎬⎭ . (A1)

Several example characteristics for the locked and drifting
populations (ω = 1 and ω = 3, respectively), are plotted in
Figs. 4 (a) and 4(b).

For initial conditions f (θ,ω,t0) = g(ω)h(θ ) the θ charac-
teristics can be used to solve for f (θ,ω,t), given by

f (θ,ω,t) = g(ω)
h(θ0)

BD|θ=θ0

BD, (A2)

where B = ω − K|r2| sin[2θ (t)], and

D = [ω2 + K2|r2|2 cos (E) − K|r2|
√

ω2 − K2|r2|2 sin (E)]

×
{

ω − K|r2| sin[2θ (t)]

ωK2|r2|2 − ω3

}
, (A3)

where E = 2 arctan{[K|r2| − ω tan θ (t)]/
√

ω2 − K2|r2|2}.
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