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Network connectivity during mergers and growth: Optimizing the addition of a module
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The principal eigenvalue λ of a network’s adjacency matrix often determines dynamics on the network (e.g., in
synchronization and spreading processes) and some of its structural properties (e.g., robustness against failure or
attack) and is therefore a good indicator for how “strongly” a network is connected. We study how λ is modified
by the addition of a module, or community, which has broad applications, ranging from those involving a single
modification (e.g., introduction of a drug into a biological process) to those involving repeated additions (e.g.,
power-grid and transit development). We describe how to optimally connect the module to the network to either
maximize or minimize the shift in λ, noting several applications of directing dynamics on networks.
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I. INTRODUCTION

Spectral approaches to the analysis of complex networks
are becoming increasingly important due to their ability
to describe the effect of network structure on dynamical
processes. In particular, the principal eigenvalue λ of a
network’s weighted adjacency matrix A (Aij is nonzero if
there exists a link from node i to node j ) is significant for
dynamics on networks such as the synchronization of hetero-
geneous oscillators [1,2], epidemic and information spreading
[3], structural robustness (percolation) [4], the stability of
equilibria for certain systems of network-coupled ordinary
differential equations [5], the stability of gene expression
in genetic networks [6], and criticality in network-coupled
excitable systems [7].

Given the importance of λ in determining the outcome of
so many dynamical processes on networks, there has been
much interest in modifying λ through structural perturbations.
In particular, the effect of removing node j can be quantified
by its dynamical importance: Ij = −δλ/λ ≈ vjuj/v

T u [8],
where u (v) is the right (left) eigenvector corresponding to the
principal eigenvalue λ (i.e., Au = λu, vT A = λvT ), and δλ

is the decrease in the principal eigenvalue that would result
from the removal of node j . As an example application, a
node removal strategy targeting nodes with large dynamical
importance fragments a network more rapidly than targeting
nodes with large degree (number of links) [8]. Reference [9]
extended these results by finding perturbative expressions for
the change in eigenvalue δλ due to the removal of groups of
nodes as well as the addition or deletion of groups of links.
Reference [10] considered a perturbative approach to studying
the spectrum of networks with community structure.

In this study, we consider the effect on the largest eigenvalue
of a network’s adjacency matrix from the addition of a
secondary network (referred to as the module or community).
As opposed to previous work [8–10], we explicitly consider
the effect of the module’s topology on the resulting eigenvalue
and use this information to discuss how one can make optimal
connections to either maximize or minimize the effect on λ.
There are many applications where smaller groups adhere
to a larger network in social and economical networks [11]
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(e.g., the merging of corporations or markets) and biological
networks (e.g., modifying a system of biochemical reactions
with a drug [12,13] or the merging of ecosystems [14]). For
example, recent studies have shown that the effect on the
largest eigenvalue of the Jacobian matrix describing interac-
tions in an ecological network due to the addition of a species
may be integral to the formation of ecological communities
[15]. Moreover, our results offer new insight regarding the
prevalence of subgraph motifs (recurrent subgraphs having a
frequency higher than expected). While motifs have been cited
as essential building blocks in biological networks [16], their
role is not fully understood. For example, in contrast to several
studies indicating that the global stability and robustness of
a system is strongly influenced by the structure of motifs
[17], our study suggests that “how” a motif is connected to
the remaining network may be as significant as its structure
(see Fig. 5).

This paper is organized as follows. In Sec. II we describe
the problem and introduce variables. In Sec. II A we present
perturbative approximations for δλ in terms of spectral
properties of A and the module to be added. In Sec. II B
we test these approximations on several real networks. In
Sec. III we discuss how our results can be used to optimize
the connections between the original network and module. In
Sec. IV we discuss our results, citing several applications of
how they may be used to direct dynamics on networks. These
results have application in a range of cases from those in which
just a single merger needs to be optimally designed to cases
where a large number of small additions need to be optimized
to quickly evolve λ to a desired value.

II. MODULE ADDITION

We consider the addition of a secondary network, or
module, to an existing network, as shown schematically in
Fig. 1. The original network of size n is described by an
n × n weighted adjacency matrix A such that its entries Aij

satisfy Aij �= 0 if there exists a link from node i to node j

and Aij = 0 otherwise. Another network of size m (described
by an m × m adjacency matrix S) is to be connected to the
original network. We will refer to this secondary network as the
module. In what follows, we will sometimes refer to both the
original network and the module by their respective adjacency
matrices, A and S.

066112-11539-3755/2011/83(6)/066112(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.066112


DANE TAYLOR AND JUAN G. RESTREPO PHYSICAL REVIEW E 83, 066112 (2011)

S

A
Y

X

FIG. 1. (Color online) A module (described by matrix S) is
connected to the original network (described by matrix A) using
directed connections (described by the matrices X and Y ).

Assuming that the original eigenvalue problems Au = λu

and vT A = λvT have been solved, the modified eigenvalue
problem after module addition may be formulated as[

A X

YT S

] [
u + �U

�L

]
= (λ + δλ)

[
u + �U

�L

]
, (1)

where we use the following definitions: (i) δλ � 0 denotes
the shift in the largest eigenvalue; (ii) matrix X (Y ) is
size n × m, has positive entries, and describes all directed
links from A to S (S to A); (iii) �U is a vector of
length n which represents the shift in eigenvector u; and
(iv) �L is a vector of length m which represents the new
eigenvector components. For the typical case in which no
negative weights are allowed (i.e., Aij � 0), the principal
eigenvalues {λ,λ + δλ} and all entries in {u,u + �U,�L}
are guaranteed to be non-negative by the Perron-Frobenius
theorem for non-negative matrices [18]. Although in this
paper we only consider matrices with positive entries so
that the Perron-Frobenius theorem can be applied, in general
our analysis only requires that the eigenvalue with largest
magnitude λ is real and well separated from the remaining
eigenvalues. While this is typical for networks with positive
links [10], it is also observed for networks with negative links
provided that they represent a small fraction of the number of
links (e.g., see Fig. 6 in [2]).

A. Effect of module addition

We restrict our analysis to cases where the effect of the
module addition is small, which will allow us to study its
effect as a perturbation to the original eigenvalue problem. This
restriction is applicable to describing heavy-sided mergers
and applications for which a network is modified gradually,
such as the expansion of infrastructure. Considering the
upper and lower blocks of Eq. (1) independently and after
left-multiplying the top block by the left principal eigenvector
vT (i.e., vT A = λvT ), we obtain

δλ = vT X�L

vT (u + �U )
,

�L = [(λ + δλ)Im − S]−1 Y T (u + �U ),

where Im is the identity matrix of size m.
Assuming that the effect of the module addition is small,

we have δλ � λ, vT �U � vT u, and δλ � |λ − λS |, where
λS is the largest eigenvalue of the module. To first order, we
find

δλ ≈ 1

λvT u
vT XKSY T u, (2)

�L ≈ λ−1KSYT u, (3)

where we have defined KS ≡ (Im − S/λ)−1. These expres-
sions relate the change in the dominant eigenvalue δλ to the
topology of the added module S, the spectral properties of
the original networks (u, v, and λ), and the way in which
the module is coupled to the network by matrices X and
Y . When the module contains few nodes, approximating δλ

by inverting an m × m matrix is significantly more efficient
and, as we will see, offers more insight than solving the
original (m + n) × (m + n) eigenvalue problem. Using v = u

and X = Y for undirected networks, Eq. (2) simplifies to
δλ ≈ λ−1(XT u)T KS(XT u).

If the connections between the module and original network
are made randomly, we can use Eq. (2) to estimate average
values of δλ. Suppose that the entries of the matrix X

are independent random variables such that Xij = 1 with
probability x/(nm) and 0 otherwise, so that the expected
number of links from the original network to the added module
is x. Similarly, we assume that the entries of Y are independent
random variables which are 1 with probability y/(nm) and 0
otherwise. By averaging Eq. (2) and using the independence
of X and Y , we find

〈δλ〉 = ūv̄

λvT u

( x

m

) ( y

m

) ∑
i,j

KS
ij , (4)

where ū = n−1 ∑n
j=1 uj and v̄ = n−1 ∑n

j=1 vj . Thus, in addi-
tion to properties dependent on the original network, 〈δλ〉
is proportional to the product of the relative number of
connections to and from the module (xy/m2) and on the sum
of elements in the matrix KS . Moreover, for large λ/λS we
have

∑
ij KS

ij ≈ m, the number of nodes in S. While this
expression provides us with the average 〈δλ〉 when X and
Y are chosen randomly, as discussed in Sec. III, strategically
selecting connection matrices (X,Y ) (e.g., to maximize δλ)
can lead to significant variations in δλ for a given module.

For the optimization objectives explored later in this text,
as well as situations in which computing KS is inconvenient,
it is useful to represent Eqs. (2) and (3) using a series
expansion for KS . For λS < λ, we have KS = (Im − S/λ)−1 ≈∑k

j=0(S/λ)j . We thus define the kth-order approximations as

δλk = 1

λvT u

k−1∑
j=0

λ−j vT XSjY T u, (5)

�L
k =

k−1∑
j=0

λ−(j+1)SjY T u. (6)

Because the matrices (X,Y ) are often sparse and the module
is often much smaller than the network, Eq. (5) is typically
very computationally efficient. We note that for large enough
k, the error introduced by Eq. (2) dominates the error of series
truncation in Eqs. (5) and (6). No gain was found by using
k > 4 in the experiments that are to follow.

B. Numerical tests on real networks

We test our approximations by considering module
additions to four networks: a neural network of C. elegans [19];
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FIG. 2. (Color online) δλ and approximation errors ε were
averaged over 104 realizations of connecting a three-node module
to the networks in Table I using 10 random links (see text). Equation
(4) (stars) is shown to be accurate in the upper panel for typical results
for the neural network of C. elegans. The average relative error 〈ε〉 for
the neural network of C. elegans (circles) and a network of political
blogs (triangles) are given in the lower plot, where Eq. (2) (solid lines)
and Eq. (5) with k = 1 (dotted) and k = 2 (dashed) are shown.

a network of political blogs [20]; a network of protein-protein
interactions in the organism S. cerevisiae (i.e., brewers or
bakers yeast) [21]; and a network of associations between
words [22]. Their characteristics are summarized in Table I.
We begin by examining the average effects for adding a module
using random connections. First, matrices were constructed
by randomly selecting 10 entries in X and Y to be 1 and the
rest to be 0 (i.e., in the previous notation, x = y = 10). For
each realization δλact, the actual eigenvalue shift [i.e., solving
Eq. (1)], was compared to our approximations given by
Eqs. (2) and (5). In the top panel of Fig. 2, Eq. (4) (stars) is
shown to accurately predict the numerically observed average
〈δλ〉 (solid line) for connecting the modules to the directed
neural network of C. elegans using 104 realizations of (X,Y ).
Average values for the relative error ε = (δλ − δλact)/δλact

are plotted in the bottom panel for both the neural network
(circles) and a network of political blogs (triangles)
(see Table I) for all 13 nonisomorphic, directed modules of
size 3. (Results for the other networks were found to be similar
and are omitted for clarity.) Solid lines correspond to Eq. (2),
while dotted (dashed) lines correspond to Eq. (5) with k = 1
(k = 2).

It can be observed in Fig. 2 that 〈δλ〉 changes substantially
for the different three-node modules (for all networks, 〈δλ〉

TABLE I. Test networks used and their characteristics: number of
nodes N ; mean degree 〈d〉; largest eigenvalue λ; and second largest
eigenvalue λ2.

Network and reference N 〈d〉 λ λ2

Neural network of C. elegans [19] 297 7.9 9.2 5.7
Network of political blogs [20] 1490 12.8 34.4 26.8
Yeast PPI network [21] 2361 5.6 12.1 9.4
Word association network [22] 5018 12.7 13.4 10.2

typically increased ∼ 20% from module 1 to module 13).
Observe that the average error 〈ε〉 of Eq. (5) when the module
structure is not used [k = 1 (dotted lines in lower plot)]
is strongly correlated with 〈δλ〉 (upper plot). This is to be
expected, because the error from neglecting module structure
should be related to that structure’s ability to modify λ. Note
that for the political blog network (triangles), using k = 2
in Eq. (5) is nearly as accurate as directly using Eq. (2).
As previously mentioned, for large enough k the dominant
source of error comes from neglecting higher orders of δλ/λ

in the derivation of Eq. (2) [as opposed to series truncation in
Eq. (5)].

The validity of our approximations for specific connections
is shown by considering the addition of two bidirectionally
linked nodes (m = 2) to an undirected protein-protein interac-
tion (PPI) network and a directed network of word associations
(see Table I). In order to illustrate the dependence of δλ

on the matrices X and Y , we will consider two connection
strategies: connecting the module to nodes with either (A)
increasing nodal degrees or (B) increasing eigenvector entries.
For strategy A, the nodes in the original network are ordered
so that the in-degrees monotonically increase: d in

1 � d in
2 �

· · · � d in
N . Then for k ∈ {1,2, . . . ,N − 20}, we establish a

directed link from nodes {k,k + 1, . . . ,k + 20} to both nodes
in the module. The nodal out-degrees are then ordered such
that dout

i1
� dout

i2
� · · · � dout

iN
, and links are made to nodes

{ik,ik+1, . . . ,ik+20} from both nodes in the module. The case
k = 0 corresponds to connecting the network nodes with
smallest d in to both module nodes, which in turn connect to
the nodes with smallest dout; whereas the case k = N − 20
corresponds to connecting the nodes with largest d in to both
module nodes, both of which in turn connect to the nodes with
largest dout [shown schematically in Fig. 3(a)].

For strategy B, we now order the nodes in the original
network in order of increasing entries of the left eigenvector v

so that v1 � v2 � · · · � vN . As before, for k ∈ {1,2, . . . ,N −
20}, we connect nodes {k,k + 1, . . . ,k + 20} in the network
to both module nodes, both of which in turn connect to nodes
{ik,ik+1, . . . ,ik+20}, where the indices ij now correspond to
the ordering of the right eigenvector entries such that ui1 �
ui2 � · · · � uiN . For both strategies, the indices simplify for
undirected networks, for which we have u = v, dout = d in, and
ik = k.

In Fig. 3, δλ is plotted for strategies A and B as a function
of the parameter k for both (a) the directed word association
network and (b) the undirected PPI network. For strategy B,
the crosses show the approximation given by Eq. (2) and the
solid line shows the numerically calculated value from directly
solving the eigenvalue problem Eq. (1). The x’s and circles,
respectively, show the same quantities for strategy A. The
first observation is that the approximation for δλ works well,
with only a small deviation as the perturbation becomes large
(not shown). One can observe that strategy B is superior for
yielding either large or small δλ for both networks. However,
the two strategies are similar for producing large δλ for the
PPI network in Fig. 3(b). This is expected when the first-order
approximations to the eigenvectors (ui ∝ dout

i and vi ∝ d in
i

[8]) are valid. The results of this experiment suggest that it
may be useful to devise connection strategies to systematically
maximize (or minimize) δλ.

066112-3



DANE TAYLOR AND JUAN G. RESTREPO PHYSICAL REVIEW E 83, 066112 (2011)

0 2500 5000

10
−10

10
−5

10
0

k

δ
λ
/
λ

Word association network

S S

A

k

A

(a)

0 1200 2400

10
−10

10
−5

10
0

k

δ
λ
/
λ

PPI network

δλ, strategy B

Eq. (2), strategy B

δλ, strategy A

Eq. (2), strategy A

(b)

FIG. 3. (Color online) Eigenvalue shift δλ for connecting a two-
node module to (a) the word association network and (b) the PPI
network. Equation (2) (crosses) agrees well with actual values δλact

(solid line) for strategy B. The x’s and circles show the same respective
quantities for strategy A. As indicated by the drawing, increasing
k corresponds to connecting the module to nodes with increasing
degrees (strategy A) or eigenvector entries (strategy B).

III. OPTIMIZING CONNECTIONS

The issue of efficiently decreasing λ by removing nodes
or links from a network has been recently addressed [8],
where it was found that when removing a single node, λ is
most decreased by removing the node with largest dynamical
importance. We consider a closely related issue: given a
module S to be added to a network A with given constraints
(such as a fixed number of connections), how should the links
between the network and module be chosen to either maximize
or minimize δλ? Given some set of constraints and staying
within our previous assumptions, we will look for matrices
(X,Y ) that maximize (or minimize) δλ in Eq. (2). In the
examples that follow, it is helpful to assume that the node
indices are now ordered such that the left eigenvector entries
are in decreasing order: v1 � v2 � · · · � vn � 0. In addition,
the entries of the right eigenvector are ordered using indices {li}
so that ul1 � ul2 � · · · � uln � 0. (If A is symmetric, u = v

and li = i.) We will present our optimization methodology for
two examples, yet the techniques presented are general and
have potential application beyond these particular constraints.

A. Example I: Multiple links per module node

In the first example we assume that the number of
connections from the original network to the module, x, and
the number of connections from the module to the original
network, y, are fixed and less than n, the number of nodes in the
original network. It is also assumed that all links have strength

i j

FIG. 4. (Color online) A typical optimal connection for example
I: node i (a point of contraction with large left eigenvector entry vi)
points to a node in the module, which in turn points to node j (a point
of expansion with large right eigenvector entry uj ).

one (i.e., Xij ,Yij ∈ {0,1}) and multiple links per module node
are allowed.

The right-hand side of Eq. (2), which approxi-
mates the quantity to be maximized, is proportional to∑

i,j (XT v)Ti KS
ij (Y T u)j . This sum can be maximized by

(i) finding indices a and b such that Kab = maxij {Kij } and
(ii) choosing X and Y to make (XT v)Ta and (Y T u)b as large
as possible. The scalar (XT v)Ta is maximized by placing the
x ones in the a column of X and in positions 1,2, . . . ,x

corresponding to the largest values of v, while (YT u)Tb is
maximized by placing the y ones in the b column of Y

and in positions l1,l2, . . . ,ly corresponding to the largest
values of u. In this way, (XT v)Ti = δia

∑x
j=1 vj and (Y T u)Ti =

δib

∑y

j=1 ulj , where δij is Kronecker’s delta. The maximum of
Eq. (2) is then

δλmax ≈ Ks
ab

λvT u

y∑
i=1

vi

x∑
j=1

ulj . (7)

This result implies δλ may be maximized for the constraints
of example I by connecting the x nodes with the largest left
eigenvector entries vi in the original network to a single node
in the module (having index a), and by also originating all
links from the module to the original network from a single
module node (having index b) to the y nodes in the original
network with the largest entries of the right eigenvector u.
For large values of λ/λs , the maximum entry of matrix Ks is
typically in its diagonal, yielding a = b as shown in Fig. 4.

For a heuristic interpretation of this result, let us assume
that Aij ∈ {0,1} and denote L

o,p

i = ∑
j (Ap)ij and L

t,p

i =∑
j (Ap)ji as the number of paths of length p originating from

and terminating at node i, respectively. Thus Lp = ∑
ij (Ap)ij

is the total number of paths of length p. These quantities satisfy
||Lo,p

i ||−1
2 L

o,p

i → ui , ||Lt,p

i ||−1
2 L

t,p

i → vi , and Lp+1/Lp → λ

as p → ∞ [23]. Therefore connecting nodes with large vi

(which receive many paths) to nodes with large ui (which
distribute many paths) will have the largest impact in how
Lp grows with p, which determines λ. We therefore define a
node i with large vi as a point of contraction and a node j

with large uj as a point of expansion. Therefore our result for
example I is that the effect of the whole module is to act as a
bridge from points of contraction to points of expansion in the
original network.

B. Example II: One link per node

In the second example we require that, in addition to a
fixed number of links x and y with unity strength, no more
than one link can be added to a particular node in the module
or original network. Because undirected links are equivalent to
two links and violate our constraint, it is reasonable (although
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FIG. 5. (Color online) (a) Typical optimal link selections for
example II for x = y = 2. Two points of contraction (NO) link to
two module nodes (SI) and the remaining two module nodes (SO)
link to two points of expansion (NI). The module also contains a
directed complete bipartite graph pointing from SI to SO. (b) Under
the restrictions of example II, the module in Fig. 5(a) was connected
to the neural network for C. elegans using various orientations. Solid
lines indicate letting NI = {l1,l2} and either NO = {1,2} (thick) or
NO = {2,1} (thin). Symbols show Eq. (2). Approximating points of
contraction (expansion) by nodes with large d in (dout) also offers a
decent strategy (dashed).

not necessary) to assume that the network and module are
directed. To treat this case, we maximize successive terms in
Eq. (5). The first term, vT XYT u/λ, vanishes since any entry
of XYT is nonzero only if there is a module node that has
links both to and from the network, a situation which is not
allowed by our constraint. Therefore, we maximize the next
term, (XT v)T S(Y T u)/λ2. As shown in Fig. 5(a), let us denote
the set of nodes in the original network that point to the module
as NO (network outgoing), the set of nodes in the module that
are pointed to by the original network as SI (module incoming),
the set of nodes in the module that point to the original network
as SO (module outgoing), and the set of nodes in the original
network that are pointed to by the module as NI (network
incoming). Because no node can have more than one new link,
there is a one-to-one correspondence between nodes in NO
and nodes in SI. The index of nodes in SI will be represented
as ij , where node j in NO points to node ij in SI. We have
(XT v)Tij = vj if j ∈ NO and ij ∈ SI, and 0 otherwise. With

a similar notation for SO and NI, we have (Y T u)mk
= uk if

mk ∈ SO and k ∈ NI, and 0 otherwise. It follows that Eq. (5)
yields

δλ2 = 1

λ2vT u

∑
j∈NO

vj

∑
k∈NI

Sij mk
uk.

This expression is maximized if S contains a directed complete
bipartite graph for disjoint subsets SI and SO such that every
node in SI points to every node in SO [see Fig. 5(a)]. Assuming

that one can be found, we may set Sij mk
= 1 and look for sets

NO and NI that solve

δλmax
2 =

(
1

λ2vT u

)
max

NO∩NI=∅

⎛
⎝ ∑

j∈NO

vj

∑
k∈NI

uk

⎞
⎠ . (8)

Let Q = {i}xi=1 ∩ {li}yi=1. If Q = ∅ then Eq. (8) is solved by
letting NO = {i}xi=1 and NI = {li}yi=1, which yields

δλmax
2 ≈ 1

λ2vT u

x∑
j=1

vj

y∑
i=1

uli . (9)

As indicated in Fig. 5(a), this corresponds to selecting
nodes of contraction for NO and nodes of expansion
for NI.

The significance of link choices for maximizing δλ is shown
in Fig. 5(b), where the module in Fig. 5(a) was added to the
neural network of C. elegans with constant node selections
for NI and NO but using several module orientations [defined
as a particular choice for the disjoint sets SO and SI in the
module, and shown in the horizontal axis of Fig. 5(b)]. The
solid lines show δλ/λ found numerically using NI = {l1,l2}
and either NO = {1,2} (thick) or NO = {2,1} (thin) (see next
paragraph for discussion). Symbols indicate δλ/λ found using
Eq. (2). One can observe that our maximization strategy for
example II [Fig. 5(a)] does in fact maximize δλ (see orientation
6). An important practical issue is that the eigenvectors may
be unknown and require estimation using local information.
One can observe that attempting to maximize δλ using the
first-order approximations vi ∝ d in

i and ui ∝ dout
i [8] may also

be a good strategy (dashed lines). If necessary, a more refined
approximation for the eigenvectors may be sought (e.g., using
second-order neighbors [9]).

It is important to note that we have so far neglected
higher-order terms of Eq. (5) in addressing example II, which
are responsible for the difference in δλ for the permutation
NO = {1,2} or NO = {2,1}. Attempting to maximize the
third term of the series in Eq. (5) (which is proportional to
vT XS2Y T u) while using the nodes of contraction, 1 and 2 (with
v1 ≈ 0.58 and v2 ≈ 0.23), we see that the more-dominant
point of contraction (node 1) should link to the module node
indicated by the dashed arrow in Fig. 5(a). (Note that there is
a path of length 2 stemming from this node to each node in
SO, whereas there are none for the other node in SI.) Unlike
permuting nodes in SI, permuting nodes in SO had little effect
for this network since ul1 ≈ ul2 ≈ 0.23.

Up to this point we have assumed Q = ∅, where Q is
defined just after Eq. (8); however, this may not always be
the case. For example, as more links are made (i.e., for
increasing x,y), one would expect some nodes to have large
values for both vi and ui . This may also occur for networks
with correlations between d in and dout and, in fact, always
occurs for undirected networks where li = i ∀ i. For these
situations, nodes in Q must be allocated to either NO or
NI and additional nodes must be selected. Considering the
limiting case of an undirected network under the constraints
of example II, maximization of the second-order term in
Eq. (5) indicates that we should choose NO,NI ⊂ {i}x+y

i=1 .
(Recall that the first-order term is zero by our constraints.)
The allocation of these indices should then correspond to
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successively maximizing the third-, fourth-, . . . , kth-order
terms until all degrees of freedom have been exhausted. While
this strategy of successive maximization does not guarantee
the optimal connections (which would require considering all
possible links between S and A), it is computationally efficient
and ensures a near-optimal solution.

IV. DISCUSSION

While we have presented an efficient strategy for maximiz-
ing δλ for the addition of a module under two examples of
constraints, our methodology is general and is thus applica-
ble for many constraints not discussed here. For example,
the problem of minimizing δλ under the constraints of
example II may be solved by minimizing successive terms
of Eq. (5). Heuristically, this corresponds to connecting nodes
in A with small values of vn to the module, and then from the
module to nodes in A with small values of un. The module
should also be oriented so as few links as possible point from
SI to SO. We now discuss several applications of using module
addition(s) to direct dynamics on networks.

Increasing λ has many real-world applications. For ex-
ample, because λ relates to the ability of network-coupled
oscillatory systems to synchronize [1,2], one or several
module additions to increase λ may be useful to promote
synchronization in, for example, a biological process or power
grid. Moreover, epidemic thresholds of spreading processes
on networks are often dependent on λ−1 [3]. Increasing λ

can increase the connectivity of a network, improving flow
and reducing the epidemic threshold. This may be useful,
for example, if one wants to improve communication over
a social network or routing system. The related problem
of percolation on networks (where nodes and/or links are
randomly removed) is also related to λ−1 [4]. Increasing λ can
increase a network’s robustness against network degradation
under failure, blackout, jamming, or attack.

For other dynamical systems, it is beneficial to have a
small value for λ. For example, the instability of equilibria for

a system of network-coupled ordinary differential equations
(e.g., interactions in a metabolic network) is related to the
largest eigenvalue of a weighted adjacency matrix defined in
terms of the system’s Jacobian [5] (i.e., if λ < 1, then the
equilibria are stable). When the eigenvalue of the Jacobian
matrix with largest magnitude is real and well separated
from the bulk of the spectrum, our method is applicable.
For example, besides choosing appropriate link weights to
keep δλ small, choosing optimal connections and module
orientation (as shown in Sec. III) may also aid in preserving
the stability of equilibria for a system undergoing modification.
Such analysis may be relevant, for example, in understanding
the formation of ecological communities for which the largest
eigenvalue of the system’s Jacobian has already been suggested
to guide the network’s evolution under species additions and
subtractions [15].

Future applications of our results are also not limited
to network dynamics for which the dependency on λ is
currently well established. For example, minimizing δλ for
a module addition may present an effective strategy for
minimizing global effects during a network modification.
Possible applications may include aiding the development of
systems-level drug design by indicating candidate drug targets
that are less invasive (e.g., nodes with middle-valued degrees
are typical [12]). The importance of developing mathematical
approaches for this promising field are often mentioned [13].
Another open question is the implications of our results on the
prevalence of subgraph motifs, which have been proposed to
be the basic building blocks of biological networks [16]. In
contrast to several studies showing that global dynamics of a
system can depend on the structure of subgraph motifs [17],
our results suggest that “how” motifs are connected in the
network may be as important as their structure.
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