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Line-defect patterns of unstable spiral waves in cardiac tissue
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Spiral wave propagation in period-2 excitable media is accompanied by line defects, the locus of points with
period-1 oscillations. Here we investigate spiral line defects in cardiac tissue where period-2 behavior has a
known arrhythmogenic role. We find that the number of line defects, which is constrained to be an odd integer,
is 3 for a freely rotating spiral, with and without meander, but 1 for a spiral anchored around a fixed hetero-
geneity. We interpret this finding analytically using a simple theory where spiral wave unstable modes with
different numbers of line defects correspond to quantized solutions of a Helmholtz equation. Furthermore, the
slow inward rotation of spiral line defects is described in different regimes.
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Spiral waves are observed in extremely diverse physical
and biological excitable media and are known to play a key
role in the genesis of abnormally rapid life-threatening heart
rhythm disorders [1]. Despite considerable progress to date,
complex spatiotemporal behaviors resulting from unstable
spiral wave propagation remain poorly understood theoreti-
cally, with the exception of meander [2,3], a classic spiral
core instability with flowerlike tip trajectories. A particularly
rich dynamics results from instabilities in period-2 media
where the local dynamics of the medium, i.e., the dynamics
of uncoupled excitable elements, exhibits a period-doubling
bifurcation as a function of parameters of the medium or the
external stimulation frequency. Although period-2 behavior
has been observed in different excitable and oscillatory me-
dia, it has received particular attention in a cardiac context.
The hallmark of period-2 behavior in this context is altern-
ans, a beat-to-beat alternation in the duration of cardiac ex-
citation, which has been linked to the onset of lethal heart
rhythm disorders [4].

Unstable spiral wave propagation in period-2 media is
invariably accompanied by “line defects,” which are the lo-
cus of points where the dynamics is locally period 1. Line
defects were first observed in computer simulations of
coupled oscillators [5,6] and subsequently in Belousov-
Zhabotinsky (BZ) reaction experiments [7-9] and in vitro
cardiac cell tissue cultures [10,11]. Computer simulations
also predicted the existence of line-defect turbulence and
phase bubbles [12], which were later observed in BZ reaction
experiments [13,14] (see [15] for a review). Here we study
the dynamics of line defects in cardiac action propagation
models. Local period-2 dynamics has been hypothesized in
this context as a potential mechanism for heart fibrillation
[1,16-18] by inducing spiral wave breakup. Despite recent
studies of period-2 spiral wave bifurcations [19], spiral line-
defect patterns have not been systematically investigated in
cardiac tissue. In this Rapid Communication, we investigate
the selection and dynamics of line-defect patterns resulting
from unstable spiral wave propagation in cardiac tissue.
Moreover, we interpret our findings using an amplitude equa-
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tion framework recently used to study the evolution of line
defects during periodic stimulation from a single site [20]. In
this framework, the spatiotemporal modulation of the phase
and amplitude of period-2 oscillations is described by a
simple partial differential equation that can be readily ana-
lyzed. Our study is based on the standard wave equation for
cardiac tissue,

aV=W*V-1,Vy)C,, (1)

where V is the transmembrane voltage, vy is the voltage dif-
fusion coefficient, C,, is the membrane capacitance, and y is
a vector of gate variables that controls the flow of ions
through the membrane, and hence the total membrane ionic
current I,,. We studied different models of 1,,(V,y) and gat-
ing kinetics to explore universal features of line-defect pat-
terns that depend on qualitative properties of core and plane
wave instabilities. The latter are manifested either as station-
ary [20,21] or traveling [20] spatial modulations of period-2
oscillation amplitude with an intrinsic spatial scale deter-
mined by parameters of the excitable medium [20]. These
spatial modulations have nodes with period-1 dynamics in
one dimension, or nodal lines in two, which correspond here
to line defects in the spiral far field. We therefore chose
models to explore line-defect patterns for stationary and trav-
eling nodes with and without meander. The model of Ref.
[17] has pinwheel spirals (no meander) and stationary nodes
under periodic pacing. The other two models of Ref. [22] and
Ref. [20] both exhibit meander and have fixed and traveling
nodes, respectively.

Freely propagating spiral waves in all three models were
studied by numerically solving Eq. (1) in a circular domain
of radius r,=3 cm with no-flux boundary -conditions,
&,V|,=,e=0. Anchored spirals were studied by introducing an
inexcitable disk of radius r; and imposing no-flux conditions
on both the inner and outer radii, V|r_, =4 V|,_, =0. We
implemented the phase-field method of Ref. [23] which au-
tomatically handles no-flux boundary conditions in an arbi-
trary geometry using a finite-difference representation of the
Laplacian on a square grid, and iterated Eq. (1) using a
simple explicit Euler scheme. Model parameters are identical
to the published ones except those listed in the caption of
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FIG. 1. (Color online) Membrane voltage (left) and correspond-
ing alternans amplitude a (right) for different ionic models and
geometries: model of Ref. [17] without [(a) and (b); Re=1.15] and
with a circular inexcitable disk of radius r;=0.5 cm [(c) and (d);
Re=1.25], and model of Ref. [22] without disk [(e) and (f); 7p,
=30 ms, 1;=10 ms, £,,=2.0 ms]. In (a), (c), and (e), gray (orange
online) indicates depolarization, and white indicates the trajectory
of the spiral tip. In (b), (d), and (f), dark gray (red online) and light
gray (yellow online) correspond to >0 and a <0 regions, sepa-
rated by line defects (solid lines); the gray (color online) scale does
not vary outside the indicated range of a. Line defects in (b), (d),
and (f) rotate counterclockwise with a period that is approximately
17, 8, and 9 times the clockwise spiral rotation period in (a), (c),
and (e), respectively. The discontinuity of a across the dashed line
is a consequence of the definition of the common beat number (see
text).

Fig. 1. The latter were chosen for intermediate action poten-
tial duration restitution slopes, which suffice to produce un-
stable spiral waves with line defects in each geometry, but
are not steep enough to cause wave breakup in this domain
size.

We used a half plane wave as the initial condition to ini-
tiate a spiral wave (obtained by first triggering a full plane
wave and resetting part of the circular domain to the resting
state). To track line defects, we define at each point x and
time ¢ a local beat number n(x,7), set everywhere initially to
zero after the half plane wave is created, and increased by
one at the end of each action potential, i.e., every time that
the voltage V(x,r) crosses a fixed threshold V. with dV/dt
< 0. We then define the period-2 alternans amplitude as

a(x,0) = (= )" [D(,n(1)) = D(x,n(0) - D)2, (2)

where D(x,n)=fv(x’,r)>Vr’n(xy,,)=n_1dt’ is the local action po-
tential duration (APD) and n.(f) = minyn(x,1) is the common
beat, i.e., the largest beat number that has been registered at
all points at time ¢. The line defects are then the locus of
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FIG. 2. (Color online) Schematic illustration of transitions from
(a) three to one and (b) one to three line defects and corresponding
examples from simulations of the model of Ref. [17] with the same
conventions and parameters as in Fig. 1(b). The small circle (green
online) in (a) and (b) represents the spiral core region or a small
anchoring obstacle.

points where a(x,#)=0 at any instant of time. The use of a
common beat number introduces here a discontinuity in a
(indicated by dashed lines in Fig. 1) since the APD of a given
beat might change as the wave front rotates around the spiral
tip. This discontinuity, however, does not affect the dynam-
ics. Other methods to track line defects [7,24] yield similar
results except for inessential imaging differences.

Results of simulations that pertain to the selection of the
number of line defects are shown in Fig. 1. The top four
panels reveal that the pinwheel spirals simulated with the
two-variable model of Ref. [17] exhibit three line defects
when propagating freely in spatially homogeneous tissue, but
only one line defect when anchored around an inexcitable
disk of 0.5 cm radius. Furthermore, the bottom two panels
show that, for the more physiologically realistic three-
variable model of Ref. [22], freely propagating spirals still
exhibit three line defects even though the spiral tip mean-
ders. We have repeated these simulations in domains of dif-
ferent sizes and shapes and confirmed that the results do not
depend on the particular geometry we are showing. In addi-
tion, the results are robust to the presence of other spirals.

Since anchored spirals become free in the limit of vanish-
ing obstacle size, one would expect transitions from one to
three (three to one) line defects to occur with decreasing
(increasing) obstacle size. Indeed, for the model of Ref. [17],
we found three line defects for obstacles with diameter
smaller than ~0.1 cm, including the freely propagating pin-
wheel spiral (r,=0) in Fig. 1(b), and one line defect for di-
ameters larger than ~0.3 cm as in the example of Fig. 1(d).
For intermediate diameters, we found complex behaviors
marked by transitions from three to one or one to three line
defects, as illustrated in Fig. 2.

Let us now turn to interpret our results in the amplitude
equation framework. We restrict our analysis to nonmeander-
ing spiral waves. We will use a simplified version of the
amplitude equation describing the spatiotemporal dynamics
of alternans in two-dimensional tissue derived in [20] [Eq.
(78)]. Assuming a constant conduction velocity, diffusive
coupling independent of the direction of propagation of the
wave front, and keeping only linear terms in a, the full am-
plitude equation presented in [20] reduces to

Tda=oa+ &V2a. (3)

The alternans amplitude a is subject to the radial d,a],.
= dal, _=0 and angular a(f+21r,t)=—a(6,t) boundary condi-
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FIG. 3. (Color online) Theoretical radial and angular (insets)
dependence of the alternans amplitude for (a) one and (b) three line
defect modes.

tions. The latter constrains the number of line defects to be
an odd integer and results from the change in beat number
across any closed circuit enclosing the spiral tip for steady-
state alternans. It follows directly from the definition of a
[Eq. (2)] and the requirement that the voltage be continuous
everywhere in space. In addition, o=Inf’, where f’, the
slope of the action potential duration restitution curve de-
fined by D"*!'=f(T—D"), controls the onset of alternans and
&~ (yD)"2, where D is the value of the action potential du-
ration at the period-doubling bifurcation (o=0), measures
the scale over which the voltage dynamics is diffusively
coupled on the time scale of one beat.

This linear stability problem is easily solved by the
substitution a(r,f)~eW(r,6) which transforms Eq. (3)
into a Helmholtz equation for W(r, 6). The latter can then be
solved by separation of variables with the substitution
W(r,0)~R(r)®(6). The angular part is found to be
0,(6)=sin[(n+1/2) 6], where mode n corresponds to 2n+1
line defects. The radial part obeys a Bessel equation. For
r;>0, it has solutions R, ,(r)%J",_; (k,ut ) i1k ml)
I kgt ) __12(k,, 1) that satisfy the outer radial
boundary condition aa|,e=0, where n,m=0,1,..., and the
inner condition &ra|ri=0 determines &, ,,, and hence the
growth rate ), T=0— §r;2ki’m. We find that the smallest
ky.» occurs for n=0 independently of the ratio r,/r;. There-
fore, the mode corresponding to a single line defect is the
most unstable when the spiral is anchored. This agrees with
our numerical observations in Fig. 1(d). For freely rotating
spirals, r;=0, J_,_;,»(r) diverges at the origin, so the solu-
tions are R, ,(r) % J,,1,5(k, ), where k,,r, is the mth zero
of J)(r). The most unstable modes are, in this order, n=0 and
n=1, corresponding to one and three line defects, respec-
tively (see Fig. 3). However, Jy (ko or) has a divergent de-
rivative at the origin that is incompatible with the physical
requirement that the voltage, and hence the APD, must vary
smoothly on a scale & in cardiac tissue. This requirement
follows from the fact that “thick” spirals generically form in
cardiac tissue for normal excitability, meaning that the angu-
lar distance between the spiral wave front and wave back
increases with r on a scale larger than ¢, as is apparent in Fig.
1(a). For weak excitability, in contrast, “thin” spirals are
formed where the distance between front and back becomes
constant at a distance r~ & from the core. In this case, the
alternans amplitude can be finite at a distance r~ ¢ and
hence lead to a boundary condition on the outer scale r> & of
the spiral pattern where a is finite in the core. Such a bound-
ary condition favors the selection of one line defect as in the
case of anchored spirals, and we have indeed observed free
spirals with one line defect for weakly excitable parameter
ranges of the two-variable model of Ref. [17]. It is also rea-
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FIG. 4. (Color online) {a),y,, versus radial distance r for the
pinwheel spiral (thin solid line, red online) and anchored spiral
(thick solid line, blue online), and respective theoretical radial
modes R; o(r) (thin dashed, red online) and R o(r) (dotted-dashed
line, blue online).

sonable to conjecture that the selection of one line defect in
some oscillatory media (e.g., [6]) is due to the formation of
thin spirals in these media, where period-2 oscillations ex-
tend into the core region r ~ ¢ as for weakly excitable cardiac
spirals. From this standpoint, the selection of three line de-
fects for thick spirals in cardiac tissue is a major result of our
work in comparison to previous findings in other oscillatory
media.

Interestingly, a three-line-defect pattern is also selected
with meander present [Fig. 1(f)], thereby suggesting that the
boundary condition on a on the outer scale of the line-defect
pattern is not strongly affected by meander. However, since
our theory does not apply to meandering spirals, this case
remains open to future theoretical study.

The analysis also predicts qualitative features of the radial
distribution of alternans amplitude for three- and one-line-
defect patterns of Figs. 1(b) and 1(d), respectively. Figure 4
compares the numerical radial distributions of root-mean-
square amplitude {a),s averaged over a full line-defect rota-
tion period for three line defects (thin solid line) and one line
defect (thick line), with the corresponding radial modes from
the theoretical analysis (dashed lines) scaled to have the
same radial average as the observed curves. The theory pre-
dicts well that the alternans amplitude is more strongly sup-
pressed near the core for a larger number of line defects.

So far our analysis has assumed that the wave speed is
constant, which predicts that line defects extend straight out
of the core and are stationary, as implied by the angular
distribution sin[(n+1/2)6] of linearly unstable modes (see
Fig. 3). In contrast, the simulations in Fig. 1 show that line
defects have a spiral shape and slowly rotate inward in the
opposite direction to the spiral wave front. Line-defect mo-
tion can generally be induced by both line-defect curvature
and the dependence of the wave speed ¢ on the interval /
between two waves, known as the conduction velocity (CV)
restitution curve in the cardiac literature. While a full stabil-
ity analysis that includes these effects would be required to
treat line-defect motion in general, two important limiting
cases can be readily analyzed.

The first pertains to anchored spiral waves for medium
parameters where plane waves paced at the spiral rotation
period exhibit stationary line defects, as for the model of
Ref. [17] studied here. In this case, we expect line-defect
motion to be generated predominantly by the spiral wave
front dynamics around the anchoring obstacle. Neglecting
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FIG. 5. (Color online) Comparison of numerical (circles, red
online) and theoretical (solid line) line-defect rotation frequencies
for spiral waves anchored to disks of varying radii for the model of
Ref. [17].

wave front curvature effects, this dynamics should be ap-
proximately described by that of a propagating pulse in a
one-dimensional ring of perimeter L=27r; [20,25]. To test
this hypothesis, we computed the quasiperiodic frequency ()
of the local medium dynamics induced by line-defect rota-
tion for anchored spirals for the model of Ref. [17]. The
frequency was obtained by fitting the time series
a(r,jT)/a(r,0) at a single point r to 7/ cos(QTj+ ), with 7,
), and & the fitting parameters. For the theory, we used the
dispersion relation giving the quasiperiodic frequency ()
modulating alternans, a = ¢"¥, in a one-dimensional ring de-
rived in Ref. [20],

M1 —i2Ak) = (1 — iwk = E)F () + i2Ak,  (4)

where k=7/L+QT/L is the wave number corresponding to a
single line defect and A=c'(I)/(2¢?). The APD and CV res-
titution curves f(I) and c(I) were calculated in a one-
dimensional cable as in Ref. [20]. In addition, the intercellu-
lar coupling parameters w and ¢ were estimated as w
~2y/c and &~ (yD)"? [20]. The comparison in Fig. 5
shows that the ring-based theory predicts reasonably well the
frequency of line-defect rotation for anchored spiral waves of
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different period 7, which was varied here by increasing the
obstacle radius r; in the simulations.

The opposite limit that can also be readily understood is
the one where plane waves paced at the spiral rotation period
exhibit line defects that move toward the pacing site, which
generally occurs for steeper CV restitution. In this case, line-
defect motion is expected to be dominated by the far-field
spiral dynamics [20]. We have checked that, for the two-
variable model of Ref. [20], spiral line defects indeed rotate
inward with a frequency equal to the product of the velocity
of the planar line defects and the inverse of their spacing.
This property was purposely checked in a domain much
larger than the spiral wavelength (r,=18 cm) and with an
obstacle size (r;=0.72 cm) sufficient to prevent spiral wave
breakup inherent in this model. However, we expect this be-
havior to be generic for systems with traveling planar line
defects and to also apply to freely rotating spirals with three
line defects for parameters where breakup does not occur.

In summary, we have surveyed spiral line-defect patterns
in simplified models of cardiac excitation with period-2 dy-
namics. Although far from exhaustive, this survey yields the
striking finding that freely propagating and anchored spiral
waves select different numbers of line defects. This opens up
the possibility to distinguish free and anchored spiral waves
in cardiac tissue by monitoring the number of line defects.
We have shown that spiral wave unstable modes with differ-
ent numbers of line defects correspond to topologically
quantized solutions of a Helmholtz equation. In this frame-
work, the boundary condition on the period-2 oscillation am-
plitude in the spiral core, which is fundamentally different
for free and anchored spirals, selects the number of line de-
fects. Furthermore, we have found that line-defect inward
rotation can be driven either by the core or by far-field wave
front dynamics, with concomitantly different frequencies.
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