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Onset of synchronization in large networks of coupled oscillators
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We study the transition from incoherence to coherence in large networks of coupled phase oscillators. We
present various approximations that describe the behavior of an appropriately defined order parameter past the
transition and generalize recent results for the critical coupling strength. We find that, under appropriate
conditions, the coupling strength at which the transition occurs is determined by the largest eigenvalue of the
adjacency matrix. We show how, with an additional assumption, a mean-field approximation recently proposed
is recovered from our results. We test our theory with numerical simulations and find that it describes the
transition when our assumptions are satisfied. We find that our theory describes the transition well in situations
in which the mean-field approximation fails. We study the finite-size effects caused by nodes with small degree
and find that they cause the critical coupling strength to increase.
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I. INTRODUCTION two moments of the degree distribution of the nodes in the

_ o network: Ky,i=kq(d)/(d?), where
In recent years, the importance of networks in different

fields has become increasingly clddr3]. It has been ob-

served that many real-world networks possess topologies N

which introduce important effects on the processes taking (% = 1 S (1)
place on them. One of the most interesting and important of Ny

these processes is the synchronization of coupled dynamical

systems. Synchronization is found in fields ranging from

physics to biology{4,5] and in many cases involves a large yhe degreed, of noden is the number of connections be-

network of dynamical systems. The structure of this network, .o noden and other nodes of the network. ahdis the

plays a crucial role in determining the synchronization of thenumber of nodes in the network.
coupled elements.

In this paper we go beyond the mean-field approximation,
Kuramoto[6] proposed and exactly solved a model for gy aining a better estimate of the critical coupling strength.
the synchronization of all-to-all uniformly coupled phase 0S-\\e also describe the behavior of a suitably defined order

cillators. His model and solution have become a guide as tBarameter past the transition. We show how our results re-
how the coupling strength and the properties of the oscillag,ce o those of the mean-field theory when an additional
tors (e.g., their natural frequenciesnight affect their syn-  ggymption is introduced and present examples in different
‘?egimes. We find that in some regimes the mean-field ap-
) ) proximation does not provide an adequate description of the
model with networks different fr_om the aII—to-gII netv\_/ork transition, whereas our more general estimate does. We also
have been mad¢8]. Networks in which the interaction gpqy how our results explain observations for networks with

strength depends on a distance have been studied, and it '"[ﬂétance-dependent interaction strength. We study finite-size

been numerically found that a transition from incoherent tOy¢tacts caused mainly by nodes of small degree and find that

h h del i ks with I %he transition point is shifted to larger values of the coupling
strength[9]. The Kuramoto model in networks without glo- gyrength when these effects are taken into account.

bal coupling has recently started to receive attention. It was g paper is organized as follows. In Sec. Il we present
numerically observefil0] that a transition is als_o presentin g . theory and discuss the mean-field approach. In Sec. Ill
scale-free networks. Very recently, a mean-field theory Qe hresent numerical examples for different situations and
determine the transition to synchronization in MOre geneérgagt the different approximations. In Sec. IV we discuss the
networks has been proposgtl, 12. The mean-field theory  c4qe of networks with nonuniform coupling strength. In Sec.
result is that the critical coupling strengkh,f is determlne_d V we present a linear analysis of the problem. In Sec. VI we
by the Kuramoto valug, rescaled appropriately by the first ;,ngjger finite-size effects caused primarily by nodes with a

small number of connections. Finally, we conclude in Sec.

VII. Some calculations are relegated to Appendixes A, B,

*Electronic address: juanga@math.umd.edu and C.

been studied4,7]. Some attempts to study the Kuramoto
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[l. SELF-CONSISTENT ANALYSIS the termr, is also small. We need the number of locked
oscillators to be large enough so that we can nedigcbut

in cases where we use perturbative methods, we also require
that the number of locked oscillators be small enough that
She perturbative methods are still valid. We therefore do not
expect the perturbative methods to agree perfectly just at the

As shown by Kuramotd6], the dynamics of weakly
coupled, nearly identical limit cycle oscillators can, under
certain conditions, be approximated by an equation for th
phases, of the form

) N transition point[Indeed in the classical Kuramotall-to-all)
6,=wn+ 2 Q6= 61), (2 model a similar reservation holds for finite networks, as there
m=1 areO(NY?) fluctuations ofk=N_,e/n for k below its critical

wherew, is the natural frequency of the oscillatarN is the transjtion valug| I'n Sec. VI we will investigate the effects of
total number of oscillators, anf,, is a periodic function (e time fluctuating ternh, in Eq. (5), but for now, we ne-
depending on the original equations of motion. The all-to-alld/€ct it _ _ _

Kuramoto model assumes tha&, (6, 6,)=(k/N)sin(6, With h, neglected in Eq(5), oscillators with|w,| <kr,
—6,), wherek represents an overall coupling strength. mbecome locked; i.e., for these oscillat@kssettles at a value
order to incorporate the presence of a heterogeneous nJBr which
work, we assume tha& (6~ 6,) =kAnm Sin(6,— 6,), Wwhere ; -
Anm=o are the elementnsmg)fman >2)N aﬁ}gcerfcy mar{zrbA de- Sin(6n = gn) = @/ (KT ©
termining the connectivity of the network. Therefore, we (In general there are two sudh; the one closest t@), is

study the system stable) Then
. N N
0,= wy+ K> Ay Sin(6y,— 6,). 3 =S A (Y = S A i)
m=1 m=1 |wm<krm

For specifi.city, we will primarily consider the case where P S AL (i) )
the A, are either Q(nodesn andm are not connectegdr 1 ooy >kr " :
(nodesn and m are connected, and all connections have meem
equal strength We assume that the network is undirected, so In order to proceed further, we will introduce the follow-
that A=A, We assume also that, for eanhthe corre- ing assumption.
spondingwy, is independently chosen from a known oscilla-  Assumption 1We assume the existence of solutiops,
tion frequency probability distributiog(w). We assume that that are statistically independent f,
g(w) is symmetric about a single local maximuf. Sec. This is a nontrivial assumption; however, it is reasonable
V), which without loss of generality we can take to be atif most of noden’s neighbors have reasonably large degree,
w=0. (If the mean frequency is,+ 0, we make the change SO that they are not strongly affected by the valuagfAnd
of coordinates that shifts eaeh, by wy and eachy, by wt.) as we show below, such a solution can be found in a self-
In this case, synchronization will occur at frequency 0; i.e.,consistent manner. Using a milder version of assumption 1,
6, will remain approximately constant for synchronized We show in Appendix A that the sum over the unlocked

nodes. oscillators in Eq.(7) can be neglected. Therefore, only the
We define a positive real-valued local order paramegger locked oscillators remain in the sum, and we get from &g.
by using Eq.(6), sincer,, is by definition real,
N . .
) ) r-=R A '(Gm_’pm)e'('//m_‘//n)
rne“//n = 2 Annf€ 0m>t: (4) " alfwmlzékrm i
m=1
2
where(:--); denotes a time average. In termsrgf Eq. (3) = > Ay COL i~ i)\ 1 - (E’_m)
can be rewritten as ET I'm
B = wq = KIy SIN(6, = ) — Khy(0), (5) = > AgmSin(im - m(%’“), (8)
“”mlskrm m

where the ternf,(t) takes into account time fluctuations and
is given by h,=Im{e" "> A, ((¢)—€’m)}, where “Im”  where “Re” represents the real part. For the imaginary part of
stands for the imaginary part. Since we reglf@és a sum of  Eq. (7), we get

d,, approximately uncorrelated termwhered, is the degree

of noden given byd,=2,A.m, Wwe expecth, to be of order _ W

\d,. Substantially above the transition, due to the synchroni- 0 _I Efk Anm COSYim = i) kr,

zation of the phases, the quantity=X, A, (€, is O(d,). omi=Km

Thus, if we assume thal,> 1, substantially above the tran- . / o |2

sition the termh,, can be neglected with respectrtp How- +‘ |E<kr Aom SN = ) \[1 = (E ' ©
ever, just above the transition to coherence, the number of @m=5m

oscillators that are phase locked is sniatte below, and so Using assumption 1, the contribution of the last term in
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the real part equatio8) can be neglected because of thedetermines implicitly the order parameteas a function of
symmetry ofg(w) about 0. We thus obtain the approximation the networkA,,,, the frequency distributiom(w), and the
- coupling constank. We will refer to this approximation as
_ _ [+ [ ®m thefrequency distribution approximatiofrDA). As with the
fn= o Ekr Anm COSim = 1) /1 (kfm> OV TAT approximation(11), nonlinear matrix equatiofiL4) can
meem be solved numerically and the order parameteomputed
Since we are interested in the transition to coherence, Wggom r,, using Eq.(12).
look for the solution of Eq.(10) that yields the smallest We will now study the implications of Eq14) by using
critical couplingk. The smallest critical coupling is obtained approximation schemes in different regimes in order to ob-
when the cosine in Eq10) is 1. (Note that both the number tain explicit expressions for the order parameter and the criti-
of terms in the sum and their size decrease& @ecreases. cal coupling strength.
Hence, a smallek corresponds to a larger value of the co-
sine) We therefore will look for solutions for whichy,
—im=0—i.e., i, does not depend am—and without loss of

generality, we will takey,=0. Note that this is a consistent  From the discussion above, coherent behavior is charac-
condition in the sense that the imaginary part equal®ns  terized by a nonzero value of. We determine the critical

satisfied: the first term vanishes in the limit of a large numbegajue ofk by letting r,,— 0*. The first-order approximation
of connections per node due to the symmetry around O Ofy(zkr,)~g(0) in Eq. (14) produces

g(w) and the second due to our assumed form thatloes
not depend om.

A. Perturbation theory

k
Equation(10) then reduces to o= k_oE At Y, (15
m
- 2 A 1- Dm (11) . . . .
M= ok nm krm) whereky=2/[7g(0)]. Since we are interested in the transi-

tion to coherence, the smallektsatisfying Eq.(15) is of
If the particular collection of frequencies, is known, this  interest. We thus identify the critical transition valuekgfk
equation can be solved numerically. We will refer to thiswith the largest eigenvalue of the adjacency matrid, ob-
approximation, based on neglecting the time fluctuations iraining

Eq. (5), as thetime-averaged theoryTAT). We now define

an order parameter by Ko
k=~ (16)
N
2 rn . (0)
_nel (In the caséA,,=1 of all-to-all couplingA=N-1.) Alsor
=+ (12) is proportional to themth component of the eigenvectar
> d, =[uy,Us, ... ,uy]" associated with this eigenvalue. Note that
n=1 this is consistent with assumption 1, singelepends only on

. ) N network propertiegi.e., the matrixA) and is thus indepen-
whered, is th% degr_ei)e of '\rﬂoda defined byd,=2m1Anm  dent of w,. Equation(16) is one of our main results. It de-
Note thatr=X_,d(&")/%-,d, coincides with the order tgrmines when the transition to coherence occurs in terms of
parameter used in Refgl1,12. the largest eigenvalue of the adjacency matriA.

If the number of connections per node is large, the par- |n order to assess how the order parametgiven by Eq.
ticular collection of frequencies of the neighbors of a given(12) grows ask grows fromk,, we must take into account
node will likely be a faithful sample of the frequency distri- thatg(zkr,) in Eq.(14) is not constant. Fdkr, small(see the
bution g(w). Assuming this is the case and using assumptionjiscussion at the end of Sec. 1),Bhe second-order approxi-

1, we approximate the sum in E(Ll) as mation yields
™ ( ® )2 1
=2 A \/1-|—] d 13 1 r—
M % nmJ_krm g(w) krm (O] ( ) rn= kz Anmrmf . (g(O) + Eg//(o)(zkrm)2> V1 - Z2 dz.
m _
or, introducingz= w/ (kr,), (17)
1
r=k> Anmrmf g(zkr)V1 -2 dz. (14)  Defining a=-7g"(0)k,/ 16, we get
m -1
This equation is one of our main results. It is analogous to rn= LE Anerm— ak?rd). (18
Eq.(13) in Ref.[11] and Eq.(6) in Ref.[12], but as opposed KeN "

to including only information of the degree distribution of
the network, it depends on the adjacency matrix, which comWe consider perturbations from the first-order critical values
pletely describes the topology of the network. Equatibf  as follows:
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rm=r®+or,, (19)  n. The ratior,/d, coincides under this approximation with
© _ o the order parametardefined in Eq(12).
wheredr,<r <1 aSk—>0kc- Inserting this into Eq(18) and Summing ovem and substituting,,=rd, in Eq. (14), we
canceling terms of orde;wf1 ) the leading-order terms remain- gbtain
ing are
N N 1
k ak® k- dn=k dzf zkrd,)V1 -2 dz, 25
a’n = _E Anma’m - _2 Anm(rf‘r?))s + _kcz Anmrf'r?)' ]’nzzl " mzzl m -1 g( dm)\ ( )
Keh " Keh “m KA “m

(20)  which coincides with Eq(13) in Ref.[11]. As we approach
_ _ ) the transition from above,— 0%, the first-order approxima-
In order for Eq.(20) to have a solution fobry, it must satisfy  tion is g(zkrd,,) ~ g(0), from which we obtain
a solubility condition. This condition can be obtained by

multiplying byrgo), summing oven, and using Eq(15) and ()
the assumed symmetA,,=An,, to obtain K= Kni= @ (26)
> ) the main result of Refl11].
m - k- . (21) In the limit N— oo, we can replacéd”) as defined by Eq.
S0 ek (1) by
m
In terms ofu, the normalized eigenvector & associated (dq>m=f dp(d)dd, (27)
with the eigenvalue\, the square of the order parameter
can be expressed as where p(d) is the probability distribution function for the
o \[ K K3 degree. Note that, from Eql), (d) is always well defined
ré= (IS) <k_c - >(k_c) (22)  for finite N, but that Eq(27) indicates thatd%,, diverges for

power-law degree distributionp(d)cd™ if y=q+1. We
for k/k,>1, where also note that many real networks have approximate power
(W22 law p(d) with y<3 (see Rgf. [11). On the basis that
— = (23)  (d?../{d)..= for 2=< y=3, Ichinomiya[11] notes that, from
N(d)*(u®) Eq. (26), kn—0 asN—w—i.e., predicts that in the limit
Equations22) and(23) describe the behavior of the order N— o there is no threshold for coherent oscillations when
parameter near the transition in termsoénd its associated 2= 7Y<3. As will become evident, our numerical experi-
eigenvector. We will refer to them as tperturbation theory ~Ments, although foN>1, are often not well approximated
(PT). by the N— oo limit, in particular for y<<3.
The presence of the tera®) in Eq. (23) suggests that the The mean-field appro_ximation can be 1|oushed furthzer to
expansion ofg to second order might fail when there are aSecond order by expandirgizkrdy) ~g(0)+39"(0)(zkrdy)
few components of the eigenvectarthat are much larger in Eg. (25), obtaining, providedrdy, is small,

m=

than the rest. This occurs when the degree distribution is N
highly heterogeneous. We formulate more precisely this con- S d
straint in the discussion at the end of Sec. I B. k - -
1= —+ k3r2Eg”(O) N (29
f
B. Mean-field theory " > dn
m=1

In this section we describe an approximation that works in
some regimes and has the advantage of greater analyticed that
tractability. In this section we also recover some of the re-

sults in Refs[11,12). Here we assume tha} is proportional 2o (ﬂ)(i B 1><L>_3 29
I(mf kmf

tod,, rp,«d,. The assumption consists in treating the average akﬁ
N
r. 1 . for k/k,>1, wh
=S A€y (24 Toriie= 1, where
dn dn m=1 <d2>3
which depends om, as if it were a constant independent of 2= (d*Wd)?’ (30

n. Following Refs[11,12], we call this themean-field MF)

approximation. It is also equivalent, near the transition, toln €xpandingg to second order, it was assumed tkelf, is
assuming that the eigenvector associated with the largest egmall. The term(d*) in Eq. (30) suggests that the conditions
genvaluex satisfiesu, o d,,. We will discuss later the range of under which the expansion gfis appropriate are those un-
validity of this assumption. Note that this form fgris again ~ der which(d*).. is finite. In fact, Lee show§12] that for a
consistent with our assumption 1 thgtis independent of power-law distribution of the degreeg(d)«d™?, the above
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TABLE |. Approximations considered, their abbreviation, and TAT Eq (1)
their corresponding equations. i

o, distributed as g(w)

Approximation Abbreviation Equation independently of r,,
Time-averaged theory TAT (12) FDA Eq. (14)
Frequency distribution FDA (14) ~
approximation k=ke, /// \\\\r < dp

n
4 . .
Perturbation theory PT (22) and (23 <d”>finite - ~a
Mean-field theory MF (25) PT Egs. (22,23) MF  Eqg. (25)
FIG. 1. Different approximations and the assumptions leading to
expansion is appropriate fgr>5. For 3< y<5, he obtains them. See text for details.
in the limit N—oco that r scales near the transition as

x (k/ ky¢—1)Yr"3. A similar situation occurs in the perturba-
tion theory[Egs. (22) and (23)], which was also based on

expandingg to second order. According to the previous dis-54qeq assumption that the eigenvectarf A associated with
cussion, we will only use the expression foobtained from  he |argest eigenvalu satisfiesu, > d, (since, close to the
the perturbation theory for situations in whictif)...is finite.  transition,r,~ u,). While correlations might exigt.3], these
The critical coupling strength in E¢16), on the other hand, two quantities are in general not proportional. Further, the
does not have this restriction. mean-field approximation implies that=(d?/(d), a result

The expressions in Eq$23) and (30) can be shown to  that, although a good approximation in some cases, is not
coincide under the approximatiam,>d,. The treatment in  glways true. Asymptotic forms for the largest eigenvalue in
Sec. Il A does not assume thatd, is independent ofi, and  random networks with given degree distributions are dis-
we will show in Sec. lll that there are significant cases where.yssed and a sufficient condition fors (d?)/(d) to be valid
it gives better results for the critical coupling strength than;g presented if14] as follows. Letd,, be the maximum
the mean-field approximation. expected degree of the network. {62)/(d)> VdyaIn N,

C. Summary of approximations and range of validity then\ ~(d?)/(d) almost surely adi— . We note also that,

. . . .if the degree distribution is tightly distributed around its
In the previous sections, we developed different approXis o <o that\’_<d2>~<d>~d > (InN)2, the condition for
mations to find the critical coupling constant and the behav- ’ max '

. . —~ 2 . . . . “‘c’_
ior of the order parameter past the transition. Here we sumt—he validity of A~(d/(d) is satisfied. If insteatidyax

marize the different approximations and the assumption§(<d2>/<i>)(|” N)? then almost surely the largest eigenvalue
used in obtaining them. All the approximations mentionediS A = Vdmaxa@sN— < [14]. We will show that, indeed, to the
above assume that the number of connections per node fXtent that the approximation~(d?)/(d) does not hold, the
very large. This allowed us, among other things, to neglectesults from the numerical simulation of E() agree with
the time fluctuating terrh,(t) in Eq. (5). We will discuss the the critical coupling strength as determined by the eigen-
effect of this term in Sec. VI. value of the adjacency matrix, rather than by the quantity
The most fundamental approximation is given by Eq.(d>/{d).
(11). This equation can be solved numerically if the fre- The asymptotic regimes described[it4] are not avail-
quency of each oscillator and the adjacency matrix is knownable with the relatively small networkN~5000 we are
This is the TAT. Assuming that the local mean figlgis  restricted to study due to limited computational resources
statistically independent of the frequeney, the FDA given  (see the end of Appendix)BAlso, finite but large networks
by Eq. (14) is obtained. This equation can also be solvedare also interesting from an applied point of view. Thus, we
numerically, but only knowledge of the probability distribu- numerically compare both approximations in order to illus-
tion for the frequencies and the adjacency matrix is requiredtrate the possible discrepancies between them in particular
Obtained by expanding the FDA approximation near thecases. Figure 2 was obtained usiffgr eachy) a single
transition point, the PT describes the behavior of the orderandom realization of a network where the degrdgsare
parameter in terms of the largest eigenvalue of the adjacenayrawn from a power-law degree distribution with power-law
matrix and its associated eigenvector in networks where thexponenty (with d,=dy=20) and withN=5000 nodegsee
degree distribution is relatively homogeneous, more preSec. Il for details on how the networks are generat¥de
cisely when(d%., is finite. Takingr, in the FDA approxima- plot (d?/(d) and\ as a function ofy.
tion to be proportional to the degreg<d,, leads to the MF For the parameters used in the plad2)/(d) coincides
theory. Table | summarizes the different approximationswith the largest eigenvalue for values ofy greater than 3.
their abbreviations, and their corresponding equations. Th&his suggests that the mean-field result for the critical cou-
diagram in Fig. 1 indicates the assumptions leading to eachling strengthk,, is valid for N=5000 andy>3. This is
approximation. consistent with our numerical experiments in Sec. Ill. We
The mean-field theory requires only knowledge of the fre-show in Appendix B, however, that for>3 the mean-field
quency distribution and the degree distribution of the netapproximation (d®/(d) underestimates\ for sufficiently

work, and thus it requires less information than the other
approximations. However, it can produce misleading results
if not used carefully. The mean-field approximation has the
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FIG. 3. Order paramete? obtained from numerical solution of
FIG. 2. Largest eigenvalue (diamonds and(d?)/(d) (star$ as Eq. (3) (triangles, time-averaged theorysolid line), mean-field
a function ofy for N=5000 anddy=20. theory (long-dashed ling and perturbation theoryshort-dashed
line) as a function ofk/k. for network (i), with the degree of the
nodes uniformly distributed if50,...,149. All curves are obtained

large N (too large for us to simulajeIn fact, asN—o, A ,qing the same single random network realization.

diverges while(d?)/(d) remains finite. Thus, the critical cou-
pling constant obtained from our theory approaches zero d§me dependent but its statistical properties remain con-
N— c, while the one obtained from the mean-field theorystant in timg. From the values off,(t) obtained for a
remains constant. This suggests that the few nodes with highiven k, the order parameter is estimated asr

degree are able, for large enouhto synchronize the net- %|E,ﬁ‘1:ldm<e“9m>t/2mzldm|, where the time average is taken
work and that these nodes are not taken into account by thafter the system reaches the stationary st@ose to the
mean-field theory. transition, the time needed to reach the stationary state is

For y<3, we observe from Fig. 2 that is less than very long, so that it is difficult to estimate the real value of
(d?/{d) whenN=5000. Thus, in this range, the mean-field This problem also exists in the classical Kuramoto all-to-all
theory predicts a transition for a coupling constant that ismodel) The value ofk is then increased and the system is
smallerthan that predicted by the perturbative approach. Irallowed to relax to a stationary state, and the process is re-
the next section we will show, for a numerical example inpeated for increasing values kf
this regime, that the transition occurs for a larger coupling In Fig. 3 we show the results for the network with a
than that predicted by the mean-field theory. uniform degree distribution as described abpvetwork(i)].

We plotr? from numerical solution the full system in E()
(triangles, the theoretical prediction from the time-averaged
IIl. EXAMPLES theory (solid line), and the prediction from the mean-field
) . .theory (long-dashed lineand from the perturbation theory

I_n order to test the results in Sec. Il, we choose a d'St”'(short—dashed line(see Table)l as a function ok/k,, where
bUt'ZO” for the natural frequencies given Ifw)=(3/4)(1 ks given by Eq.(16). The frequency distribution approxi-
~o°) for -1<w<1 andg(w)=0 otherwise. In order to gen- mation agrees with the time-averaged theory, so we do not
erate the network, we specify a degree distribution and wencjude it in the plot. In this case, all the theoretical predic-
use the “configuration” modefe.g., Sec. 4.2.1 of Refl] tions provide good approximations to the observed numerical
and references therdio generate a random network real- results. The time-averaged theory reproduces remarkably
ization with the specified degree distributidi):we first gen-  well the numerical observations. Even the irregular behavior
erate adegree sequencky assigning a degred, to each  near the transition is taken into account by the time-averaged
noden according to the given distributiofij) imagining that  theory. The mean-field theory is in this case a good approxi-
each noden is givend, spokes sticking out of it, we choose mation, providing a fair description of the order parameter

pairs of spoke ends at random and connect them. past the transition. The perturbation theory is valid in this
We consider a fixed number of nodeé=2000, and the case up tdk/k,~1.3.
following networks with uniform coupling strengtfi.e., The results for the networks with power-law degree dis-

Anm=1 or O: (i) the degrees are uniformly distributed be- triputions[networks(ii)] are shown in Figs. @), 4(b), 4(c),
tween 50 and 149, an@) the probability of having a degree and 4d) for y=2, 2.5, 3, and 4, respectively. The order pa-
d is given byp(d)cd™ if 50=d=<2000 andp(d)=0 other-  yrameterr2 from numerical solution of the full system in Eq.
wise, wherey is taken to be 2, 2.5, 3, and fOur choice  (3) (triangles, the time-averaged theorgolid line), the fre-
p(d)=0 for d<<50 ensures that there are no nodes of smaljuency distribution approximatiaistars, and the mean-field
degree and suggests that our approximation of neglecting theory (long-dashed lingare plotted as a function df/k..
noiselike, fluctuating quantity, in Eq. (5) is valid. We re-  We do not show the perturbation theory since in all these
turn to this issue in Sec. V. casesy<5 and so we do not expect the perturbative theory
The initial conditions for Eq(3) are chosen randomly in to be valid ag\— .
the interval[0, 27] and Eq.(3) is integrated forward in time The time-averaged theory agrees best with the numerical
until a stationary state is reaché&tationary state here means simulations in all cases. The frequency distribution approxi-
stationary in a statistical sense; i.e., the solution might benation also agrees well in all cases, though it predicts a
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0.5 TABLE 1l. Comparison of the predicted critical coupling
04 A Shaeton ’)}; @ strength versus the observed one for the different approximations
«  FDA B (columng and different networkgrows). If the critical coupling
031 - wF ,}' strength is predicted by a given approximation for a certain net-
02 7 4 work, the corresponding entry is marked “G.” Otherwise, “NG” is
S/ entered.
0.1 / N
laaazts Y Degree distribution TAT  FDA  MF PT
0 0.5 1 15 2
0.4 p(d) uniform in {50....,149 G G G G
03 - (b) p(d)=d?, y=2 G G NG G
’ p(d)ecd™, y=2.5 G G NG G
0.2 ) / p(d)o<cd?, y=3 G G G G
dyocd™, y=4 G G G G
0.1 ,/ P !
. Agz/il :/:/ ’YZZ.S
e 06 1 1.4 18 laws with exponents between 2 and $152,15. In order to
0.4 () accurately predict the critical coupling strength across this
03 7,{ range of exponents, the critical coupling constant given by
//‘ k.=Ko/\ determined by the largest eigenvalue of the adja-
0.2 ,{’ ' cency matrix should be used. The behavior of the order pa-
;/f:‘ rameter can be estimated using the time-averaged theory or
0.1 /y/(g’/ the frequency distribution approximation. These two ap-
e v=3 proximations were found to be consistently accurate for the
0.6 1 1.4 1.8 range of exponents and values of the coupling constant stud-
ied. For the value oN used, the mean-field theory works
0.7 ) well in predicting the critical coupling strength and the be-
* havior of the order parameter if one is interested in values of
0.5 / v larger than 3.
/ Tables Il and Il present the results of comparing the the-
03 £ oretical predictions with the numerical integration of E8).

0 /j y=4 for different networks. Table Il compares the observed criti-
' L) cal coupling strength with the theoretical estimate. If both
0 0.5 1 1.5 2 are close, the entry is “G,” and otherwise “NG.” Table IlI

k/ke compares the predicted behavior of the order parameter past

the transition with the observed one. If the corresponding

FIG. 4. Order paramete? obtained from numerical solution of
Eq. (3) (triangles, time-averaged theorigolid line), frequency dis-
tribution approximatior(starg, and mean-field theorgfong-dashed
line) as a function ofk/k; for degree distributions given by(d)
«d™ if 50=<d=<2000 andp(d)=0 otherwise, with(a y=2, (b) y
=2.5,(c) y=3, and(d) y=4. All curves in each figure are obtained
using the same single random network realization.

sharper transition than actually occurs. The mean-field a
proximation agrees closely with the frequency distribution

entry in Table Il is “NG,” no comparison is attempted. The
entries are the range &k, over which the corresponding
theoretical prediction agrees with the numerical simulation.

TABLE Ill. Comparison of the predicted behavior of the order
parameter versus the observed one for the different approximations
(columng and different networkg&ows). If the behavior is correctly

pf)redi(:ted by a given approximation for a certain network, the cor-
responding entry contains the rangekok. afterk/k.=1 for which

approximation fory=4 and, away from the transition, for e approximation works well. A+” indicates that the agreement

y=3. However, fory=2 andy=2.5, it deviates greatly from possibly persists for larger values lafWhen “NG” appears in the
the other approximations and from the numerical simulationcorresponding entry in Table II, no comparison is attempted and a

The critical coupling strengths predicted by the mean-field:— is entered. A " is entered when the perturbation theory is
theory and by the perturbation theory are very closesfor inapplicable(y<5); see Sec. Il B.

=4, but the mean-field theory predicts a transition at about

10% smaller coupling fory=3, about 20% smaller fory

=2.5, and about 40% smaller for=2. Since the transition in

the numerical simulation is not so well defined, both ap- P(d) uniform in{50....,14%

proximations are reasonable fe=3, but for y=2 and y
=2.5 the critical coupling strength predicted by the mean-

field approximation is clearly too small.

In the past years, it has been discovered that many real-
world networks have degree distributions which are powet

TAT FDA MF PT

0.5+ 0.5+ 0.5+ 0.3
p(d)yccd™, y=2 0.7+ 0.7+ - -
p(d)ecd™, y=2.5 0.5+ 0.5+ - -
p(d)ocd™?, y=3 0.7+ 0.7+ 0.7+ -
p(d)ocd™, y=4 0.7+ 0.7+ 0.7+ -
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IV. NONUNIFORM COUPLING STRENGTH

So far, our examples have assumed that the couplin
strength is uniforndi.e., all the entries of the adjacency ma-
trix A have been taken to be 0 oj. However, considering
that the degree of a node is defineddgs==, A,y OUr re-
sults carry through to the more general case of nonuniform

PHYSICAL REVIEW H1, 036151(2005

[i.e., for Rés)>0 it is along the real axis, and for Rg
<0 it passes above the pote=-is]. We thus obtain the

gispersion relation
kA w)dw
1= > f glw)dw , (37)

S—iw

coupling. As an example of this situation, we apply our re-where, as in Sec. I\ is the largest eigenvalue of the adja-
sults to the case treated in R§8] of a distance-dependent cency matrixA. Except for the presence of the eigenvalye

interaction strength. Assume that the nodesre equidis-

this is the known dispersion relation for the stability of the

tantly located on a circle and the matrix elements are giveincoherent state of the Kuramoto mod&l. Under our as-

by
Am=Tf(In—-m)),

(31)

where|n-m| represents distance modulb(e.g.,|1-N|=1),
f(0)=0, andf=0. Then each row ofA has the same sum
A=A and[1,1,..., 17 is an eigenvector with eigen-
value\. By the Gershgorin circle theorefii6] (each eigen-
valueo of A satisfies, for soma, |o— A, < =m0l Annd), this

is the largest eigenvalugince A,,=0) and thus determines

sumption thatg(w) is even and decreases monotonically
away from 0O(Sec. I), an unstabl¢Re(s) > 0] solution of Eq.
(37) is real[18] (note that, sinc@ is symmetric\ is rea). In
order to find the critical coupling, we le—0*, (s—iw)™*
—iP(1/w)+78(w). Since g(w) is symmetric, ((S—iw)™1)

— g(0). According to Eq(35), the critical coupling is then
given by

=0 (39

the transition to synchrony as described in the previous sec- N

tion. This scaling factor has been proposed before, by anal-
ogy to spin systems, to determine the transition to coheren
in the case of a power-law decaying interaction strengt

f(x)=x"7[9].

V. LINEAR STABILITY APPROACH

Partly as a precursor to the next secti@c. V), in this
section we discuss another approach that has the advantage
of providing information on the dynamics of the system. We
study the linear stability of the incoherent state by a metho
similar to that used in Refl17]. We assume that in the inco-
herent state the solution to E@) is given approximately by

Hno = wpt + ¢y,

where ¢, is a random initial condition. We introduce infini-

tesimal perturbations to this state by

0,= 62+ 5,

In Appendix C, we assume that the perturbations grow as
function of time ase™ and obtain the eigenvalue equation

K< Anbn

2 1Sy

bn

(32)

(33)

(34)

In agreement with the nonlinear approa¢¥e note, how-

ce

ever, that, ifg(w) has multiple maxima, then the first insta-

ility can occur at Inis) # 0 at a value ok below that given
by Eq. (38). This is why we have assumed thgfw) de-
creases monotonically away from=0.]

VI. EFFECT OF FLUCTUATIONS

d So far we have neglected the effect of the small fluctua-
tions due to the finite number of connections per node. In our
examples, we have presented networks that do not have
nodes with small degree. However, in many networks there
is a large fraction of the nodes with small degree; in all our
examples in Sec. lll there were no nodes with degree less
than 50[p(d)=0 for d<50]. For example, scale-free net-
works generated using the Barabasi-Albert metf&jdome-
times have parameters so tidj=6.

In developing our theory, we neglected the time variations
fh Eg. (5) and worked thereafter with the average value of
the phase of the locked oscillators. In order to gain insight
into the effect of these fluctuations, we will treat the time
fluctuations as a noise term.

The theory we present is heuristic and may be thought of
as an expansion giving a small lowest-order correction to the

We look for solutions, of this equation that are independent |j,a5¢ stability approach of Sec. V for large but finit. On

of the frequenciesv, (similar to assumption )1 Under this
assumption, replacings—iw,)™* in Eq. (34) with its ex-

pected value, we get

N
k/ 1
bh=2 A ,
n 2<S—iw> A nmbm

m=

1 _fw g(w)dw
s—iw/ J_. s-iw

where

(35)

(36)

the other hand, later in this section, we will apply this theory
to numerical examples where the finite-size effect is not
small, and we will find that the theory is still useful in that it
correctly indicates the trend of the numerical observations.
Like in Sec. V, we consider perturbations to the incoher-
ent state described by Ed32). As an approximation,
we regard the coupling term in Eq.(3), fu(t)
EkE,’}‘FlAnmsin(ﬁm—0,1), as a noise term. In addition to
growing linearly with time, the phase of the oscillatowvill
diffuse under the influence of this noise. We assume that
0n(t) = pp+ wpt + W, (1), where W, (t) is a random walk such

and the integration contour is defined in the causal sensiat({W,(t))=0 and(W,(t)W,(t))=2D,.t, and¢, is an initial

036151-8



ONSET OF SYNCHRONIZATION IN LARGE NETWORKS. PHYSICAL REVIEW E 71, 036151(2009

condition, which we assume to be randomly drawn from kN Ab

[0,27). (In this section, by(---) we mean an expected b”ZEE +D”—_m (44)
value—i.e., an ensemble average, rather than an average over me1 S+ Pm ™ 10m

torn) Since Rés)>0 corresponds to instability of the incoherent

By using the linear approach of Sec. V, the diffusion co-
efficients D,,,, will give us information on how the critical
coupling strength differs from Ed38). The diffusion coef-
ficientsD,,,, are given by

state, it is expected that the effect of the noise as reflected by
positive D, is to shift the transition point so that the critical
coupling constant is larger.

In order to solve for the growth ratfor a given value of
k, we rewrite Eq.(44) as

Dnm: fn /2 fm - /2 d
fo< (t+ 72t - 72 b:gD(s)Ab, (45)

= > Ani(sin(6} = 6)Amisin(6, = 6))d7, (39)  whereb is the vector with componentby}, D(s) is the di-
0 jk agonal matrixD(s) =diag{(s+D,,—iwy) Y}, andA is the ad-

o ] jacency matrix. The characteristic equation is
where + (—) indicates evaluation at+7/2 (t—7/2). Con-

sider first the casa# m. The contribution of the terms with k > —
) . ) . . det —D(s)A-1] =0, 46
{j,n} #{k,m} vanishes after the integration, and we obtain, e(Z ® (46

using the symmetry oA, wherel is the N X N identity matrix. This implies

2
Dy = ‘%Aﬁm@in(e;- Grsin(d, - 6)).  (40) de( gA— D<S>‘l) =0 (47

We now introduce our aforementioned assumption thaP’

0,(t)— wpt is a random walk plus a random initial condition, k ) ) _
0,()= b+ o t+W (). Using the identity —sif)sin(y) deq SA - diagDn i} - sl | =0; (48
=[cogx-y)—cogx+y)]/2 and averaging over the initial

phasesp, we get that is, the growth rates is an eigenvalue of the matrix

M (K) = (k/2)A-diag{D =i -
K2 [~ For a given value ok, Egs.(42) and(43) can be solved
Dym= ) f A2 (COSAW,, — AW, + opr))d7, (41)  iteratively. We have found that, by starting from an initial
0 guess for the values dD,,, and repeatedly evaluating the
right-hand side of Eq42) in order to get the next approxi-
where AW, =W -W, and o= wn~w, We now use the mation to the values ob,,, convergence is achieved to a
fact that for a Gaussian random varialevith variances®  solution that is independent of the initial guess if the condi-
we have (cogx))=Reg€e*)=Re(€®772). In our case,(x) tion D,>0 is imposed. When the values B, have been
= w7 and o?={(AW,,—AW,)?=2(D,+D,— 2D, 7, where  found for a given value ok, the relevant growth rate is
D,= D, After using this to compute the expected value andcalculated as the largest real part of the eigenvalues of the

performing the integration, we obtain, farm, matrix M(k) defined above.
As an example, we consider three networks with the de-
K, D,+Dpn—2Dpm gree of all nodesl given byd=100 in the firstd=50 in the
Dim=-7 (42)  second, andi=20 in the third one. In order to solve numeri-

2" "D +D, - 24 2 ) ,
(Bn+ D= 2Dnm)"+ @iy cally the coupled equations, we work with a small number of

des,N=500.
In Fig. 5 we show the results for a realization of the three
networks. The order parametet obtained from numerical
solution of Eq.(3) (solid lineg and the growth rate obtained
from Egs.(42), (43), and(48) (dashed linesare plotted as a
Dn=~ 2 Dom. (43)  function of k/k.. The arrows indicate which network corre-
mn sponds to the given curve. We observe that, as the connec-
In principle, Eqs.(42) and(43) can be solved fob, as a  tions per node are decreased, the transition point shifts to
function ofk if the frequencies and the adjacency matrix arelarger values of the coupling constant. This trend is repro-
known. duced by the growth rate curves, which are displaced to the
In order to relate the diffusion coefficients to the critical right for smaller values of the degree.
coupling constant, we resort to the linear analysis of Sec. V. We emphasize that the theory we described above is ap-
When noise is introduced in the linear approach, Bd) for ~ plicable to networks for whiclid) is large but finite. How-
the growth rates generalizes, as shown at the end of Appen-ever, in Fig. 5 we applied the theory to cases in wHighis
dix C, to not very large. Although we do not expect the theory to be

If n=m, the calculation proceeds along the same lines, bult®
the nonvanishing terms in EQR9) are those for whickk=j.
Together with Eq(42), this results in

036151-9



RESTREPO, OTT, AND HUNT PHYSICAL REVIEW H1, 036151(2005

1 of this extra assumption, we expect the other approximations
0.8 to more generally accurately describe the transition than the
mean-field theory. Figures(d and 4b) show that for the
particular case of scale free networks whik+2000, y=2,

and y=2.5 this is the case. In general, we observed that for
low values of the exponeny (see Fig. 4 the mean-field
approximation and the perturbative approximation yield dif-
ferent critical coupling strengths. The mean-field theory has
the advantage that analytic expressions can be computed
without the need of solving the eigenvalue problem for the
adjacency matrix and could be useful when only limited in-
formation is available about the network. However, in gen-
eral, our results suggest that one of the other approximations
mentioned above should be used.

We remark that even though the time-averaged theory, the
frequency distribution approximation and the perturbation
heory require in principle knowledge of the full matri
nowledge of the degree distribution may be enough in some
%ases. As in our examples, an adjacency makigan be
‘generated randomly with a given degree distribution. Our
results indicate that even this limited reconstruction of the
original network might improve the mean-field resultee
Sec. ).

VIl DISCUSSION Our assumptions restrict the class of networks for which

A transition to coherence in large networks of coupledthe results a}pply. We assumed.that sufficiently near the onset
oscillators should be expected at a critical value of the coudf synchronization each node is coupled to méogkedos-
pling strength which is determined by the largest eigenvalu§|||at0r5- In practice this implies that most nodes should have
of the adjacency matrix of the network and its associated high degree. This is an important restriction for our theory.
eigenvector. In the all-to-all case, the largest eigenvalue i§1 Sec. Il we used networks with a minimum degree of 50.
N-1~N and thus the Kuramoto resulf=ky/N is recov- AS mentioned before, we observed that in networks with
ered. The largest eigenvalue of the adjacency matrix of §mall average degref@bout 20, the observed critical cou-
network is of both theoretical and practical importance, and?ling was larger than the one predicted by our theory. By
thus its properties have been studied in some dgtain4.  including the previously neglected time fluctuations, we de-
We remark that our analysis allows the case of nonuniforn¥eloped a heuristic theory in Sec. VI which correctly predicts

interaction strengths by introducing continuous values in théhe trend observed in the numerical simulations. As the
entries of the adjacency matri nodes with small degree become important, both our theory

We developed different approximations in order to de-and the numerical observations indicate that the transition to

scribe the transition to coherence in terms of an appropriatel§ynchrony occurs at larger values of the coupling strength.
defined order parameter which generalizes the parameter [N conclusion, we have developed a theory predicting the
used in the classical Kuramoto modétl]. See Table | and critical coupling for the transition from incoherence to coher-
Fig. 1 for a summary of the approximations and assumptionsgnce in large networks of coupled oscillators. We found that
The TAT provided the most accurate description of the befor a large class of networks, a transition to coherence should
havior of the order parameter and assumes knowledge of tHe expected at a critical value of the coupling strength which
adjacency matri¥,,,, and the individual frequencias,. The is. determined by the largest eigenvalue of the adjacency ma-
FDA also provides a good approximation but does not reirix of the network. We developed and compared various
quire knowledge of the individual frequencies. These ap&PProximations to the order parameter past the transition and
proximations yield equations that have to be solved numeristudied the effect of the fluctuations caused by finite-size
cally. The time required to numerically solve these equation&ffects.

is, however, much less than that required to numerically in-

tegrate the original differential equations. The PT yields ana-

lytic expressions for the order parameter when close to the ACKNOWLEDGMENTS

transition in terms of the largest eigenvalue of the adjacency s work was sponsored by ONRhysics and by NSF

matrix and its associated eigenvector, but is limited to ”et'(Contract Nos. PHYS 0098632 and DMS 0104p87
works with a relatively homogeneous degree distribution. '

The MF theory{11] is obtained by introducing the additional
assumption that the components of the eigenvector associ-
ated with the largest eigenvalue are proportional to the de-
gree of the corresponding node. This does not necessarily In this appendix we show that, using assumption 1, we
have to be the case when close to the transition, and becausan neglect the sum over the unlocked oscillators in(Eyg.

0.6

0.4

0.2

FIG. 5. Order parametef obtained from numerical solution of
Eqg. (3) (solid lineg and growth rate Rs) (dashed linegsfor a
network with the degree of all nodels-20,d=50, andd=100 as a
function ofk/k.. The arrows indicate which network corresponds to
the given curve.

valid in this case, we find that it correctly describes the tren
present in the numerical observations—i.e., a shifting of th
transition to coherence to larger values of the critical cou
pling as nodes of small degree become important.

APPENDIX A
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N
E Anm<ei 0m>t-

| >k

(A1)

We will follow to some extent Chap. 12 of Ré#]. The time
average is given by

(elfm), = f ’ ’pr(6)do, (A2)

where p,(6)dé is, given the connections of node and its
natural frequency,,, the probability that its phase, lies in
the interval(6, 6+d0). It satisfiesp,(#) < 1/]6|. Including the
normalization we have, neglecting the tehpin Eq. (5),

R
v wrzn - kzrﬁ1

271w — Kr SIN(O— )|
The sum in Eq(Al) can be written as

Pm(6) = (A3)

N
E Anm\w _kr Sgr(wm)_

“”ml>krm
™ M+ kry, sin(6 = i) [d6
w2 = K2r2 sirf(0 - i)

N
E Anm<ei 9m>t =

|wm‘>krm

X

(A4)
The integral of the first term vanishes since thef2eriodic

integrand changes sign under the transformatien 6+ .
We are left with

E AgrV w2, — kr2| krmsgr(wm)—

‘“’m|>krm

N
2 Anm<ei6m>t
‘“’ml>krm
7 e%sin(0- y)do
X 2 2.2 i '
o 00— K Z SN0 i)
In this sum, sghwy, is independent ofv?, and, using as-

sumption 1, it is independent of and ¢, as WeII If there are
many terms in the sum, it will be then of oroléuin due to the

(A5)

symmetry of the frequency distribution and thus will be

PHYSICAL REVIEW E 71, 036151(2009

N— o, the mean-field approximatiofl®)/(d) remains finite.

We can estimate an upper bound on how laxgeeeds to
be for this discrepancy to be observed. For laiye
(d?/(d)~dy, whered, is the minimum degregp(d)=0 for
d<dy]. The maximum degree is approximately given by
Omax~ doNY~Y [1]. Inserting these estimates into the con-
dition vdma,~ (d?/{d)(In N)? we obtain

N ~ dJ Y(In N)*0~, (B1)

As an example, fory=4 and d,=20, the upper bound is
approximatelyN~10%°, a far larger system than we can
simulate.

APPENDIX C

In this appendix we study the linear stability of the inco-
herent state by a method similar to that presented in Ref.
[17]. As described in Sec. V, we assume that in the incoher-
ent state the solution to EQ) is given approximately by

(1) = wnt + by, (C1)

where ¢, is an initial condition. We introduce infinitesimal
perturbations to this state by

6,= 0n0 + 5n' (CZ)
Linearizing Eq.(3), we get
. N
on= kz Anmcog Bn(q) - 0n0) Om* Mn = Vndn, (C3

m=1

where u,=kEN_ A sin(02-609) and v,=kEN_ A, cog 62
—0,?). As before, we assume that the number of links to node
nis so large that, due to the incoherence, we may neglect the
terms u, and v,. With this simplification, Eq.(C3) can be
recast as an integral equation as follows:

N

t
Sy(t) =k f dt’ D Ayndn(t)cog 63(t") - 6(t)]

m=1

small compared with the sum over the locked oscillators,
which is of orderd, [see Eq(11)]. Note that we did not use

N
k t 22001 c 0 s
here the full strength of assumption 1, since we only required = EJ dt’ et )< > Ay s (t)
—00 m=1

the sign ofw,, to be independent af,, and ¢,

APPENDIX B

Here we show that for sufficiently large and a power-
law degree distribution of the degreggd)«d~?, the mean-
field approximation(d?)/(d) underestimatex for y>3. We
base our argument on the results of F{é_]_lf for a random
graph Vd.,> (d2)/(d)(In N)2, then A ~ d,,, almost surely
asN— o, whered,,.« is the largest expected degree.

In the case under consideratigry>3), (d?)/(d) con-
verges to the finite valu&?)../(d).. [{- - )., is defined by Eq.
(27)], while dp.y diverges ale’(Y‘_Ll] Thus, for large
enoughN, the conditions for\ ~ ydpa, Will be satisfied,
sinceNH(D /(In N)*— o0 asN—s e, While X ~ {0 % as

N
+2Anmé[202<t'>-9%<t'ﬂam<t'>)- (o

m=1
Multiplying by A, e'ﬁn(‘), summing overn, and defining
Bn(t)==N A6 t)e"’m“) we get

Kt S : o
B(t) = J dt' >, AR RO B (1) + 2RBY(t)].

n=1
(CH)
We assume that the quantiti®, grow exponentially with

time asB,(t)=b,e®, where Rés)>0. Inserting this ansatz
into Eq. (C5) and performing the integration, we get
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kN A b K NoA b*ezmg(t) If, as proposed in Sec. VI, there are fluctuations in the
b= 52 —L= Eez Im(et> Jni— (C6)  values ofg2(t) such thatd,(t) = wnt+ ¢, +Wi(t), whereW,(t)
n=1S~1@n n=1 S Tlon is a random walk such thaw,(t))=0 and(W,(t)2)=2D,t,

The second sum is very small due to the incoherence of th&e take the expected value of HE5). We use the fact that

equation

N
o <K Aubi

n

(C7)

21 S— oy

as claimed in Sec. V.

(e¥)=e®-7"2_|n this casex=wn(t' —t) and a?=2D,(t-t").
We obtain, after performing the integration,

N
k A
bn:_z mnbm
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