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a b s t r a c t

Using recent dimensionality reduction techniques in large systems of coupled phase oscillators exhibiting
bistability, we analyze the complex macroscopic behavior arising when the coupling between oscillators
is allowed to evolve slowly as a function of either macroscopic or local system properties. For example,
we observe macroscopic excitability and intermittent synchrony in a system of time-delayed Kuramoto
oscillators with Hebbian and anti-Hebbian learning. We demonstrate the robustness of our findings
by considering systems with increasing complexity, including time-delayed oscillators with adaptive
network structure and community interaction, aswell as a systemwith bimodally distributed frequencies.
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1. Introduction

Large systems of coupled oscillators are ubiquitous in nature
and serve as a basis to study collective behavior. Some examples
include synchronized flashing of fireflies [1], cardiac pacemaker
cells [2], walker-induced oscillations of the Millennium Bridge [3],
Josephson junction circuits [4], audiences clapping [5], circadian
rhythms in mammals [6], cell function [7], neural processing [8],
and chemical oscillations [9,10]. In certain situations these oscilla-
tors can be approximately described in terms of only their phase
angle θ . Kuramoto showed [9] that the evolution of the phases in
an ensemble of N weakly coupled oscillators approximately obeys

θ̇n = ωn +

N
m=1

Hnm(θm − θn), (1)

where θn and ωn are, respectively, the phase and intrinsic fre-
quency of oscillator n, and Hnm is a 2π-periodic function that
describes the coupling between oscillators n and m. When such
oscillators represent limit cycles arising from a Hopf bifurca-
tion, their coupling is generically sinusoidal, leading to the choice
Hnm(θ) = (knm/N) sin(θ).When the coupling is uniform, i.e. knm =

k, one obtains the classical Kuramoto model, which has become
a paradigm for the study of synchrony in coupled heterogeneous
oscillators. Generalizations of the Kuramoto model have become
an important area of recent research, including investigations of
non-sinusoidal coupling [11], cluster synchrony [12], the effects of
network topology [13,14], non-local coupling [15], external forc-
ing [16], coupled excitable oscillators [17], phase resetting [18],
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time-dependent connectivity [19], noise [20], and communities of
coupled oscillators [21,22]. Recently, the analysis of many such
systems has been simplified by a dimensionality reduction pro-
posed byOtt andAntonsen [23,24],makingmany cases analytically
tractable for the first time. Other recent work on dimensionality-
reduction methods for large ensembles of phase oscillators in-
cludes Refs. [25,26].

A major difficulty in the study of complex systems (e.g., neu-
ral processing and cell function) is overcoming the common dis-
connect between simple microscopic and complex macroscopic
dynamics, referred to as emergence. In this paper, we study emer-
gent macroscopic behavior that cannot be deduced from the in-
dividual oscillator dynamics alone, but requires a systems-level
analysis. We study macroscopic dynamics arising when slow cou-
pling adaptation is combined with large systems of oscillators.
Natural examples of systems involving adaption of systemparame-
ters such as coupling strength include clapping audiences [5], brain
fluctuations [8], regulation of sleep and circadian rhythms [27],
and regulation of cardiac behavior [28]. One natural way to model
adaptive dynamics in such systems is to allow for the connectivity
to evolve as a function of the degree of synchrony of the system. Re-
cent studies on adaptive oscillator systems have largely modeled
two types of synaptic plasticity: spike-timing-dependent plastic-
ity [29] and Hebbian learning [30]. We further classify such adap-
tation rules as either uniform adaptation (the evolution of global
coupling in all-to-all coupled systems according to global system
properties) or network adaptation (the evolution of individual links
in possibly heterogeneous networks according to local properties),
both of which are studied here.

The inclusion of adaptive rules in Kuramoto-type systems can
result in rich dynamics that have sometimes been proposed to
model information processing in the brain [29,30]. Typically, how-
ever, these adaptive rules are added to the standard Kuramoto
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model, which has relatively simple macroscopic dynamics (e.g.,
no memory). In this paper, we explore the addition of adaptive
rules to oscillator systems exhibiting bistability, such as those stud-
ied in Refs. [31–34]. When it is combined with adaptation, we
find that bistability allows for complex macroscopic behavior such
as excitable and intermittently synchronous states in addition to
simple steady-state behavior. In this paper, we consider the case
where the timescale of coupling adaptation is much larger than
the timescale of oscillator dynamics, which will allow us to sep-
arate timescales, first solving for the fast oscillator dynamics using
the work of Ott and Antonsen [23] and then analyzing the slow
adaptation dynamics. We find that even when the adaptation is
chosen to be a simple function of the system state, a variety of
macroscopic behaviors can be attained by varying parameters of
that simple function. The dynamics described in this paper fall
within the framework of dynamic bifurcation theory [35], which
describes bifurcations that occur in fast dynamics in response to
one or more slowly changing parameters. In this paper, the bifur-
cations correspond to transitions betweenmacroscopic incoherent
and synchronized states in response to one or more slowly chang-
ing coupling strengths.

This paper is organized as follows. In Section 2, we study
a system of time-delayed oscillators subject to uniform adapta-
tion. In Section 3, we study three more complicated models that
yield richer dynamics: (A) network adaptation on a system of
time-delayed oscillators, (B) community interaction between two
communities of time-delayed oscillators with community-wise
uniform adaptation, and (C) uniform adaptation on a system of os-
cillators with intrinsic frequencies drawn from a bimodal distribu-
tion. Finally, in Section 4, we conclude by discussing our results.

2. Time-delayed oscillators with uniform adaptation

In this section, we study a system of N oscillators coupled
through a time-delayed order parameter in which the coupling
strength is allowed to slowly adapt in response to the values of this
order parameter. This system allows for analytic results that will
later serve as a guide to the analysis of more complicated systems.
Letting ωn denote the intrinsic frequency of oscillator n (which
we assume to be randomly drawn from a distribution g(ω)) and
r =

1
N

N
n=1 e

iθn denote the Kuramoto order parameter, we con-
sider the following model:

θ̇n = ωn + kIm(ze−iθn), (2)
τ ż = r − z. (3)

Since Eq. (3) can be written as z(t) = τ−1
 t
−∞

r(t ′)e
t′−t
τ dt ′, z may

be interpreted as a time-delayed version of r . This time-delayed or-
der parameter is the one that affects individual oscillators. In the
continuum limit, N → ∞, this system has been shown to repre-
sent exactly the case where the coupling between pairs of oscilla-
tors in the Kuramoto model is time delayed with time delays that
have an exponential distribution with average τ [31]. Note that
τ → 0 yields z = r , which recovers the Kuramoto model [9]. We
extend this system by allowing the uniform coupling constant k to
slowly adapt, following

T k̇ = G(k, z), (4)

where T is the timescale of adaptation and G is a function that de-
scribes the adaptation of k in terms of its current value and the per-
ceived (delayed) order parameter. We will assume that T is much
larger than both τ and the timescale of oscillator dynamics, given
by the inverse of the spread of g(ω) [24] so that we may utilize a
separation of timescales to solve Eqs. (2) and (3) assuming constant
k and then solve Eq. (4) while assuming a steady state. Note that
letting T → ∞ recovers the non-adaptive system with fixed k.

2.1. Fast oscillators in the continuum limit

We begin by describing the steady-state collective dynamics of
Eqs. (2) and (3) for fixed k in the continuum limit. We let f (ω, θ, t)
denote the density of oscillators with frequency ω and phase θ
at time t . Conservation of oscillators implies that f (ω, θ, t) must
satisfy the continuity equation

∂t f + ∂θ (f θ̇ ) = 0. (5)

Following Ref. [31], this partial differential equation (PDE) can
be reduced to the single complex-valued ordinary differential
equation (ODE)

ṙ + (∆− iω0)r +
k
2
(z∗r2 − z) = 0, (6)

where we have assumed that the frequency distribution is
Lorentzian, i.e., g(ω) = ∆π−1/[∆2

+ (ω − ω0)
2
]. This assump-

tion is necessary to obtain Eq. (6); however, more generally, the
ansatz of Ott and Antonsen [23] can be applied to other forms of
g(ω) and the resulting equations can be treated numerically [36].
Eqs. (3) and (6) now completely describe the macroscopic oscilla-
tor dynamics assuming a fixed coupling strength k. We note that
Eq. (6) was derived in Ref. [31] for time-delayed oscillators with-
out coupling adaptation.

Assuming a fixed k value,wenow look for steady-state solutions
by defining r = Reiψ , z = ρeiφ , and setting Ṙ = ρ̇ = 0 and
ψ̇ = φ̇ = Ω . Without loss of generality, by rescaling time t , the
mean natural frequency ω0, and coupling strength k, we can set
∆ = 1. We also set the time-delay parameter τ = 1. As shown in
Fig. 1 forω0 = 5, in addition to the incoherent solution R = ρ = 0,
a pair of synchronized solutions appears at k1 = 2ω0, given by [37]

Rs/u =


ω2

0 − k ±


k2 − 4ω2

0

ω0
, (7)

ρs/u =
Rs/u

1 +Ω2
s/u

, (8)

with a corresponding angular velocityΩ given by

Ωs/u =

k ∓


k2 − 4ω2

0

2ω0
. (9)

Subscripts s/u denote whether the solution is stable or unstable,
respectively. At k2 = (ω2

0+4)/2, the unstable synchronized branch
merges with the incoherent solution, which becomes unstable for
k > k2. Note that for k between k1 and k2 we find bistability since
there are both coherent and incoherent solutions that are stable
to perturbation (the linear stability of these solutions has been
discussed in Refs. [31,37]). Furthermore, along the synchronized
branches, φ lags behind ψ by an angle

ψ − φ = arcsin

Ωs/u/


1 +Ω2

s/u


. (10)

We now remark on two aspects of this system not previously
discussed in Refs. [31,37]. First, we note that the average angular
velocityΩ of oscillators in a synchronized state is considerably less
than the average intrinsic frequencyω0 (see the inset in Fig. 1). This
reflects the fact that each individual oscillator is coupled not to the
instantaneousmean field, but to the time-delayed version, slowing
down the entire synchronized population.

Second, whereas the distribution of locked oscillators in the
standard Kuramoto model is symmetric about the mean oscilla-
tor frequency ω0, this symmetry is broken by the time delays, and
as a result the distribution of locked oscillators for oscillators with
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Fig. 1. (Color online) Solutions Rs (solid blue curve) and Ru (dashed red curve)
(given by Eq. (7)) for the time-delayed system with ω0 = 5,∆ = 1, and τ = 1.
Inset:Ωs (solid blue curve) andΩu (dashed red curve) corresponding to the angular
velocities of the synchronized states. Note that Ωs and Ωu are much smaller than
the average intrinsic frequency ω0 = 5 (dotted line).

time-delayed coupling is biased toward oscillators with angular
frequencies near Ω . Because Ω is much smaller than ω0, this dis-
tribution of locked frequencies is typically spread asymmetrically
around the mean frequency ω0. We compute the critical frequen-
cies ωc,± separating phase-locked and drifting oscillators by en-
tering a rotating frame in which synchronized oscillators appear
stationary by defining Θn = θn − φ. Here, Θn evolves according
to Θ̇n = ωn − Ω − kρ sin(Θn), so Θn reaches an equilibrium and
becomes phase-locked if |ωn − Ω| ≤ kρ, and otherwise drifts in-
definitely. Thus, the critical frequencies that separate the drifting
and locked populations are ωc,± = Ω ± kρ.

2.2. Slow coupling adaptation

Having solved the oscillator dynamics that evolve on the fast
timescale, we now study adaptation given by Eq. (4) that evolves
on a slow timescale. For simplicity, we assume that k relaxes to a
linear function of ρ,

G(k, ρ) = α + βρ − k, (11)

and will study the resulting behavior as a function of the param-
eters α and β . While this form for G is not essential, it simplifies
our exploration of complex macroscopic behavior under adaptive
uniform coupling while yielding rich dynamics. Using Eqs. (4) and
(8), the behavior of the order parametermagnitude ρ and coupling
strength k is described on the slow timescale by the ODE

T k̇ = α + βρs(k)− k, (12)

when the system is synchronized, and

T k̇ = α − k, (13)

when the system is incoherent (i.e., ρ = 0).
As shown in Fig. 2(a), when the system is in the incoherent

state and k surpasses k2, a dynamic bifurcation occurs in a rapid
transition from incoherence to synchronization. Similarly, when
the system is in the synchronized state and k decreases below
k1, another dynamic bifurcation occurs in a rapid transition from
synchronization to incoherence. These rapid transitions from one
branch to the other represent discontinuous phase transitions,
which have also been referred to as explosive synchronization [38].
Again, T is assumed to be large enough that state transitions occur
with fixed k. Furthermore, we assume that, upon a perturbation
of the oscillator phases which changes the value of ρ and R, the
system returns to the inertial manifold in which the Ott–Antonsen
ansatz is valid on a timescale which is much faster than T , so that
we can assume that k is constant during this process. It follows that
the macroscopic behavior depends on the location of the stable

fixed points of Eqs. (12) and (13) as depicted for various situations
in Fig. 2(a)–(d).

We now classify the nature of macroscopic behavior by study-
ing the stable fixed points of Eq. (12) (the synchronized fixed point,
k∗
sync) and Eq. (13) (the incoherent fixed point, k∗

inc). Note that inco-
herent fixed points for k > k2 are not relevant since the incoherent
branch is unstable in that region, and thereforewewill ignore these
fixed points inwhat follows. Classifying themacroscopic dynamics
for a particular choice of (α, β) reduces to the analysis of the stable
fixed points of Eqs. (12) and (13) subject to the incoherent solution
(ρ = 0) and stable synchronized solution (Eq. (8)). The different
possible macroscopic behaviors are the following.

• No synchronized fixed point, no incoherent fixed point. As shown
in Fig. 2(a), if no stable fixed point exists on either branch, the
systemwill repeat the following macroscopic oscillation: kwill
increase along the incoherent branch, then, after the system
synchronizes at k2, it will decrease along the synchronized
branch, until desynchronization occurs at k1. We define this
behavior as the intermittent state, and investigate its properties
in Section 2.3.

• Synchronized fixed point, no incoherent fixed point. If a stable
fixed point occurs only on the synchronized branch, we define
two subclasses for this state: if k∗

sync ≥ k2, we define themacro-
scopic state as the synchronized state (see Fig. 2(b)), whereas, if
k∗
sync < k2, we refer to the state as the excitable synchronized (ES)

state (see Fig. 2(c)). This distinction is made to account for the
possibility that perturbations to the value of ρ in the ES state
(e.g., due to noise or finite-size fluctuations [39]) may desyn-
chronize the system by decreasing ρ below ρu, whichwould re-
sult in ρ → 0 followed by k increasing until k = k2, after which
the systemwill synchronize and return to the fixed point. Thus,
the synchronized state can be interpreted as the resting state of
an excitable system, and a temporary desynchronization as an
excitation.

• Incoherent fixed point, no synchronized fixed point. Analogous to
the previous case, we define two subclasses for this state: if
k∗

inc < k1, we refer to this state as the incoherent state, whereas,
if k∗

inc ≥ k1, we refer to this state as the excitable incoherent (EI)
state. Again, this distinction is made to account for the possibil-
ity of perturbations to the value of ρ in the EI state that can pro-
duce a temporary synchronization. In this case, the system can
be synchronized if ρ is increased above ρu, resulting in ρ → ρs
followed by k decreasing until k = k1, desynchronization, and
finally a return to the fixedpoint. In this scenario, the incoherent
fixed point can be interpreted as the resting state of an excitable
system, and a temporary synchronization as an excitation.

• Synchronized fixed point, incoherent fixed point. If stable fixed
points occur on both branches, we refer to this state as the
bistable state, an example of which is shown in Fig. 2(d).

To find the location of the bifurcations between these states,
we calculate the critical α, β that correspond to the formation or
destruction of fixed points on either branch. For fixed points on the
incoherent branch, this occurs at α = k2. For fixed points on the
synchronized branch, we require that the curves k − α and βρs(k)
are tangent if β ≥ 0, which occurs when

βρs(k) = k − α, β
dρs(k)
dk

= 1, (14)

and coincide if β < 0, which happens when

α + βρs(k1) = k1. (15)

Finally, the boundary between EI and incoherent states is given by
α = k1 (the incoherent fixed point entering the bistable region),
while the boundary between ES and synchronized states is given
by the curve α + βρs(k2) = k2 (the synchronized fixed point
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Fig. 2. (Color online) Various macroscopic behaviors may occur for uniform adaptation following Eq. (11) depending on α, β and the location of fixed points (circles).
Examples include (a) intermittent, (b) synchronized, (c) ES, and (d) bistable states.
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Fig. 3. (Color online) Bifurcation diagram summarizing boundaries between inter-
mittent, synchronized, ES, incoherent, EI, and bistable states for ω0 = 5,∆ = 1,
and τ = 1.

entering the bistable region). In Fig. 3, we show the bifurcation
diagram for ω0 = 5 and ∆ = 1 by plotting curves describing
the formation/destruction of incoherent fixed points in solid blue,
synchronized fixed points in dashed red, and the borders between
EI/ES and incoherent/synchronized states in dotted black.We label
regions with the states described above. We note that excitable
and intermittent states are possible only when β < 0, which
we refer to as anti-Hebbian adaptation (accordingly, we refer to
β > 0 as Hebbian adaptation). This terminology is based on the
observation that, for β > 0 (β < 0) in Eq. (11), coupling is
promoted (inhibited) by the synchrony of oscillators.

2.3. Intermittent case

Motivated by observations of intermittently synchronous dy-
namics in various applications of oscillator systems (e.g., in neural
activity [8,40] and clapping audiences [5]), we now study in detail
the intermittent case illustrated in Fig. 2(a) and characterized by
intermittent periods of macroscopic synchronization. Of interest
is the period of oscillation, which can be found by integrating the
time spent following the incoherent and synchronized branches of
the bistable region. The time spent in the incoherent state, Tinc, cor-
responds to the time it takes for k to increase from k1 to k2 with
ρ = 0, and is given by

Tinc = T ln

α − k1
α − k2


. (16)

Similarly, the time spent in the synchronized state, Tsync, corre-
sponds to the time it takes for k to decrease from k2 to k1 along

the synchronized branch, and is given by

Tsync = T
 k1

k2

dk
α + βρs(k)− k

. (17)

Since we assume that the timescale of adaptation is much larger
than the timescale of oscillator dynamics, we neglect the time it
takes for oscillators to synchronize and desynchronize at k2 and k1,
respectively. This gives the period of oscillation Tloop = Tsync +Tinc.
Fig. 4(a) shows Tloop (solid green curve), Tinc (dashed red curve), and
Tsync (dot–dashed blue curve) as a function of α forω0 = 5,∆ = 1,
and β = −20. For these parameters, k1 = 10 and k2 = 14.5.
In addition, we compute the period of oscillation from simulating
N = 5000 oscillators with T = 2000, plotting the mean of Tloop
over 16 simulations at each α (black asterisks). Error bars indicate
the standard deviation. While Tinc and Tloop diverge as α → k−

2 ,
Tsync and Tloop remain finite as α → [k1 − βρs(k1)]+, since the
square root singularity of ρs(k) at k = k1 prevents the integral in
Eq. (17) from diverging.

As shown in Fig. 4(b), the macroscopic behavior of the sys-
tem oscillating between incoherent and synchronized states may
be described by considering the low-dimensional system given by
Eqs. (7), (8), (12) and (13). This theoretical solution R(t) (solid blue
curve) agrees well with the order parameter’s magnitude |r(t)|
(red crosses) from direct simulation of the high-dimensional sys-
tem given by Eqs. (2)–(4) and (11). The simulation in Fig. 4(b) was
done with N = 5000 oscillators with T = 2000, α = 18, and β =

−20. Remarkably, the behavior of the high-dimensional system
is captured well by this piecewise-defined one-dimensional ODE.
The period taken from simulations is slightly longer than our the-
oretical solution, which is most likely due to two effects. First, our
theoretical solution neglects the synchronization and desynchro-
nization times at the dynamic bifurcations occurring at k = k1 and
k2. Second, along the incoherent branch, the value of the order pa-
rameter in simulations typically takes values of size O(N−1/2) [39]
rather than zero, which slightly slows down the adaptation.

2.4. Excitable incoherent case

We conclude our analysis of this model by studying the EI
state. As previously mentioned, if the system is in the incoherent
state with k = k∗

inc, a perturbation to the order parameter can
cause r to become larger than the unstable solution ru, resulting
in a dynamic bifurcation. While k remains fixed during this rapid
transition, after synchrony, k will evolve until the system returns
to the equilibrium of r ∼ 0 and k = k∗

inc. In particular, for finite
systems, this perturbation could occur due to finite size effects,
resulting in a spontaneous synchronization event [33]. This can be
viewed as a random spiking event for the macroscopic dynamics,
which corresponds to the oscillators synchronizing very briefly
relative to the typical time between spikes.

Spiking events are shown in Fig. 5, where we plot |r(t)| versus
time for τ = 1, T = 1000,∆ = 1, ω0 = 5, and N = 1050.
Note that the system spends the majority of time in the incoher-
ent state, and the slow timescale of spontaneous synchronization
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14.45 and β = −20 are chosen so that our system is in the EI state. Note that the
timescale of spiking is dominated by the spontaneous synchronization process [33].
(Inset) For a system of size N , we may predict the expected time between spikes as
Tspike ∝ exp(ζN) for some constant ζ [33]. The solid line indicates a least-squares
fit Tspike/T = 2.16 exp(0.0021N).

dominates other timescales. Defining the average time between
synchronization events as the inter-spike time, Tspike, we briefly dis-
cuss the dependence of Tspike on system size N . In Ref. [33], it was
shown that the spontaneous synchronization event can be mod-
eled as a Kramer escape process where the expected escape time
is proportional to exp(ζN) for some constant ζ . Therefore, because
the escape process dominates the timescale of dynamics, we ex-
pect that the inter-spike time scales as Tspike ∝ exp(ζN). This is
confirmed in the inset of Fig. 5, where Tspike is shown to vary ex-
ponentially with N . The solid line is a least-squares fit Tspike/T =

2.16 exp(0.0021N).

3. Other models

In the previous section, we analyzed in detail the model given
by Eqs. (2)–(4),which describes a systemof oscillatorswith hetero-
geneous natural frequencies and heterogeneous time delays sub-
ject to uniform coupling adaptation [31]. The purpose of thismodel
was to illustrate generic behavior occurring in adaptive networks
with bistable regimes. In this section,we studynumerically and an-
alytically several other models which have been selected to show
that the types of behavior observed in the previous section occur
more generally. In particular, in Section 3.1, we investigate net-
work adaptation, which is often used in Kuramoto-type models of
information processing and memory in neural networks [29,30].
In Section 3.2, we explore complex macroscopic behavior that can
arise for adaptation in networks containing community structure.
Finally, in Section 3.3, we show that our findings apply to other
oscillator systems exhibiting multistability (e.g., due to frequency
adaptation [33] or inertia [34]) by studying adaptation in oscillator
systems with bistability due to a bimodal distribution of intrinsic
frequencies [32].

3.1. Network adaptation

First, we will consider a system similar to Eqs. (2)–(4) in which
the interactions between oscillators are not mediated by a global
mean field, but occur instead through an underlying coupling
network. We assume that the undirected network structure is
represented by an adjacency matrix A, where

Anm =


1 if a link exists from oscillatorm to oscillator n,
0 if no link exists.

Introducing a coupling weight knm to each link, and using the
locally defined order parameters rn, where

rn =

N
m=1

Anmknmeiθm , (18)

we consider the system given by

θ̇n = ωn + λ−1
D Im(zne−iθn), (19)

τ żn = rn − zn, (20)

T k̇nm = α + βRe(rnz∗

n )− knm, (21)

where ωn is again randomly drawn from a Lorentzian with mean
ω0 and spread ∆, and λD is the dominant eigenvalue of A. We
normalize the coupling term in Eq. (19) by λD so that the knm values
producing bistability are on the same order as k values that yield
bistability in the uniform adaptation model [13]. To measure the
global degree of synchrony and coupling strength, we introduce
the average order parameter

r =


n
rn

n,m
Anmknm

∈ [0, 1], (22)

and average coupling strength

k =


n,m

Anmknm
n,m

Anm
. (23)

Since we are assuming that oscillator n is affected by a delayed
order parameter, the adaptation of the coupling knm between
oscillators m and n, Eq. (21), is assumed to depend on the local
instantaneous order parameter of oscillator n, rn, and the delayed
order parameter at oscillatorm, zm. As before, we interpret positive
values of β as Hebbian adaptation, and negative values as anti-
Hebbian adaptation.

Using the Chung–Lu model [41], we construct an undirected
network with a power-law degree distribution, P(d) ∝ d−γ , with
exponent γ = 3, minimum degree dmin = 100, and N = 1000
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Fig. 6. (Color online) Example (k, |r|) trajectories of the system given by Eqs. (19)–
(21). The solid blue and dashed red trajectories were obtained using (α, β) =

(24, 0) and (6, 0), respectively, with initial coupling strength k = 6 and 22,
respectively. Other parameters are ω0 = 5,∆ = 1, τ = 1, T = 1000, γ =

3, dmin = 100, and N = 1000.
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Fig. 7. (Color online) Bifurcation diagram summarizing oscillatory (black squares),
synchronized (red circles), ES (cyan asterisks), incoherent (blue triangles), EI (green
plusses), and bistable (yellow crosses) states for network adaptation of time-
delayed oscillators with∆ = 1, ω0 = 5, τ = 1, and T = 1000.

oscillators, where the degree d is defined as dn =
N

m=1 Anm. The
parameters for the oscillator dynamics are ω0 = 5,∆ = 1, τ = 1,
and the adaptive timescale is T = 1000. The dominant eigen-
value for the network constructed for the simulations shown here
is λD = 232.325. In Fig. 6, we show representative (k, |r|) trajec-
tories. First, using (α, β) = (24, 0), we allow the average coupling
strength to increase from an initial value of k = 6 (solid blue tra-
jectory). Next, using (α, β) = (6, 0), we allow k to decrease from
an initial value of k = 22 (dashed red). We find that, in analogy
with the uniform adaptation case, a stable synchronized solution
|R| > 0 is created at k = k1 ≈ 12.6, and the incoherent solu-
tion |R| = 0 becomes unstable at k = k2 ≈ 13.6. Thus, dynamic
bifurcations occur approximately when an incoherent state’s aver-
age coupling increases through k2 or a synchronized state’s average
coupling decreases through k1.

Next, we numerically explore the (α, β) parameter space, clas-
sifying the observed behaviors as bistable, intermittent, synchro-
nized, ES, incoherent, and EI, following the criteria in Section 2. In
Fig. 7, we plot the results. Starting from the top left and proceed-
ing clockwise, we plot bistable (yellow crosses), synchronized (red
circles), ES (cyan asterisks), oscillatory (black squares), EI (green
plusses), and incoherent (blue triangles) states. These states were
found by tracking the trajectories of |r| and k for two simulations
at each pair (α, β), one trajectory starting from an incoherent state
with k < k1, and the other starting from a synchronized state with

k > k2. The results are smooth enough that the boundaries be-
tween regions are clear. As expected, while the exact boundaries
in Fig. 7 differ from those plotted in Fig. 3, the topologies of the
two phase spaces agree qualitatively.

3.2. Community interaction

Next, we generalize the system studied in Section 2 to a two-
communitymodel inwhich coupling is strongwithin communities
and weak between communities. For simplicity, we assume that
the adaptation within and between each community is uniform.
The model we consider is

θ̇σn = ωσn +

2
σ ′=1

kσσ ′ Im(zσ ′e−iθσn ), (24)

τσ żσ = rσ − zσ , (25)

T k̇σσ ′ = Gσσ
′

(k⃗, r⃗, z⃗), (26)

where σ = 1, 2 denotes the community, θσn denotes the phase
of an oscillator in community σ , rσ =

1
Nσ

Nσ
m=1 e

iθσm is the Ku-

ramoto order parameter over oscillators in community σ , k⃗ =

[k11, k12, k21, k22]T , r⃗ = [r1, r2]T , z⃗ = [z1, z2]T , and the natural fre-
quencies ωσn are drawn from the distribution gσ (ω).

Separating the fast oscillator dynamics from the slow adapta-
tion dynamics as before, a dimensionality reduction for the Nσ →

∞ limit as in Refs. [21,23] yields

ṙσ = (−∆σ + iωσ0 )rσ +
1
2

2
σ ′=1

kσσ ′(zσ ′ − z∗

σ ′ r2σ ), (27)

where we have assumed that the distribution gσ (ω) is Lorentzian,
with spread ∆σ and mean ωσ0 . Eqs. (27) and (25) give the low-
dimensional evolution of the oscillator dynamics. Furthermore, we
consider the adaptation dynamics given by

T k̇σσ ′ = ασσ ′ + βσσ ′Re(rσ zσ ′)− kσσ ′ . (28)

Depending on the choices of ∆σ , ωσ0 , ασσ ′ , and βσσ ′ , the
resulting dynamics can vary greatly. For simplicity, we choose
∆σ = ∆ = 1 and ωσ0 = ω0 = 5, τσ = τ = 1, ασσ ′ = α and
βσσ ′ = β for σ = σ ′, and ασσ ′ = ϵα and βσσ ′ = ϵβ for σ ≠ σ ′,
where 0 < ϵ < 1. We induce oscillatory behavior by choosing
α = 18, β = −30, and T = 200, and investigate the effect
of varying ϵ. In particular, we are interested in the macroscopic
synchrony of the two communities.

We simulate the system with Nσ = 2000 oscillators in both
communities with initial coupling strengths of k11 = 9, k22 = 14,
and k12 = k21 = 0 for values ϵ = 0.105 and 0.085. In Fig. 8(a), we
plot |r1(t)| (solid blue curve) and |r2(t)| (dashed red curve) in the
top panel and k11(t) (solid blue curve), k22(t) (dashed red curve),
k12(t) (dot–dashed green curve), and k21(t) (dotted black curve)
in the bottom panel for ϵ = 0.105. In Fig. 8(b), we plot the same
quantities for ϵ = 0.085. Although the two communities start in
out-of-phase macroscopic states, for ϵ = 0.105, the macroscopic
dynamics of the communities synchronize near t = 3T . However,
for ϵ = 0.085, they remain out of phase past t = 200T .
This significant difference in behavior for such a small change in
ϵ suggests a sensitive dependence on the system parameters in
addition to initial conditions.

3.3. Bimodal frequency distribution

Finally, we study the uniform adaptation of a system of oscilla-
tors without time delay, but having bistability due to a bimodal
distribution of intrinsic frequencies. The model we study is the
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Fig. 8. (Color online) Community interaction model with parameters ω0 = 5,∆ = 1, τ = 1, α = 18, β = −30, T = 200, and ϵ = 0.105 (a) and 0.085 (b). Top panels:
evolution of |r1| (solid blue line) and |r2| (dashed red line); bottom panels: evolution of k11 (solid blue line), k22 (dashed red line), k12 (dot–dashed green line), and k21 (dotted
black line).

HC

HB

SN/SNIPER

2

1.5

1

0.5

0
0 0.5

TC

1 1.5 2 2.5 3

1.3

1.2

1.1

1

0.9

0.8

0.9 1 1.1 1.2 1.3

a b

S
S/In

(c)

(b)
(a)

SW
S/SW

In

S

Fig. 9. (Color online) (a) Bifurcation diagram for the Kuramoto model with bimodal frequency distribution. Transcritical, Hopf, homoclinic, and saddle–node/SNIPER
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following:

θ̇n = ωn + kIm(re−iθn), (29)

T k̇ = G(k, z), (30)

where r =
1
N

N
n=1 e

iθn is the normal Kuramoto order parameter,
and nowwe assume thatωn are drawn from the double Lorentzian

g(ω) =
∆

2π


1

(ω − ω0)2 +∆2
+

1
(ω + ω0)2 +∆2


, (31)

which is bimodal for ∆ <
√
3ω0. We note that in Ref. [42] a

similar oscillator systemwith bimodally distributed frequencies is
studied, butwith an explicitly time-dependent sinusoidal coupling
strength rather than system-dependent coupling adaptation.

Thismodel is particularly interesting because, in addition to the
simple coherent and incoherent fixed points, stable solutions can
also take the form of standing waves in which two synchronized
groups (one corresponding to each peak of g(ω)) oscillate with
opposite angular velocity [32]. These solutions are found for
intermediate coupling strengths such that groups of oscillators
with frequencies near ω0 and −ω0 synchronize, but these two
groups do not synchronize with one another. These two groups act
as giant oscillators that continue to pass one another, maximizing
|r|when the twogroups have equal phase andminimizing |r|when
they have opposite phase. For a detailed analysis of these oscillator
dynamics, refer to Ref. [32].

In Fig. 9(a), we summarize the bifurcation diagram. The hor-
izontal and vertical axes are 4ω0/k and 4∆/k, respectively, and
transcritical, Hopf, homoclinic, and saddle–node/SNIPER bifurca-
tions are plotted in dashed black, blue, green, and red curves, and

labeled TC, HB, HC, and SN/SNIPER, respectively. In Fig. 9(b), we
show a zoomed-in view of the bistable regime and indicate regions
where the incoherent, synchronized, and standing-wave solutions
are stable. Regions are labeled S, In, and/or SW if the synchronized,
incoherent, and/or standing-wave solutions are stable in that re-
gion, respectively. For small k, the incoherent solution is the only
stable solution. This solution loses stability either in a transcriti-
cal bifurcation or a Hopf bifurcation, giving rise to synchronized or
standing-wave solutions. Synchronized solutions are also born at
the saddle–node/SNIPER bifurcations, and the standing-wave so-
lution disappears at the homoclinic bifurcation. There are two dis-
tinct regions of bistability in the approximately triangular area in
the middle of the plot. For 4∆/k > 1 (labeled S/In in Fig. 9(b)), the
synchronized and incoherent solutions are both stable, whereas,
for 4∆/k < 1 (labeled S/SW in Fig. 9(b)), the synchronized and
standing-wave solutions are stable.

Letting Eq. (30) take the linear form given by Eq. (11) with α =

5, β = −5, and τ = 1000, we simulate a system with N = 2000
oscillators for ω0 = 1 and (a) ∆ = 0.82, (b) 0.89, and (c) 1.02.
The respective trajectories in phase space (see the solid black lines
in Fig. 9) yield the following behaviors: (a) the system oscillates
between synchronized and standing-wave states; (b) the system
repeats a synchronized → incoherent → standing wave →

synchronized cycle; and (c) the systemoscillates between synchro-
nized and incoherent states.We plot the behavior of each in (k, |r|)
space in Fig. 10(a)–(c). Note in Fig. 10(b) that the macroscopic dy-
namics transition froman incoherent state to a standingwave state
occurs at k ≈ 3.65 (see arrow), as predicted by the Hopf bifurca-
tion in Fig. 9. In this case,we see three dynamical bifurcations in the
transitions from incoherent → standing-wave, standing-wave →

synchronized, and synchronized → incoherent states.
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4. Discussion

We have investigated analytically and numerically the effect of
slow coupling adaptation on models of coupled phase oscillators
exhibiting bistability, and have characterized the complex macro-
scopic behavior that extends to other bistable phase oscillator sys-
temswhere bistability arises (e.g., due to frequency adaptation [33]
or inertial terms [34]). In addition to states with simple macro-
scopic fixed points, we have observed for uniform coupling adapta-
tion on bistable systems macroscopic excitable and intermittently
synchronous states. We leave open the exploration of further dy-
namics that may occur for systems exhibiting multistability.

Besides considering only uniform coupling adaptation (i.e., al-
lowing the global coupling strength of an all-to-all system to evolve
depending on macroscopic system properties), we have also ad-
dressed network adaptation (i.e., allowing the links between in-
dividual oscillators to evolve according to their local properties).
Network adaptation allows for heterogeneities in evolving net-
works to be accentuated, and it is oftenmore realistic (e.g., Hebbian
learning in neural systems [30]). However, we have found that,
even when the underlying network structure is heterogeneous,
which in turn promotes heterogeneities in the coupling between
oscillators, qualitatively similar macroscopic behavior emerges,
i.e. fixed points, excitable, and intermittently synchronous states.
Although our results for this case are purely numerical, we note
that our results from the uniform adaptation model describe more
heterogeneous networks with network adaptation very well. The
development of more advanced methods for dimension reduction
for heterogeneous oscillator networks is an open area of research,
although progress continues [43].

We also have considered uniform adaptation for systems with
either community interaction or bimodal frequency distributions.
In the community interaction model, we have found complicated
behavior even for simple parameter assumptions. We hypothesize
that changing the manner in which communities interact and/or
increasing the number of communities could lead to richer, more
complicated dynamics, including chaoticmacroscopic states. In the
bimodal frequency distributionmodel, we have demonstrated new
dynamic bifurcations corresponding to the transitions between
standing-wave solutions and the typical incoherent and synchro-
nized states.

This work also provides a strategy for reconciling the common
disconnect betweenmicroscopic behavior (i.e. individual oscillator
dynamics) and macroscopic phenomena. In the systems studied in
this paper,wehave shown that entire populations of oscillators can
combine into a single functional unit. For example, a wide range
of parameters yields intermittent synchronous dynamics, which
we liken to clock-like behavior. Similarly, we liken the dynamics
of excitable and bistable states to neuron-like firing and switch-
like behavior, respectively. One interesting direction of future
research motivated by the work presented in this paper is the
study of even more complex systems that are composed of many

functional units in a hierarchical organization. In particular, one
could study systems built out of different kinds of functional units,
for instance to understand the resulting dynamics when networks
of clocks, neurons, and switches interact. Because of their analytic
tractability and simplicity, we believe that the results presented in
this paper could prove a useful tool for understanding the generic
behavior of these complex systems.
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