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Abstract

We study the emergence of coherence in large complex networks of interacting heterogeneous dynamical systems. We show that for a large
class of dynamical systems and network topologies there is a critical coupling strength at which the systems undergo a transition from incoherent
to coherent behavior. We find that the critical coupling strength at which this transition takes place is kc = (Zλ)−1, where Z depends only on the
uncoupled dynamics of the individual systems on each node, while λ is the largest eigenvalue of the network adjacency matrix. Thus we achieve
a separation of the problem into two parts, one depending solely on the node dynamics, and one depending solely on network topology.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

There has recently been much interest in the properties of
large complex networks [1,2]. Another concern has been the
study of dynamical processes taking place on such networks
and of how network structure impacts the dynamics. One
of the most remarkable phenomena in the study of coupled
dynamical systems is their spontaneous synchronization.
Under appropriate conditions, a collection of interacting
dynamical systems with possibly different parameters can
achieve a state of macroscopic coherence. This phenomenon
is extremely important in several fields, ranging from biology
to engineering [3,4]. The interactions among the different
dynamical systems often constitute a large complex network,
and it is thus important to study the effect of network structure
on the onset of collective synchronization.

When studying dynamical systems coupled by a network of
interactions, there are two important aspects of the problem that
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can be changed independently (and, as we shall see, have an
independent effect): the dynamics of the individual, uncoupled
dynamical systems, and the topology of the interaction network.
Models of coupled dynamical systems have until very recently
simplified the dynamics of the systems, the topology of their
interactions, or both. The case of an all-to-all network of
sine coupled phase oscillators corresponds to the well-known
Kuramoto model [5]. This model considers N oscillators, each
of which is described by a phase θ j and has a frequency ω j .
The frequencies are assumed to be randomly drawn from a
probability distribution Ω(ω) independently of j , and Ω(ω)

is assumed to be symmetric around a single local maximum
located (without loss of generality) at ω = 0. Sinusoidal
coupling is assumed so that θ j evolves as θ̇ j = ω j +
k

∑N
m=1 sin(θm − θ j ). In the limit N → ∞, for coupling

strengths k less than a critical coupling strength kc, the
phases of the oscillators are incoherent, i.e., θ j are uniformly
distributed on [0, 2π). For values of the coupling strength k
larger than kc, a significant fraction of the oscillators evolve
with a common frequency. The value of the critical coupling
strength kc depends on the frequency distribution Ω . The
Kuramoto model has become a classical paradigm for the
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emergence of synchronization in an ensemble of heterogeneous
oscillators (see [6] for reviews).

The effect of more general dynamics or a more general
interaction network has been recently studied, and it has been
found that in both cases there is still a transition to coherent
behavior. In particular, for the Kuramoto phase oscillator
model generalized to the case of a general interaction network
described by an adjacency matrix [7–13], we [7,8] found that
there is still a transition to synchrony at a critical coupling
strength that depends separately on the largest eigenvalue of
the adjacency matrix and the frequency distribution. Also, for
equal coupling strength, all-to-all coupled collections of many
dynamical systems with more general dynamics (e.g., mixed
collections of chaotic and periodic oscillators, chaotic maps,
etc.) [14–18], there is also a transition to synchrony at coupling
strengths that depend on the dynamics of the uncoupled
systems. In the case of more general dynamics, by a transition
to synchrony we mean that an average over the states of all
the individual dynamical systems displays coherent oscillation.
In particular, while the time series of the state of any one of
the systems may appear chaotic, on averaging, the temporally
chaotic variations cancel, and a coherent periodic oscillation of
the globally averaged state is revealed.

Recently, we presented a brief report showing how to
generalize these efforts to the case of general dynamics and a
general interaction network for interacting maps [19]. Our main
result was that the critical coupling strength for the onset of
synchronization depends separately on the largest eigenvalue
of the adjacency matrix of the network, and on the dynamics of
the individual, uncoupled oscillators. We present here a more
detailed analysis of our previous results and an extension to
collections of continuous time oscillators (including periodic,
chaotic, or mixed ensembles).

This paper is organized as follows. In Section 2 we review
the results for general dynamics in an all-to-all network and
for the Kuramoto model generalized to complex networks. In
Section 3 we present our theory for general dynamical systems
coupled in a network. In Section 4 we present numerical
examples, and in Section 5 we present our conclusions.

2. Background

In Section 2.1 we review previous results for the onset
of synchronization in the case of globally coupled dynamical
systems [17,18], while in Section 2.2 we review results for
the onset of synchronization in collections of phase oscillators
coupled in a network [7,8].

2.1. Globally coupled maps

Reference [17] investigates systems of globally coupled
maps defined by

x ( j)
n+1 = f (x ( j)

n , µ j ) + w
( j)
n + kg(x ( j)

n )[q(xn) − 〈q〉]. (1)

Here j = 1, 2, . . . , N labels the map, and we are interested
in large N ; f (x ( j)

n , µ j ) determines the uncoupled dynamics of
each individual map with a parameter vector µ j ; for each map j

the parameter vector µ j is chosen randomly and independently
of j with a probability distribution p(µ); and the term w

( j)
n is a

random noise which is assumed to be statistically independent
of j and n and to satisfy E[w( j)

n ] = 0, E[w( j)
n w

(l)
m ] =

σ 2δnmδ jl , where E[·] represents the expected value. In the
coupling term, k is a global coupling strength and the functions
g and q are assumed to be smooth and bounded. The notation
〈·〉 represents the average over the distribution of the parameter
vector µ j and over the natural measures of the attractors of
the noisy uncoupled (k = 0) system. More precisely, if an
individual noisy uncoupled system with parameter vector µ has
a unique attractor with a natural measure mµ(x), then

〈q〉 =
∫∫

q(x)dmµ(x)p(µ)dµ. (2)

Alternatively, 〈q〉 is the µ-average of the infinite time average
of q(xn) over a typical orbit xn of the noisy uncoupled system.
We remark that 〈q〉 is independent of time. The notation q(xn)

indicates an average over j ,

q(xn) = 1
N

N∑

j=1

q(x ( j)
n ). (3)

We note that q(xn), in general, depends on the time n. We also
note that x can be a vector for the situation of multidimensional
individual maps. For simplicity, in what follows x will be
considered a scalar; thus f, g, and q are scalar functions.

Consider what happens if the initial conditions for system
(1) are chosen distributed according to the natural measure of
the attractors of the uncoupled systems [imagine that system (1)
is left running for a long time with k = 0, and then k is suddenly
changed to a nonzero value]. Because of the large number
of terms in the sum (3) and the fact that xn are distributed
according to the measure of the uncoupled attractors, we have

〈q〉 ≈ q(xn), (4)

and therefore the coupling term in Eq. (1) approximately (for
large N < ∞) vanishes and the oscillators continue evolving
independently of each other. We refer to this situation as the
incoherent state [17], and, as we have just argued, this state is
a solution of system (1) in the limit N → ∞. The onset of
synchronization can be associated with the linear instability of
the incoherent state. By considering linear perturbations δx ( j)

n

from the incoherent state x ( j)
n , and perturbations δ

( j)
n of the

uncoupled system

δ
( j)
n+1 = f ′(x ( j)

n , µ j )δ
( j)
n , δ0 = 1, (5)

a dispersion relation determining the onset of instability of
the incoherent state was obtained in Ref. [17]. Since this is
a particular case of the theory presented in Section 3.1 we
will present here the results and leave the details for the more
general case.

Assuming that perturbations from the incoherent state grow
exponentially in time as ηn , the dispersion relation obtained
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in [17] is

1 = k Z(η), (6)

where

Z(η) = lim
n→∞

〈
n∑

p=0

q ′(x p+1)δn+1g(x p)η
p−n−1

δp+1

〉

. (7)

For large n, δn+1/δp+1 grows with n on average as
χ(µ, x0)

n−p, where χ(µ, x0) is the Lyapunov exponent for the
uncoupled system with parameter vector µ and initial condition
x0. Thus, for the limit to converge we require

|η| > χ ≡ sup
x0,µ

χ(µ, x0). (8)

Under this condition, we can interchange the sum and the
average to obtain, after letting m = n − p and n → ∞,

Z(η) = 1
η

∞∑

m=0

Zm

ηm , (9)

where

Zm =
〈

δn+1

δn−m+1
q ′(xn+1)g(xn−m)

〉
. (10)

The above is only valid, in principle, for |η| > χ . For chaotic
systems, χ > 1, but in order to investigate the onset of
coherence, we would like to study the case |η| = 1. In [17] it is
argued that the Zm decrease exponentially with m, so that Z(η)
defined as in Eq. (9) can be analytically continued to values
|η| < 1.

The onset of instability corresponds to |η| = 1; thus setting
η = eiω and solving

1 = k Z(eiω), (11)

one obtains values of k at which the incoherent state is
marginally stable: from Im(Z(eiω)) = 0 one obtains critical
frequencies and from these one can solve for k. The smallest
positive solution k+ and the largest negative solution k−
correspond to the onset of instability of the incoherent state as
the coupling strength is increased or decreased from k = 0.

2.2. Networks of coupled phase oscillators

In Section 2.1 we reviewed previous results for globally
coupled maps. Although the uncoupled dynamics considered
are quite general, the coupling network is assumed to be
all-to-all. In this section we review results for the case of
simple dynamics (oscillators described only by their phase)
on a complex network [7,8]. This is a direct generalization of
the Kuramoto model described in the introduction to the case
of more general connectivity of the oscillators. The system
considered is

θ̇ j = ω j + k
N∑

m=1

A jm sin(θm − θ j ). (12)

Here j, m = 1, 2, . . . , N , ω j is the frequency of oscillator j
which is assumed to be randomly drawn from a probability

distribution Ω(ω) independent of j . As in the Kuramoto model,
the frequency distribution is assumed to be symmetric around
a single local maximum located (without loss of generality) at
ω = 0.

The N × N matrix A whose elements appear in Eq. (12)
determines the network of interactions: node m directly affects
node j only if A jm ,= 0. We refer to those nodes m for which
A jm ,= 0 as the neighbors of node j , and to d j = ∑N

m=1 A jm
as the in-degree of node j . The diagonal elements of A do not
affect the dynamics specified by Eq. (12), and, for convenience,
we will take them to be zero, Ann = 0 (equivalently, we could
include the constraint m ,= j in the subsequent sums).

Defining a local order parameter by

r j =
N∑

m=1

A jmeiθm , (13)

the macroscopic coherence in the collection of oscillators is
quantified by the global order parameter

r =

N∑
j=1

r j

N∑
j=1

d j

. (14)

Under the assumption that nodes have a large number of
neighbors, a self consistent equation (the time averaged theory,
TAT) was obtained in Ref. [7],

r j =
∑

|ωm |≤krm

A jm

√

1 −
(

ωm

krm

)2

. (15)

The incoherent state corresponds to r j = 0 for all j , which
is a solution of Eq. (15). Coherent macroscopic oscillations
correspond to solutions of Eq. (15) with r j ,= 0 for some set
of j . In general, to find such states Eq. (15) must be solved
numerically [a much quicker task than integrating Eq. (12)].

Assuming that each node’s neighbors have a representative
sample of frequencies, and averaging the individual terms in
the summand of Eq. (15) over the frequencies, one obtains the
approximation (frequency distribution approximation, FDA)

r j = k
N∑

m=1

A jmrm

∫ 1

−1
Ω(zkrm)

√
1 − z2dz. (16)

The onset of coherence corresponds to r j → 0+, from which
one obtains a critical coupling strength given by

kc = 2
πΩ(0)λ

, (17)

where λ is the largest eigenvalue of the matrix A (the largest
eigenvalue corresponds to the first mode becoming unstable as
the coupling strength is increased from zero; the most negative
eigenvalue should be used to find the onset of synchronization
as the coupling strength is decreased from zero). For symmetric
matrices or matrices with positive entries the eigenvalue with
largest magnitude is real. For a large class of nonsymmetric
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matrices with mixed positive/negative entries, we have found
that if the average of the nonzero elements of the matrix is large
enough, the eigenvalue with largest magnitude is also real and
it is well separated from the eigenvalue with the next largest
magnitude. For details, see the Appendix of Ref. [8].

3. Networks of coupled dynamical systems

In the previous section we have reviewed results in cases
that simplified either the network topology (Section 2.1) or the
dynamics at the nodes (Section 2.2). In this section we will
consider the general case. In Section 3.1 we discuss networks
of coupled discrete maps [19], while Section 3.2 considers
networks of continuous time systems (ordinary differential
equations).

3.1. Networks of coupled maps

Here we will consider networks of N coupled maps
satisfying for j = 1, 2, . . . , N ,

x ( j)
n+1 = f (x ( j)

n , µ j ) + w
( j)
n

+ kg(x ( j)
n )

N∑

m=1

A jm[q(x (m)
n ) − 〈q(x)〉]. (18)

Here, the notation is the same as in Section 2.1, with the
addition of the matrix A, which was introduced in Section 2.2.
We recall that, for simplicity, we assume the quantities in the
previous equation to be scalar.

We are interested in studying system (18) for the case in
which nodes have a large number of neighbors. In this case,
if the initial conditions for system (18) are chosen distributed
according to the natural measure of the attractors of the
uncoupled systems, then, because of the large number of terms
in the sum in the coupling term in Eq. (18), the fact that
xn are distributed according to the measure of the uncoupled
attractors, and the lack of correlations between the parameter
vectors and the network, we can approximate

N∑

m=1

A jmq(x (m)
n ) ≈ 〈q(x)〉

N∑

m=1

A jm . (19)

This is analogous to Eq. (3), but we have had to introduce the
extra assumption of a large number of neighbors per node, as
opposed to only requiring large N in the all-to-all case.

We see that in this more general case, under the
previously mentioned assumption, the incoherent state is also
(approximately) a solution of the system. Therefore, its linear
stability can be studied using the same methods that were used
in the all-to-all case. In the following, we will adapt these
techniques to the more general case of system (18). Therefore,
we will follow closely the ideas in Section 2.1 (or Ref. [17]),
but adapted to the presence of the network.

We want to study the linear stability of the incoherent state.
Thus, we assume that x (i)

n is in the incoherent state and in-
troduce an infinitesimal perturbation δx (i)

n . Linearization of

Eq. (18) produces

δx ( j)
n+1 = f ′(x ( j)

n , µ j )δx ( j)
n

+ kg(x ( j)
n )

N∑

m=1

A jmq ′(x (m)
n )δx (m)

n . (20)

In order to solve Eq. (20) we consider (as in the variation of pa-
rameters method for differential equations) a perturbation δ

( j)
n

of the uncoupled system

δ
( j)
n+1 = f ′(x ( j)

n , µ j )δ
( j)
n , δ0 = 1. (21)

Defining

δx ( j)
n = z( j)

n δ
( j)
n , (22)

we obtain from Eqs. (20) and (21)

z( j)
n+1 − z( j)

n = k
g(x ( j)

n )

δ
( j)
n+1

N∑

m=1

A jmq ′(x (m)
n )δx (m)

n , (23)

from which we can obtain

z( j)
n+1 = k

n∑

p=0

g(x ( j)
p )

δ
( j)
p+1

N∑

m=1

A jmq ′(x (m)
p )δx (m)

p + z( j)
0 . (24)

Multiplying both sides of this equation by Al j q ′(x ( j)
n+1)δ

( j)
n+1,

summing over j and using Eq. (22), we obtain

Γ (l)
n+1 = k

N∑

j=1

Al j

n∑

p=0

q ′(x ( j)
n+1)δ

( j)
n+1g(x ( j)

p )Γ ( j)
p

δ
( j)
p+1

+ z0

N∑

j=1

Al j q ′(x ( j)
n+1)δ

( j)
n+1, (25)

where

Γ ( j)
n =

N∑

m=1

A jmq ′(x (m)
n )δx ( j)

n . (26)

Assuming that perturbations from the incoherent state grow ex-
ponentially, Γ ( j)

n = γ ( j)ηn , and using z0 = δx0, we obtain

γ (l) = k
N∑

j=1

Al jγ
( j)

n∑

p=0

q ′(x ( j)
n+1)δ

( j)
n+1g(x ( j)

p )ηp−n−1

δ
( j)
p+1

+ δx0

N∑

j=1

Al j q ′(x ( j)
n+1)

δ
( j)
n+1

ηn+1 . (27)

Since δ
( j)
n is a perturbation from the uncoupled system, it grows

exponentially for large n as χ(µ j , x0)
n , where χ(µ, x0) is the

Lyapunov exponent for the uncoupled system with parameter
vector µ and initial condition x0. If

|η| > χ ≡ sup
x0,µ

χ(x0, µ), (28)

then for large n we can neglect the last term in Eq. (27) and
obtain
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γ (l) = k
N∑

j=1

Al jγ
( j)

n∑

p=0

q ′(x ( j)
n+1)δ

( j)
n+1g(x ( j)

p )ηp−n−1

δ
( j)
p+1

. (29)

In order to proceed further, we will use again the assumptions
of large numbers of neighbors per node and statistical indepen-
dence of the network and the vector of parameters. As we did
in Eq. (19), we approximate Eq. (29) by

γ (l) = k

〈
n∑

p=0

q ′(x ( j)
n+1)δ

( j)
n+1g(x ( j)

p )ηp−n−1

δ
( j)
p+1

〉
N∑

j=1

Al jγ
( j). (30)

[If the sum over j in Eq. (29) is imagined as approximating N
times the expected value of a product of two random variables,
Eq. (30) approximates N times the product of the two expected
values as suggested by our assumption of their independence.]

The average in Eq. (30) is the quantity Z(η) introduced in
Section 2.1. If we define γ = [γ (1), γ (2), . . . , γ (N )]T , Eq. (30)
can be rewritten as

γ = k Z(η)Aγ. (31)

Thus, γ is an eigenvector ul of A (ul is the lth eigenvector of
A), and we have

1 = kλl Z(η), (32)

where λl is its corresponding eigenvalue. The onset of
instability of the incoherent state corresponds to |η| = 1, or
η = eiω. Thus, network mode l becomes unstable at a critical
coupling strength satisfying

k(l)
c = (λl Z(eiωc ))−1, (33)

where the critical frequency at instability onset ωc is found
by Im(λl Z(eiω)) = 0, where Im denotes the imaginary part.
We are interested in the solutions kc of Eq. (33) with the
smallest magnitude. If there is more than one value of ω

that yields Im(λl Z(eiω)) = 0, the value ωc that yields kc
with the smallest positive (negative) value is the one with the
largest positive (negative) value of Re(λl Z(eiω)). Typically,
the critical coupling strengths with the smallest magnitude
correspond to the mode associated to the eigenvalue of largest
magnitude, which is usually real (e.g., for symmetric or
nonnegative matrices [20]). In this case the critical frequency
ωc is found from Im[Q(eiω)] = 0 and is independent of the
network. Thus, the positive critical coupling strength is given
by kc = (Z(eiωc )λ+)−1, where Z(eiωc ) depends exclusively on
the dynamics of the uncoupled oscillators and their parameter
distribution function p(µ), while the largest positive eigenvalue
λ+ depends exclusively on the network (and similarly for the
negative critical coupling strength).

We will now comment on how the incoherent state loses
stability as the magnitude of the coupling strength is increased
from zero. Before considering the general case, we will discuss
the globally coupled case, in which A jm = 1/N for all j, m.
In this case, there is one positive eigenvalue, λN = 1, while
the rest of the eigenvalues are 0. By Eq. (33), these modes do
not become unstable at finite coupling strengths. Therefore, in
this case the onset of instability is determined by λN only, and

typically the incoherent state is stable in an interval (k−, k+)
where k+ and k− are the positive (k+ > 0) and negative
(k− < 0) solutions of 1 = k Z(eiω) with smallest magnitude.
Note that k± can be 0 or ±∞. Now we return to the general
coupling case, still employing the notation k± to indicate the
critical coupling strengths in the all-to-all case. In the case of
general coupling, the largest positive eigenvalue λ+ and the
most negative eigenvalue λ− might be of comparable size,
especially if A has negative entries (since the trace of A is
zero, there must be at least one negative and one positive
eigenvalue). As the coupling constant k is increased from zero,
the incoherent state can become unstable either because kλ+ =
k+, or because kλ− = k−, whichever occurs first, and similarly
as k is decreased from zero.

3.2. Networks of coupled continuous time oscillators described
by ordinary differential equations

A similar analysis can be performed for the case of
continuous time oscillators coupled in a network. In this section
we will extend the results in Ref. [18], which deals with
globally coupled continuous time oscillators, to the case of
general connectivity. Since the analysis is analogous to that for
maps in the previous section, we will just state the essential
results.

The system under consideration is analogous to Eq. (18),

ẏ( j)(t) = F(y( j)(t), µ j ) + W ( j)(t)

+ K (y( j)(t))
N∑

m=1

A jm[Q(y(m)(t)) − 〈Q(y)〉], (34)

where, except for the fact that the continuous variable t has
replaced the discrete variable n and we use upper case letters
to avoid confusion, the conventions are similar to those of
the previous section. As before, we assume that nodes have a
large number of neighbors and the randomly chosen parameter
vectors µ j are not correlated with the network structure. Thus
the incoherent state is an approximate solution of system (34).

In analogy to δn in Eq. (21), we define the fundamental
matrix M j (t, y j (0)) for the linearized noiseless uncoupled
version of Eq. (34),

Ṁ j (t, y j (0)) = DF(y j (t), µ j )M j (t, y j (0)). (35)

If we consider a small perturbation δy( j)(t) from the incoherent
state y( j)(t) and linearize Eq. (34), we obtain

δ̇y( j)(t) = DF(y( j)(t), µ j )δy( j)(t)

+ K (y( j)(t))
N∑

m=1

A jm DQ(y(m)(t))δy(m)(t). (36)

In terms of M , the solution is given by

δy( j)(t) = δy( j)(0)

+
∫ t

0
M(t, y( j)(0))M−1(τ, y( j)(0))K (y( j)(τ ))

×
N∑

m=1

A jm DQ(y(m)(τ ))δy(m)(τ )dτ. (37)



J.G. Restrepo et al. / Physica D 224 (2006) 114–122 119

Using M(t, y(0))M−1(τ, y(0)) = M(t − τ, y(τ )) and defining
T ≡ t − τ , we get

δy( j)(t) = δy( j)(0)

+
∫ t

0
M(T, y( j)(t − T ))K (y( j)(t − T ))

×
N∑

m=1

A jm DQ(y(m)(t − T ))δy(m)(t − T )dT . (38)

In analogy with Γ ( j)
n in Section 3.1, we define Ψ ( j)(t) =∑

m A jm DQ(y(m)(t))δy(m)(t) and assume exponential growth,
Ψ ( j)(t) = ψ( j)est . Multiplying Eq. (39) by Ai j DQ(y( j)(t))
and summing over j , we get

ψ(i) =
N∑

j=1

DQ(y( j)(t))
∫ t

0
M(T, y( j)(t − T ))

×K (y( j)(t − T ))e−sT dT Ai jψ
( j), (39)

where we have neglected
∑

j Ai j DQ(y( j)(t))δy( j)(0)e−st in
the right hand side after letting t → ∞ (we assume DQ is
bounded).

Assuming, as in Section 3.1, that the terms Ai jψ
( j) in the

sum over j in Eq. (39) are statistically independent from the
rest, we obtain a dispersion relation for the mode corresponding
to eigenvalue λl of the connectivity matrix A,

det{I − λl M̂(s)} = 0, (40)

where

M̂(s) =
〈∫ ∞

0
DQ(y(t))K (y(t − T ))

× M(T, y(t − T ))e−sT dT
〉
. (41)

We note that M̂ depends only on the dynamics of the individual,
uncoupled oscillators, and the effect of the network is to scale
the all-to-all critical coupling strength for mode j by a factor
1/λl .

The same caveats that were noted for the maps apply here;
for Re(s) > χ > 0 the integrand decays fast enough with
time that the average and the integral can be interchanged. If
〈DQ(y(t))K (y(t − T ))M(T, y(t − T ))〉 decays exponentially,
the time integral converges for some ε < Re(s) < 0 and
the result can then be analytically continued to Re(s) ≥
0 (necessary to investigate the onset of instability of the
incoherent state).

We now comment on why is it expected that 〈DQ(y(t))K
(y(t − T ))M(T, y(t − T ))〉 decays with time. If we imagine
that the same small displacement δy0 is applied to each
point initially distributed according to the natural measure of
the attractors, and then the average position of the evolved
perturbations is compared with the centroid of the attractor,
the difference is given by 〈M(T, y)〉δy0. Although each
perturbation might grow, the perturbed points will rapidly
redistribute themselves on the attractor so that their average
position coincides with that of the natural measure of the

attractor, and thus we conclude that 〈M(T, y)〉 → 0. The
presence of the smooth, bounded functions K and DQ is not
expected to change this general picture. For a more detailed
discussion of this issue, and some numerical examples, we
refer the reader to [18]. We note that Eq. (40) is the same
as the result obtained in [18] if λl is replaced by λl = 1
(the largest eigenvalue of an equally coupled all-to-all network,
A jm = 1/N ), and DQ and K are set to I and −k I , respectively,
where I is the identity matrix.

4. Examples

In this section we will consider various examples of the
transition to coherence in networks of coupled dynamical
systems. We will first present examples for maps and then an
example for time continuous oscillators.

In order to quantify the coherence, we define the order
parameter r by

r2 =
〈(∑N

m=1 dm[q(x (m)
n ) − 〈q(x)〉]

∑N
m=1 dm

)2〉

n

, (42)

where 〈·〉n denotes a time average and the out-degree is defined
by dm = ∑N

j=1 A jm . Note that the numerator can be written as

N∑

j=1

∑

m=1

A jm[q(x (m)
n ) − 〈q(x)〉], (43)

and, therefore, r measures the rms of the coupling term in Eq.
(18), except for the factor g(x ( j)). Thus, the incoherent state
corresponds to r ≈ 0. We will investigate what happens to r
as the coupling strength k is increased past the critical values
predicted by the theory.

In our numerical examples, the order parameter r will be
computed using Eq. (42) with the values of x ( j)

n obtained
from the solution of Eq. (18). The time average will be
computed using 1000 iterations after the initial transients have
disappeared (close to the transition these transients may last for
a very long time, and it may therefore be difficult to estimate
the asymptotic value of r ).

As an example, we consider for the functions in Eq. (18),

f (x ( j)
n , µ j ) = 2x ( j)

n + µ j , (44)

q(x) = cos x, (45)

and

g(x) = sin(2x) + sin(4x), (46)

where we note that this example was considered for the globally
coupled case in Ref. [17]. Throughout we consider x as a
variable on the unit circle, so mod 2π should be taken where
appropriate. For the noise, we will consider Gaussian noise with
zero mean and standard deviation σ .

In Ref. [17] Z(eiω) was calculated for this case to be

Z(eiω) = −1
2

(
e−σ 2/2

eiω 〈cos(µ)〉 + 2
e−5σ 2/2

e2iω 〈cos(3µ)〉
)

, (47)
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Fig. 1. Logarithm of the order parameter, log10 r , as a function of the coupling
strength k for example 1 (identical noiseless maps), for a scale-free network
with degree distribution P(d) ∝ d−3 if d ≥ 100, and 0 otherwise, for (a)
N = 105, and (b) N = 105, N = 104, N = 103. The vertical lines indicate the
theoretical values for the critical coupling strength.

from which we will obtain kcλl by solving Eq. (33). We remark
that we are making use of the separation of the problem into a
network part and a dynamics part, and using existing results for
the dynamics part obtained in Ref. [17] for the globally coupled
case.

We will numerically consider the following examples.
Below we list each example with the corresponding theoretical
results for the critical coupling strength.

(1) Identical noiseless maps with σ = 0, and p(µ) = δ(µ).
The solution of Eq. (33) yields for this example kcλl = 1
and kcλl = −2/3.

(2) Heterogeneous noisy maps with σ = 0.2, p(µ) = 2 if
0 ≤ µ < 1/2 and 0 otherwise. In this example we obtain
kcλl ≈ 1.66 and kcλl ≈ −0.93.

(3) Heterogeneous noisy maps with σ = 0.1, p(µ) ∝ e−2µ

for µ ≥ 0. In this example we obtain kcλl ≈ 3.31 and
kcλl ≈ −1.42.

(Examples with identical noisy maps and heterogeneous
noiseless maps can be found in Ref. [19].)

For the network connectivity, we consider scale-free
networks, i.e., networks in which the out- and in-degree
distributions satisfy P(d) ∝ d−γ for d ≥ 100 and 0 otherwise.
We impose a lower cutoff d ≥ 100 so that our assumption of
a large number of neighbors per node is satisfied. In order to
construct such networks we use the Random Graph model of
Chung et al. [22]. In this method a desired degree sequence is
generated first (in our case a sequence of integers d j distributed
according to P(d) ∝ d−γ if d ≥ 100, and 0 otherwise), and
then the adjacency matrix elements A jm are randomly chosen to
be 1 with probability proportional to d j dm and 0 otherwise. The
diagonal elements of A are taken to be 0. The expected values of
the in- and out-degrees are given by the prescribed sequence d j .

This method has the property that it does not typically result in
degree–degree correlations. We note, however, that the largest
eigenvalue of A captures these correlations, and, therefore, we
expect our theory to work in the presence of degree–degree
correlations.

For scale-free networks as described above, the largest
positive eigenvalue λ+ is significantly larger than the magnitude
of the most negative eigenvalue λ− (for the network in Fig. 1
(a), for example, λ+ ≈ 343.8 and λ− ≈ −43.1). Moreover, for
our examples k+ and k− are of the same order of magnitude (see
values of kcλl above). Therefore, according to the discussion
at the end of Section 3.1, the mode desynchronizing first
will be the one associated to the largest positive eigenvalue.
Consequently, the value of λl used to determine the critical
coupling strengths kc for these examples will be λ+.

In Fig. 1(a) we show the logarithm of the order parameter
as a function of k for example 1 (identical noiseless maps) and
N = 105. The vertical lines indicate the values of the positive
and negative values of the critical coupling strength predicted
by the theory. We observe that the order parameter grows at
values of the coupling strength close to the values predicted by
the theory.

We note that the magnitude of k at which the transition
takes place on the negative side is somewhat smaller than the
prediction of the theory. We speculate that this is due to finite
size effects: the form of the transition suggests that, as k is
decreased past the negative critical value, the incoherent state
(r ≈ 0) suddenly loses its linear stability without a nearby
attractor to capture the dynamics (as occurs in a subcritical
pitchfork bifurcation). For finite values of N , the incoherent
state is subject to fluctuations which, depending on the details
of its basin of attraction, can push the dynamics to the basin of
attraction of another attractor before the incoherent state loses
its local stability. In order to test this hypothesis, we show in
Fig. 1(b) a close up of the transition on the negative side for
smaller values of N . As N is decreased, the transition occurs
for smaller values of the magnitude of the coupling strength,
thus suggesting that for N → ∞ this effect should disappear. In
fact, this issue is also present to a smaller extent in the globally
coupled case. In that case it is numerically feasible to simulate
much larger networks, and the discrepancy between theory and
simulations is indeed extremely small for N of the order of 107

(see Fig. 3(a) of Ref. [17]).
In Fig. 2 we show the order parameter as a function of k

for example 2 (heterogeneous noisy maps) with N = 50 000
(the inset shows the same quantity on a logarithmic scale).
Again, we observe that the order parameter grows for values
of the coupling strength close to the values predicted by the
theory. We also observe that the transitions on the positive and
negative side seem qualitatively different, as in example 1. We
find that in some cases (e.g., Fig. 2, negative side) the transition
is quite sharp, suggesting that the incoherent state suddenly
loses its stability without a nearby stable attractor to capture
the dynamics, like occurs in subcritical pitchfork bifurcations.
In other cases (e.g., Fig. 2, positive side), the transitions appear
smoother, like occurs in transcritical and supercritical pitchfork
or Hopf bifurcations. For the Lorentz oscillator example we
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Fig. 2. Order parameter as a function of the coupling strength for example 2
(heterogeneous noisy maps), for a scale-free network with in- and out-degree
distribution P(d) ∝ d−2.5 if d ≥ 100, and 0 otherwise with N = 10 000
(the inset shows the same quantity on a logarithmic scale). The vertical lines
indicate the theoretical values for the critical coupling strength.

Fig. 3. Imaginary and inverse of the real parts of Z(eiω) as a function of ω for
example 3. The smallest positive (negative) coupling strength corresponds to
1/Re(Z(eiω)) for the value of ω for which Im(Z(eiω)) = 0 and 1/Re(Z(eiω))

is less positive (negative). In this example, the location of ω2 and the value of
k2 are very sensitive to perturbations to Z .

Fig. 4. Order parameter as a function of the coupling strength for example 3
(heterogeneous noisy maps), for a scale-free network with in- and out-degree
distribution P(d) ∝ d−2.5 if d ≥ 100, and 0 otherwise with N = 10 000
(the inset shows the same quantity on a logarithmic scale). The vertical lines
indicate the theoretical values for the critical coupling strength.

will discuss below, we will be able to rule out the transcritical
bifurcation due to the symmetry of the dynamical system [18].
However, we will in general not attempt to characterize the
precise nature of the transitions.

In the previous two examples, the agreement between the
theory and the numerical simulations was good. However,
there are some cases in which the approximations we have
made (e.g., in assuming that each node has a large number of
neighbors) can more significantly affect the result. We include
example 3 in order to illustrate these potential problems. In
Fig. 3 we show 1/Re(Z(eiω)) and Im(Z(eiω)) as a function of
ω. From the solution of Eq. (33), the smallest positive (negative)
coupling strength (times λl ) corresponds to 1/Re(Z(eiω)) for
the value of ω for which Im(Z(eiω)) = 0 and 1/Re(Z(eiω)) is
of smallest positive (negative) value. In this figure we observe
that the smallest positive critical coupling strength, k2 ≈ 3.31,
corresponding to the root ω2 (see Fig. 3) of Im(Z(eiω)), is
very sensitive to the location of the root and could, upon a
small perturbation to Z , increase to a value lying somewhere
in ∼ (3, 8). On the other hand, the smallest negative coupling
strength, k1 = −1.42, is more robust against these effects. In
Fig. 4 we show the order parameter as a function of k for this
example (the inset shows the same quantity on a logarithmic
scale). On the negative side, the order parameter grows for
values of the coupling strength close to the values predicted
by the theory, while on the positive side, the transition is not as
well defined and apparently takes place at a coupling strength
larger than the theoretical coupling strength k2 ≈ 3.31.

Besides cases like the previous example, there are other
potentially problematic situations. In the globally coupled case
studied in Ref. [17], it was found that the computation of
Z(η) fails to converge for an ensemble of identical noiseless
logistic maps. This was tentatively attributed to the structural
instability of the map and singularities in its invariant density,
which make a perturbation approach questionable. Since the
definition and numerical determination of Z(η) in our case
and for the globally coupled case are identical, the lack of
convergence observed for this example in the globally coupled
case will also occur in the case of a network. However, we note
that a small amount of either noise or parameter heterogeneity
was shown in [17] to restore the validity of the results. More
generally, the numerical computation of Z and M̂ is for most
cases a nontrivial problem. Since these issues are intrinsic to
the dynamics part of the problem and our interest is in the
effect of the network structure on the dynamics, we will not
study this in more detail. A more extensive discussion of these
issues, and various methods for the numerical calculation of Z
and M̂ , can be found in Refs. [17,18]. Another caveat is the
crucial assumption in our analysis, allowing us to separate the
dynamics and the network terms in Eq. (30), that the number of
neighbors per node is large. For networks of sine coupled phase
oscillators, we have noted in Ref. [7] that, if this assumption
is not satisfied, the transition occurs at values of the coupling
strength larger than those predicted by the theory.

As a final example we consider an ensemble of chaotic
Lorenz oscillators. The dynamics of an individual uncoupled
system is given by

ẏ1 = σ(y2 − y1), ẏ2 = ρy1 − y2 − y1 y3,

ẏ3 = −by3 + y1 y2, (48)
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Fig. 5. Order parameter as a function of the coupling strength for the
heterogeneous ensemble of noiseless chaotic Lorenz oscillators, for a scale-free
network with in- and out-degree distribution P(d) ∝ d−2.5 if d ≥ 100, and 0
otherwise with N = 5000. The vertical line indicates the theoretical value for
the critical coupling strength.

where, in the notation of Section 3.2, y = (y1, y2, y3)
T , and the

parameter vector is given by µ = (σ, b, ρ)T . As in Ref. [18],
we will consider an ensemble of noiseless Lorenz oscillators
with parameters given by σ = 10, b = 8/3, and ρ uniformly
distributed in (28, 52). This ensemble mainly has members with
chaotic dynamics. We will use the coupling matrix K defined
by K11 = 1 and Ki j = 0 for (i, j) ,= (1, 1). Also, we will
consider Q(y) = y. As before, we make use of the facts that
the dynamics and network parts of the problem separate and
that M̂(s) was already calculated for the globally coupled case.
In Ref. [18], the critical coupling strength was found to be
k ≈ −5.56 (with no transition for k > 0), and thus for the
case of a network we have kλ+ ≈ −5.56. We consider a scale-
free network constructed as described above with N = 5000
and γ = 2.5.

For the continuous case, we define the order parameter as in
Eq. (42),

r2 =
〈∥∥∥∥∥

∑N
m=1 dm[Q(y(m)) − 〈Q(y)〉]

∑N
m=1 dm

∥∥∥∥∥

2〉

t

, (49)

where ‖z‖ = (
∑N

m=1 z2
n)1/2 and 〈·〉t denotes a time average. In

Fig. 5 we show the order parameter r (diamonds) as a function
of λ+k. We see that at the critical coupling strength predicted
by the theory (vertical line), the order parameter increases as
predicted.

5. Discussion

We have found that, under very general conditions,
collections of heterogeneous dynamical systems interacting in
a complex network undergo a transition from incoherence to
coherence as the coupling strength exceeds a critical value. The
critical coupling strength is given by kc = (µλ)−1, where λ is
the largest eigenvalue of the adjacency matrix of the network
and µ depends on the dynamics of the individual, uncoupled
dynamical systems. Therefore, the topology of the network
and the dynamics of the oscillators affect the critical coupling
strength independently. In this respect our result is in the same

spirit as that of the ‘master stability function’ of Pecora and
Carroll [21]. The main difference is that we consider the onset
of synchronism from an incoherent state of many potentially
different chaotic or periodic systems, while Pecora and Carroll
consider the stability of a fully synchronized state of identical
oscillators.

Our results show that the largest eigenvalue of the adjacency
matrix of the network plays a key role in determining the
transition to coherence. There are other situations where it also
plays an important role in network dynamical processes, for
example in epidemic onset [23], percolation in networks [24],
stability [25] and others [26,20]. Thus, an understanding
of network properties determining the largest eigenvalue of
the adjacency matrix could be used to control dynamics on
networks.
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