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1

Philosophy, statistics, and
the philosophy of statistics

Jacobs & Wallach (2019) I rush from science to philosophy, and from phi-
losophy to our old friends the poets; and then, over-wearied by too much
idealism, I fancy I become practical in returning to science. Have you
ever attempted to conceive all there is in the world worth knowing—that
not one subject in the universe is unworthy of study? The giants of litera-
ture, the mysteries of many-dimensional space, the attempts of Boltzmann
and Crookes to penetrate Nature’s very laboratory, the Kantian theory of the
universe, and the latest discoveries in embryology, with their wonderful tales
of the development of life—what an immensity beyond our grasp!

– Karl Pearson, The New Werther

Over time, science, technology, engineering, and mathematics (STEM) cur-
ricula at many colleges and universities have become more and more spe-
cialized. Many Americans see higher education as a pathway to a good job,
rather than, say, a pathway to educated citizenship (Skorton & Bear, 2018).
There are good reasons to view higher education in this way; rising costs
make it di�cult for students to justify studying subjects that do not have
a clear return on investment. STEM fields in general, and statistics and
data science in particular, are seen as a great return on investment (Dav-
enport D.J et al., 2012). So why should training in a STEM field include
the study of an (ostensibly) esoteric field like the philosophy of statistics?
Broadly, there are two reasons. First, as Karl Pearson alludes to above,
stepping outside of one’s primary STEM concentration, and diversifying
one’s skills and knowledge, can be a real joy. Second, and perhaps more
practically, we will see in subsequent chapters that awareness of philosoph-
ical issues in statistics can actually make one a better statistician and data
scientist.

The preceding paragraph suggests that the audience of this book (and
course) will consist mainly of individuals from STEM fields. But in addition

3



4 1. PHILOSOPHY, STATISTICS, AND THE PHILOSOPHY OF STATISTICS

to statisticians who wish to know something more about philosophical issues
in their own discipline, I also anticipate an audience of philosophers that wish
to know more about important conceptual issues in statistics. Consequently,
this chapter provides an introduction to each discipline to “bring everyone
up to speed”.

1.1 What is philosophy?
“Philosophy is a field that, unfortunately, reminds me of that old...joke,
‘those that can’t do, teach, and those that can’t teach, teach gym.’"

– Lawrence Krauss, Interview in the Atlantic Magazine1

Recently, popularizers of science have suggested that philosophy is a useless
undertaking, a waste of time, and something that distracts us from making
progress on real problems. For example, in a 2014 interview on the Nerdist
Podcast, Neil de Grasse Tyson expressed his irritation with philosophers
“asking deep questions” that lead to a “pointless delay in progress”.2 Sim-
ilarly, Stephen Hawking has claimed that deep questions in science, such
as those concerning the fundamental constituents of the universe will only
be answered using data from science, such as data coming from space and
particle physics. Hawking writes:

Most of us don’t worry about these [philosophical] questions
most of the time. But almost all of us must sometimes wonder:
Why are we here? Where do we come from? Traditionally, these
are questions for philosophy, but philosophy is dead. Philoso-
phers have not kept up with modern developments in science.
Particularly physics.3

Given the claims made about philosophy by such respectable figures, one
might reasonably wonder why we should embark on a journey into the philos-
ophy of statistics; not only might philosophy and statistics seem unrelated;
the former, it is claimed, is useless!

We should reject these attacks against philosophy; but in order to un-
derstand why we should reject them, and ultimately, to justify our study of
the philosophy of statistics, we first have to achieve clarity in our conceptual
framework. Most pressingly, especially for those of us who are statisticians
and data scientists, we must ask: what is philosophy?

If one has never studied philosophy in a formal setting, one is likely have
certain misconceptions about what academic philosophy is and what philoso-
phers do. It is commonly thought (wrongly, in my view) that philosophy

1www.theatlantic.com/technology/archive/2012/04/has-physics-made-philosophy-
and-religion-obsolete/256203/

2https://bit.ly/2zUf4VH
3https://bit.ly/2MiOZKF

https://bit.ly/2zUf4VH
https://bit.ly/2MiOZKF


1.1. WHAT IS PHILOSOPHY? 5

is entirely subjective, vague, imprecise, and incapable of progress.4 These
misconceptions are often born out of the way that the word ‘philosophy’ is
used in colloquial settings. One use of the word ‘philosophy’ captures an
individual’s personal outlook on life. For example, Apple co-founder Steve
Jobs, at the 2005 Stanford Commencement Address said the following:

Your time is limited, so don’t waste it living someone else’s life.
Don’t be trapped by dogma—which is living with the results of
other people’s thinking. Don’t let the noise of others’ opinions
drown out your own inner voice. And most important, have
the courage to follow your heart and intuition. They somehow
already know what you truly want to become.5

Colloquially, we might say that this is Steve Jobs’ (personal) philosophy.
Of course, there is nothing wrong with holding a personal philosophy, but
holding one does not imply that one has done philosophy in the academic or
historical sense.

To distinguish between personal philosophies and academic philosophy,
let’s look at how professional philosophers and professional philosophical or-
ganizations attempt to answer the question ‘What is philosophy?’ In the
magazine Philosophy Now, artist and philosopher Colin Brookes writes that
“philosophy critically examines anything and everything, including itself and
its methods. It typically deals with questions not obviously addressed by
other areas of enquiry, or those that remain after their activity seems com-
plete.”6 Similarly, the American Philosophical Association describes philos-
ophy as a field that

pursues questions in every dimension of human life...its tech-
niques apply to problems in any field of study or endeavor. No
brief definition expresses the richness and variety of philosophy.
It may be described in many ways. It is a reasoned pursuit of
fundamental truths, a quest for understanding, a study of prin-
ciples of conduct. It seeks to establish standards of evidence,
to provide rational methods of resolving conflicts, and to create
techniques for evaluating ideas and arguments.7

Finally, Jon Wainwright claims that “philosophy involves the analysis of ar-
guments and concepts...power of reason...weight of evidence...[and] exposes
unsupported assertions, prejudice.”8

Already, we might notice that academic philosophy di�ers from one’s
personal philosophy in many ways:

4https://bit.ly/2TB5u5F
5https://bit.ly/2N0B63k
6https://bit.ly/2YMsPap
7http://www.apaonline.org/?undergraduates
8https://bit.ly/2YMsPap

https://bit.ly/2TB5u5F
https://bit.ly/2N0B63k
https://bit.ly/2YMsPap
http://www.apaonline.org/?undergraduates
https://bit.ly/2YMsPap


6 1. PHILOSOPHY, STATISTICS, AND THE PHILOSOPHY OF STATISTICS

1. Personal philosophies are not necessarily critical examinations.

2. Personal philosophies might well be (and often are) absent of method.
We might ask, how did Jobs arrive at this philosophy? It’s not entirely
clear.

3. Academic philosophy critically examines “anything and everything”—
including statistics! Philosophy is a very intellectually diverse disci-
pline; personal philosophies are typically much more limited in scope.

4. As might be clear after hearing your uncle’s personal philosophy over
Thanksgiving dinner, personal philosophies are not always (attempts
at) “reasoned pursuits of fundamental truths”, and do not always con-
sider evidence, expose unsupported assertions, etc.

In addition to seeing how academic philosophy di�ers from personal philoso-
phies, we also get a sense of some of the fundamental features of philosoph-
ical investigation. We see that reason, evidence, the analysis of arguments,
concepts, and assumptions are all core features of philosophy. Given that
science also cares about reasons, evidence, and the like, philosophy sounds
a lot like science. So, what’s the di�erence? To answer this question, it
will be important to consider some of the historical roots of of science and
philosophy.

1.1.1 A historical approach

To the extent that science is concerned with causes and principles of the
natural world, many of the earliest ancient Greek philosophers may also be
considered scientists (Curd, 2016). For example, Thales of Miletus (c. 620
B.C.E.—c. 546 B.C.E.) is often identified as the first person to investigate
the basic natural principles and the question of the originating substances
of matter; therefore, we may consider him a founder of natural science.
The historical connection between philosophy and science does not end with
Thales; Plato, Aristotle, Francis Bacon, Galileo Galilei, René Descartes, and
Isaac Newton were all considered both philosophers and scientists. Aristo-
tle, most often considered a philosopher, made contributions to geology,
physics, zoology, biology, and medicine. Descartes and Newton both made
important contributions to metaphysics and epistemology—subdisciplines
of philosophy—as well as physics and mathematics. In fact, until around
the 19th century, what we now call science was called “natural philosophy”
(Cahan, 2003).

It was not until the 18th and 19th centuries that philosophy and science
started to split apart as two “separate” disciplines. One explanation for
this split is that, at around this time in history, many thinkers developed
empirically rooted answers to important questions. Once answers became



1.1. WHAT IS PHILOSOPHY? 7

available and more broadly accepted, these fields split apart from philosophy
into their own disciplines. Philosophy then, gets stuck with all of the hard
questions for which empirically rooted answers are not (yet) available.

This theory, though it may be incomplete (Papineau, 2018), illuminates
two important features of philosophy. First, on this view, the charge that
philosophy does not make progress—a charge made by Neil de Grasse Tyson,
Lawrence Krauss, Stephen Hawking, among others—is misguided. Philos-
ophy does make progress; it’s just that once it progresses, we often stop
calling it philosophy! Second, on this view, we see that philosophers are
not “anti-empirical”; they very much care about and value empirical evi-
dence. It just so happens that many of the (important!) questions that
they are concerned with are underdetermined by all of the available em-
pirical evidence; that is, the available empirical evidence equally supports
several di�erent answers to a given philosophical question, and philosophers
must resort to other tools. Thus, the di�erence between philosophers and
scientists is not that, somehow, the latter are more intellectually rigorous.
Rather, it’s that the latter limits herself to questions that, at present, are
empirically driven. Such a di�erence is not disparaging to philosophers.
Many of the most important questions about us and our world have not
yet been decided by, and perhaps cannot be decided by, empirical evidence
alone. Such questions—for example, what makes a just society? what set of
criteria clearly demarcate science from pseudo-science?—may be of critical
importance. Philosophers use important and imaginative tools of reasoning,
such as thought experiments, to discover answers to these questions.

Historically then, it seems that philosophy was a broad category that
included the sciences (e.g., physics, biology) as subdisciplines. But now, if
philosophy no longer includes the sciences, what is its content?

1.1.2 Core subdisciplines of philosophy

It is standard to parse the discipline of philosophy into several subdisciplines.
For simplicity, we will look at four: logic, metaphysics, epistemology, and
ethics. We will consider each of these, noting that there is no clean and
uncontroversial way to partition the field of philosophy; there is much over-
lap, between the subdisciplines presented here. Also, we note that many
philosophers work in fields denoted the philosophy of X, where X is some
other field or concept, such as physics, psychology, biology (or science more
broadly), mind, mathematics, or...statistics!

Logic

As noted above, reason, evidence, and the analysis of arguments are core
features philosophy. The branch of philosophy that has as its focus the
analysis of arguments is called logic. As an entry point into defining logic—
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and delimit it from other branches of philosophy, and from science itself—
consider the following three arguments:

Argument #1 P1 On any given day, if it is raining, then Newman will not go on
his postal route.

P2 Today, it is raining.
C So, today, Newman will not go on his postal route.

Argument #2 P1 If Kramer swims in the East River, he will smell bad.
P2 Kramer smells bad.
C So, Kramer swam in the East River.

Argument #3 P1 The car salesman claimed that George’s 1989 Chrysler LeBaron
convertable was owned by the actor Jon Voight.

P2 The owner’s manual shows that the previous owner’s last name
was Voight.

C Therefore, the previous owner of George’s car was Jon Voight.

In each case, the author of the argument is using the premises—P1 and
P2—as reasons to believe the conclusion, C.9 But in what sense do the
premises provide good reasons for believing the conclusion? Logic, generally
defined as the study of correct reasoning, attempts to answer this question.
In Argument #1, we should note that the premises provide good reasons
for believing the conclusion because it is impossible for the premises to be
true and the conclusion to be false; such an argument is called deductively
valid, and the premises are said to logically entail the conclusion. Argu-
ments that either are or attempt to be deductively valid are called deductive
arguments.

We might be enticed to give the same analysis of Argument #2 that
we gave of Argument #1; however, Argument #2 is invalid. To see this
fact, consider that Kramer might smell bad for a whole host of reasons; he
may, for example, have just finished his Karate lesson.

Argument #3 is a bit di�erent in that the premises do not logi-
cally entail the conclusion, but they may give good reasons to believe the
conclusion—there are not that many people with the last name ‘Voight’,
actors like snazzy convertibles, and the salesman’s testamony provides some
basis for believing the conclusion. But of course, the car might be owned
by John Voight the periodontist, not Jon Voight the actor. Arguments like
Argument #3—ones that might provide good reasons to believe the con-
clusion but don’t logically entail it—are called inductive arguments.

9Of course, most arguments used in philosophy and science are much more complicated
complex than the structure given above—two premises and a conclusion. We focus on these
simple arguments to make a conceptual point.
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We should note that the assessments of these arguments is not entirely
empirical. We need not check anything about the empirical, physical world—
e.g., that it is in fact raining—to assess whether Argument #1 is valid.
Rather, many assessments of arguments are based on philosophical reasoning
that need not consult with empirical reality. Scientists sometimes assert that
reason and logic fall under the purview of science, but historically, it is a
branch of philosophy. Further, to the extent that science is concerned with
empirical considerations, logic is not a science (though, we note that logic
is essential to the proper functioning of science!). In the chapters to come,
we will consider the benefits of thinking of statistics as a branch of logic—a
branch that helps us reason property about incomplete, uncertain data.

Metaphysics

What does it mean to say that X causes Y ? On the surface, this may
seem like an easy question. The gas pedal caused the car to move forward.
The toxic envelope glue caused Susan’s death. But deciding on what causal
relations exist in the world can be, in fact, quite di�cult. Perhaps the
most famous exposition of the di�culties of causality are given by the 18th
century philosopher David Hume. As an empiricist philosopher, Hume be-
lieved that knowledge of a causal relationship between any two objects must
be based strictly on experience. But, according to Hume, experience can
only reveal temporal relationships—that Y occurred after X occurred—and
contiguity—that X and Y have been in contact. Experience cannot estab-
lish a necessary connection between cause and e�ect—that Y happened as
the result of X—because one can imagine, without logical contradiction, a
case in which the cause does not produce its usual e�ect (e.g., one can imag-
ine that Susan licked the envelops but did not die). According to Hume,
we mistakenly believe that there are causes in the world because past ex-
periences have created a habit in us to think in this way. Really, we have
no direct knowledge of anything more than spatial and temporal contiguity;
anything else that we infer about causality in the world lies beyond direct
experience (Morris & Brown, 2019).

Hume’s discussion of causality should be concerning to those of us in-
terested in statistics and science. Many would agree that modern science
relies heavily on statistical methods to attempt to provide information about
causal relationships; but it seems reasonable to ask whether statistical meth-
ods are well-equipped to account for anything more than correlations among
variables. But establishing a casual relationship would require going beyond
mere correlations. Although correlations may suggest a causal relationship
between two variables, correlations are not su�cient for establishing a causal
relationship.

The question about the nature of causality can be thought of as a meta-
physical question. Metaphysics is the study of the fundamental nature of
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reality. Why is there something rather than nothing? Are space and time
discrete or continuous? What is time, and what does it mean for entities to
persist through time? Since metaphysics is not constrained by the need for
empirical verification, some might think of metaphysics as asking why? in
a larger domain than science typically does. However, we should note that
(good) metaphysics ought to be consistent with known empirical results of
science and ought not be internally contradictory.

The scientifically-oriented reader—perhaps in agreement with de Grasse
Tyson, Hawking, and Krauss—might posit that metaphysical questions like
the ones given in the previous paragraph are ultimately a waste of time.
However, developments in philosophy in the twentieth century suggest that
it is not so easy to dismiss metaphysics. Culminating in the mid-twentieth
century, a movement called logical positivism (also known as logical empiri-
cism), composed of scientists and empirically minded philosophers, sought
to do away with metaphysics. Logical positivists adhered to what is some-
times called the verifiability criterion of meaning. This criterion states that
only claims that can (at least in theory) be verified empirically, or claims
that are logical tautologies, count as genuine, meaningful knowledge(Dphil,
2009). All other claims—e.g., metaphysical claims about causality, god, the
nature of being, etc.—are meaningless. For example, following Hume, the
logical positivists believed that causal relations were not directly observed,
and could not be directly measured; thus, claims about causal relations were
meaningless.

It is generally accepted that, with respect to the verifiability criterion of
meaning, the logical positivist program is untenable, for at least two rea-
sons.10 First, the criterion itself is thought to be self-refuting. After all, the
proposition “only claims that can (at least in theory) be verified empirically,
or claims that are logical tautologies, count as genuine, meaningful knowl-
edge” is neither about the physical world, nor is it a logical tautology.11

The second criticism of the verifiability criterion—which may be particu-
larly interesting to statisticians—is closely related to data collection. That
claim C can be verified empirically assumes that one can go out into the
world and collect data relevant to C. But we might wonder: what princi-
ples guide decisions about which data are relevant to C, and which are not?
Surely, data collection is guided, at least in part, by theory;12 to see this,
consider measurements taken by a bulb thermometer. Such thermometers
rely on, among other things, a theory about the way in which liquid takes
up space at di�erent temperatures. Importantly, we might challenge the use
of an anomalous temperature reading by challenging whether the particu-
lar thermometer used was calibrated properly, and calibration relies on the

10https://bit.ly/2zikTyH
11Of course, some positivists had answers to this criticism, but none are widely accepted.

Again, see https://bit.ly/2zikTyH, page 345.
12We will consider the problem of theory-ladenness in more detail in Chapter 6.
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underlying liquid-temperature theory. If theory guides our data collection
processes, then “empirical verification” is no longer entirely empirical; it is
tainted by theory. As such, the verifiability criterion seems suspect, and we
might entertain the meaning of metaphysical claims; long live metaphysics!

Epistemology

Above, we saw that the nature of causality was a metaphysical question.
But, suppose, in some future utopia, metaphysicians have uncovered the
nature of causality; that is, the question what is a causal relation? has been
answered. This fact in itself would not lay to rest all philosophical questions
related to causality. Even if we have defined a causal relation, we might
still wonder how to gain knowledge about causal relations. For example, an
account of what it means for cigarette smoking to cause cancer does not
necessarily provide an answer the question how do we know that cigarette
smoking causes cancer?

What does it mean when we say that an agent A knows a claim C,
for example, that “the Moors invaded Spain in the 8th century”? Clearly,
in order to know C, A must actually believe it. If A doesn’t believe C,
it would be odd to say that A actually knows C. Similarly, it would be
odd to give A’s belief the status of knowledge if C weren’t, in fact, true.
Even if, for some reason, A believed that “2 + 2 = 5”, this belief would not
constitute knowledge. Finally, according to the canonical view of knowledge,
first espoused by Plato, a true belief is not su�cient for claiming knowledge;
knowledge also requires justification. Suppose that A had no idea whether C
were true, and decided to believe it based on a coin flip. Such a belief, even
though true, would hardly count as knowledge because A had no justification
for the belief in C13

In addition to asking for a definition of knowledge, epistemologists are
also interested in, among other things, questions about sources of knowledge—
e.g., given that our perception is fallible, under what conditions is it reliable
for producing knowledge?—the limits of knowledge—e.g., are there some
questions for which the answer is unknowable?—and the meaning of jus-
tification. Because science is thought to play such an important role in
knowledge generation, epistemologists are especially interested in scientific
discoveries, and the methodologies that lead to such discoveries.

Many epistemologists are familiar with, and make use of, statistics in
their work. Some make use of statistical methodologies as frameworks for
reliable knowledge generation—as a way to update beliefs based on new
information. Others interrogate the reliability of certain statistical method-

13There is an extensive literature on necessary and su�cient conditions for knowledge;
most contemporary philosophers believe that truth, justification, and belief are necessary
conditions for knowledge, but not su�cient conditions. See Section 3 of Ichikawa & Steup
(2017) for more.
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ologies (e.g., hypothesis testing) for generating knowledge. In Chapters 4
and 5, we will learn about, and consider objections raised against, popular
statistical methods.

Ethics

In 2017, neuropathologist Dr. Ann McKee published a paper examining the
brains of 202 deceased football players. Of the 111 NFL players examined,
110 of those were found to have chronic traumatic encephalopathy (CTE)
(Ward et al., 2017). CTE is a degenerative disease believed to be caused by
repeated blows to the head and can only be diagnosed after death; so, there
is no way to know how many living NFL players have the disease. Although
McKee’s sample of brains of NFL players was far from random—many of
the brains in the sample were from players whose families suspected that
CTE was present—there is still some scientific basis for concluding that NFL
player’s run a serious risk of developing CTE. About 1,300 former players
have died since the McKee’s group began studying CTE; so, even if every one
of the other 1,200 players had tested negative—an implausible scenario—the
minimum CTE prevalence would be close to 9 percent. This rate is vastly
higher than in the population of non-football players (Ward et al., 2017).

Typically, we think about sports in terms of personal preference. As with
many other preferences—whether we prefer the mountains or the beech; ba-
nanas, apples or oranges; Apple or Andriod; vanilla or chocolate—sports
preferences seem personal; you might enjoy football, and I might enjoy
hockey, and there is no compelling reason why either of us should change our
preference. The study of CTE, however, challenges this view about sports,
at least with respect to football. It appears that playing football comes
with serious risk. We might ask whether one ought to play football given
those risks. Further, we might ask whether we, as a society, ought to idolize
and support a game that encourages millions of young people to risk serious
injury for a very small chance of success.

Whatever you think about these questions—and reasonable people might
disagree about the answers—it seems clear that there is a moral or ethical
component to them. Almost always, when we ask questions about what we
ought to do, either as individuals, small groups, or as a society, we are asking
ethical questions. Ethicists ask a wide range of questions, including: What
does it mean to live a good life? Is it possible to derive what we ought to
do from what is the case?14 Do we have special obligations to the global
poor? Ought we eat animals? Is abortion permissible? What obligations do
we have to the environment? Ought we make consequential decisions about
mortgage loans based on uninterpretable machine learning algorithms?

14The same David Hume that worried about the existence of causality also argued that
one cannot derive an ought from an is; see Cohon (2018). Most philosophers agree. The
neuroscientist and philosopher Sam Harris is one exception. See McAllister (2018).
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These questions are messy, and one might wonder whether the inherent
messiness of so many ethical questions implies moral relativism—the view
that there are no objectively right or wrong answers to moral questions. The
challenge of moral relativism is a serious one, but ultimately, one that, on
my view, can be overcome. We will discuss moral relativism, theories that
propose to supply the “right” answers to moral questions, and ethical issues
related to statistics and data science in Chapter 7.

1.2 What is statistics?
To contextualize the discipline of statistics, it might be helpful to recall a
distinction made in Section 1.1.2—the distinction between deductive and in-
ductive logic. Recall that an argument is deductive just in case the premises
logically entail the conclusion. That is, it is impossible for the premises to
be true and the conclusion to be false. By contrast, an argument whose
premises do not logically entail the conclusion is inductive. Of course, in-
ductive arguments can be very strong; the fact that objects, in the past, have
an acceleration due to gravity of (approximately) 9.81 m/s2 provides good
reasons to believe that future objects will have this same acceleration due
to gravity. But, this conclusion doesn’t necessarily follow; we can conceive
of a world in which physical laws might change. What methods reliably
produce strong inductive arguments? In empirical domains that allow for
the collection of data, inferential statistics can be thought of as a set of
methods for drawing conclusions about the world from limited information.
The conclusions go beyond the data at hand, and thus, the arguments that
statistics presents are inductive.

This analysis gives a very high level contextualization of statistics. Where
do we go from here? What are some of the actual methods or principles that
statistics utilizes to reliably draw conclusions? First, it will be instructive to
introduce some terminology to help understand inference problems. Then,
we will consider seven foundational principles of statistical theory and prac-
tice.

1.2.1 A very short and general primer on statistical inference
As mentioned above, inferential statistics can be thought of as a set of meth-
ods used for drawing conclusions about the world from limited information.
The limited information is given in a dataset or sample, and will consist of
variables of interest measured for each of n units in the sample (the entities
about which we want to learn). The set of all of the units about which we
want to learn—including all units in the sample, and almost always, units
not in the sample—is called the target population.

For example, suppose that we are interested in learning about the spend-
ing practices of customers of artist A. To do so, we might ask a randomly
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selected group of n = 25 people at an artist A concert some questions: their
age, gender, income, cash on hand, proportion of times they’ve purchased
merchandise at a concert before, etc. In this case, the units are individual
concertgoers of artist A; the sample consists of the n = 25 randomly cho-
sen concertgoers of whom we asked questions; the population consists of all
potential concertgoers of artist A; the variables of interest are age, gender,
income, cash on hand, proportion of times merchandise has been purchased,
etc.

We might be interested describing or summarizing individuals in the
sample. Some examples might be: how much cash does the typical person
in the sample have on hand? Or, what proportion of people in the sample
have never purchased merchandise at a concert before? But such summaries
are limiting in that they only tell us about this sample, and not about the
larger population.

Alternatively, we might be interested in inferring a particular feature
of the entire population—such features are called parameters—based on the
sample. For example, we might be interested in inferring the average income
of potential concertgoers of artist A. Or, we might like to predict how
likely is it that a particular person will purchase an item given that they
are 28 years old, female, earn $45, 000 per year, have $35 in hand, and
have purchased merchandise at 10% of the concerts that they’ve attended
before. To make such inferences, we need to do more than simply summarize
samples. Importantly, to conduct statistical inference, we need to construct
a statistical model that represents the data well. We will discuss some
particulars about statistical models and inference methods in later chapters.
For now, with this setup in hand, we will turn to some features—or pillars
of statistical inference—that di�erent inference methods have in common.

1.2.2 Pillars of statistical wisdom

In The Seven Pillars of Statistican Wisdom, Stephen M. Stigler attempts
to answer an important question posed above: what are some of the actual
methods or principles that statistics utilizes to reliably draw conclusions?
In doing so, Stigler formulates a possible answer to the question what is
statistics?, by presenting seven principles that form a conceptual foundation
for statistics as a discipline. He writes:

In calling these seven principles the Seven Pillars of Statisti-
cal Wisdom, I hasten to emphasize that these are seven sup-
port pillars—the disciplinary foundation, not the whole edifice,
of Statistics. All seven have ancient origins, and the modern dis-
cipline has constructed its many-faceted science upon this struc-
ture with great ingenuity and with a constant supply of excit-
ing new ideas of splendid promise. But without taking away
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from that modern work, I hope to articulate a unity at the core
of Statistics both across time and between areas of application
Stigler (2016).

It should be emphasized that these principles—aggregation, information,
likelihood, inter-comparison, regression, design, and residual—are not nec-
essary and su�cient conditions for what constitutes statistics; for example,
the aggregation of information is not necessarily an example of a statisti-
cal analysis, and the omission of experimental design does not disqualify an
analysis from being statistical. Instead, we might think of analyses counting
as “statistical” as having a family resemblance to one another (Wittgenstein,
2001 (1953)), and Stigler’s pillars are common to many (but not all). We
discuss each of these pillars in turn, and highlight places where each pillar
borrows from or makes use of philosophy, emphasizing again that statistics
can be understood as a branch of philosophy. Note that Stigler (2016) takes
a historical approach to the pillars; the approach here is less historical and
more conceptual.

Aggregation

Aggregation is the combining of observations for the purposes of informa-
tion gain. At first, aggregation might seem odd. Suppose that we have n
individuals, and for each individual, we measure a single variable—e.g., an
individual’s yearly income. What does one gain by reducing n measurements
to a single number, for example, the arithmetic (or sample) mean, median,
or mode? We typically think of these numbers as measures of center; thus,
they are meant to tell us about the average or typical unit under study. But,
of course, it might be the case that no unit takes on the mean or median,
and in fact, sometimes it is impossible for an individual unit to take on these
measures of center! So, in what sense are they measuring something typical?

First uses of the sample mean as a measure of center in the social sci-
ences saw criticisms along these lines. For example, as reported in Stigler
(2016), the Belgian statistician Adolphe Quetelet used the mean as a way
of comparing human populations with respect to a particular variable—e.g.,
height. Stigler (2016) writes:

Already in the 1840s a critic was attacking the idea. Antoine
Augustin Cournot thought the Average Man would be a physical
monstrosity: the likelihood that there would be any real person
with the average height, weight, and age of a population was
extremely low. Cournot noted that if one averaged the respective
sides of a collection of right triangles, the resulting figure would
not be a right triangle (unless the triangles were all proportionate
to one another).
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Nevertheless, Quetelet thought that the mean was meaningful, and could
stand in as a “typical” individual, or “a group representative for comparative
analysis” Stigler (2016). Of course, the practice of using the sample mean
to summarize the center of measurements with respect to a given variable is
common practice; the sample mean does well at describing what is “typical”
in certain contexts, but not in others. The sample mean is not particularly
robust to outliers, which means that the addition of outliers can have a
large e�ect on the value. The sample median—the value at which half of
the measurements are above and half are below—is more robust to outliers,
and thus, in some cases, more appropriate.

Measures of center are not the only forms of aggregation, and in fact, if
reported alone, a misleading picture of the data often emerges. For example,
it might be important for one to live in a city where the average daily high
temperature in the summer months is 70 degrees Fahrenheit. But that
information is not enough, because (it is at least conceivable that) a city with
such an average might have many summer days with a high temperature of
around 30 degrees, and many others with a high temperature of around
100 degrees, such that the average is around 70 degrees. These sorts of
temperature swings are likely not in accordance with the desire to live in
a city with an average daily high temperature in the summer months of 70
degrees! Missing in this example is some measure of variability; measures
of variability, such as the range and variance, also combine observations for
the purposes of information gain and summary, and thus, are aggregations.

It is important to note that aggregation does not just occur as simple
summary statistics. For example, consider the statistical model of the form
Yi = f(xi; ◊)+Ái, where ◊ are a vector of parameters, ◊ = (◊1, ..., ◊p); f(xi; ◊)
represents the mean of Yi at a given xi and ◊; and Ái represents random error
(with zero mean).15 Estimates of ◊, found for example, by least squares or
maximum likelihood estimation, can be thought of as “weighted aggregates
of data that submerge the identity of individuals” Stigler (2016).

Finally, we note that discussions above about measures of center have
philosophical and empirical content; the choice of the median over the arith-
metic mean as a summary statistic relies on the meaning and understanding
of the concepts “typical” or “average”, and empirical considerations alone
cannot tell us what is the right meaning of the term “typical” in a given
context. Aggregation—a pillar of statistical wisdom—is informed by philo-
sophical considerations!

Information

In studying aggregation, we learned that we can gain information by com-
bining observations. Let’s expand upon this idea a bit. Suppose we have

15A simple example of such a model is simple linear regression, where f(xi; ◊) = ◊1+◊2xi

and Ái ≥ N(0, ‡2).
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a jar full of c candy beans,16 where c is unknown. We’d like to estimate c.
Our estimation process is as follows: we ask a diverse group of n people to
each give an independent estimate of c. Call each estimate Xi, i = 1, ..., n.17

We then average the n values together, using the sample mean:

X̄ =
nÿ

i=1
Xi.

Here, we’ve combined observations in a way that increases information about
c. That is, X̄ will be more precise as an estimator of c than any individual
guess, Xi. But how much more precise? What is the relationship between n
and precision? How much information do we gain by, say, doubling the num-
ber of (independent) guesses? It turns out that, if the standard deviation of
each guess is the same—call it ‡—then some simple probability theory can
give us an answer:

V ar(X̄) = V ar
3 1

n

nÿ

i

Xi

4
ind= 1

n2

nÿ

i

V ar(Xi) = 1
n2

nÿ

i

‡2 = ‡2/n

=∆ sd(X̄) = ‡/
Ô

n.

If we think of information gain as an increase in the precision of our es-
timator X̄, and we measure precision using the (multiplicative) inverse of
the standard deviation, then we see that, to increase the precision of our
estimator by a factor of k, we need to multiply the number of guessers by
k2: k

/
sd(X̄) = k

‡/
Ô

n
= k

Ô
n

‡ =
Ô

k2n
‡ . As (Stigler, 2016) writes:

The implications of the root-n rule were striking: if you wished
to double the accuracy of an investigation, it was insu�cient to
double the e�ort; you must increase the e�ort fourfold. Learning
more was much more expensive than generally believed.

Note that we made some important assumptions when describing informa-
tion gain and precision in terms of the root-n rule. One important assump-
tion was that the guesses were independent. By independent, we mean
that no individual guesser was influenced, either directly or indirectly, by
any other guesser. It turns out that, without independence, the derivation
above is not correct; sd(X̄) will be larger.18 What can we say about in-
formation gain in such cases? Intuitively, if guesser Xi influences Xj , we

16https://bit.ly/31Gphnd
17We suppose that each person’s guess would be correct, up to some random error or

perturbation. Another way of saying this is that, if we could somehow ask each person
to give an estimate, record it, erase their memory, and repeat this process many times,
on average, they would be correct. Further, we suppose that the random error (i.e., the
standard deviation of each guess) is the same across all people.

18Can you derive what sd(X̄) should be, assuming that the covariance between the ith

and jth guess is Cov(Xi, Xj) = ‡i,j .?

https://bit.ly/31Gphnd
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would expect our sample to contain less information than if no influence
occurred. To quantify how much less, we could calculate an e�ective sample
size, ne, which would be less than n whenever measurements are positively
correlated.19

Likelihood

Consider a thought experiment given by Sir Ronald Fisher in his 1935 work
Design of Experiments (Fisher (1935)). A woman at a tea party—let’s call
her Elaine— claims that, without looking, she is able to distinguish between
two scenarios about a given cup of tea:

(1) the cup has been prepared by pouring milk first and then tea;

(2) the cup has been prepared by pouring tea first, and then milk.

How might we decide whether Elaine actually has this ability? One option,
which Fisher described in Fisher (1935), is to collect some data—testing
Elaine’s ability to distinguish between (1) and (2)—and see how likely those
data are under the assumption that Elaine does not have this ability. Fisher
called an assumption of this type—the status quo, that no e�ect is present—
the null hypothesis, denoted H0. Fisher describes the data collection as
follows:

We will consider the problem of designing an experiment ... [to
be] mixing eight cups of tea, four in one way and four in the
other, and presenting them to the subject for judgment in a
random order. The subject has been told in advance of what the
test will consist, namely, that she will be asked to taste eight
cups, that these shall be four of each kind. Fisher (1935)

The goal for Elaine is to correctly identify the four cups of each kind. If
Elaine doesn’t have this ability—that is, if H0 is true—then we would expect
her to correctly identify all four cups of each kind approximately 1.4% of
the time. The full probability distribution20 for X = # of cups correctly
identified is given in Table 1.1.

We can use this probability distribution to decide whether a given dataset
provides evidence against the null hypothesis as follows: if Elaine does have
the ability to distinguish between (1) and (2), then we would expect her
to correctly identify all of the cups. This result, X = 4, is rare under H0.
So, if we observe X = 4, then we have evidence against H0. Conversely, if
Elaine correctly identifies zero, one, two, or three of the cups, we don’t have
enough evidence against H0.

19For more information on e�ective sample size, see https://bit.ly/2Ncm8Y3
20Can you calculate it?

https://bit.ly/2Ncm8Y3
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x P (X = x)
0 1/70 ¥ 0.014
1 16/70 ¥ 0.229
2 16/70 ¥ 0.514
3 16/70 ¥ 0.229
4 1/70 ¥ 0.014

Table 1.1: The probability distribution of X = # of cups correctly identified
by Elaine. The possible values are 0, 1, ..., 4.

Broadly, the use of a probability model to make comparative judgements
about data is what we mean by the likelihood pillar. Stigler (2016) writes
that

In modern statistics we use a probability measure as at least part
of the assessment of di�erences, often in the form of a statistical
test, with roots going back centuries. The structure of a test is
an apparently simple, straightforward question: Do the data in
hand support or contradict a theory or hypothesis? The notion
of likelihood is key to answering this question, and it is thus
inextricably involved with the construction of a statistical test.

It is important to note that, in any interesting statistical test, the data
in hand will never strictly contradict a hypothesis; instead, the data in
hand might provide evidence against H0 in the following way: we might
act as if a hypothesis is false if, under that hypothesis, the data in hand are
improbable.21 So, in the tea example, we might act as if H0: Elaine does
not have the ability to distinguish between (1) and (2) is false, if the data in
hand are X = 4, because X = 4 is improbable under H0.

The concept of likelihood is ubiquitous in statistics, stretching far beyond
hypothesis testing. As we will see in Chapters 4 and 5, likelihoods enter into
both frequentist and Bayesian statistical methods, for example, estimating
the rate of a disease in a given population. One point of contention between
frequentist and Bayesian methods is the role that the likelihood ought to
play!

Intercomparison

Consider a population where units are pages in this book. Suppose that we
want to estimate µ, the average number of words per page in this book.22

From above, we know that µ is a feature of a population, called a population
21Does this reasoning sound strong? Some think it is not, as we will see in Chapter 4.
22What is the variable of interest in this example?
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parameter.23 It would be tedious to count the number of words on each page
to find the true average, µ (let’s suppose we don’t have software to do this
for us!). But, perhaps we can choose a random sample of n pages, and
count the number of words on each page in the sample. Then, we can infer
something about µ by using information in the sample. Naturally, we could
estimate our population µ using the sample mean X̄ = 1

n

qn
i=1 Xi, where

Xi is the number of words on the ith page in the sample (i = 1, ..., n). But
importantly, that isn’t the end of the story. X̄ for our sample won’t be
exactly equal to µ. And worse, if we had taken a di�erent random sample of
size n, the value of X̄ would have been di�erent! So, over di�erent samples,
X̄ is random!

If we’d like to ask how good X̄ is at estimating µ24—and we should ask
this question!—then we should inquire about at least two things:25

(a) Over many samples of size n, on average, what will X̄ be?

(b) Over many samples of size n, how much variability will X̄ have (i.e.,
what is its variance)?

Some basic probability theory can help us answer these questions. If
X1, ..., Xn is a random sample of word counts from pages of this book, then,
with respect to (a):

E(X̄) = E
3 1

n
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i
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= 1
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4
= 1
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E(Xi) = 1
n

nÿ

i

µ = 1
n

nµ = µ.

This is important information: it tells us that, on average X̄ is correct! With
respect to (b), we saw above (section 1.2.2, in the discussion of information),
that the variance of X̄ is ‡2/n, where ‡2 is the population variance for each
Xi. That is, ‡2 represents how much variability there is in the number of
words per page in this book. So, now we know (a) what X̄ is on average, and
(b) how much X̄ varies from sample to sample (if we want that variability in
the original units, # of words per page, we can look at ‡

/Ô
n). These facts

provide some ingredients for assessing the goodness of X̄ as an estimator of
µ, and we will return to a more comprehensive analysis of the goodness of
estimators, and X̄ in particular, in Chapter 4.

But, there’s a hidden problem here, which gets at the essence of what
Stigler (2016) calls intercomparison: ‡2 is a population parameter, and we
don’t have a way of understanding the variability in X̄ without referring to
an external quantity, ‡2; but in most cases, we won’t know ‡2. Is there a

23Other population parameters in this context might be p = the proportion of words
per page under four letters in this book, or ‡ = the standard deviation of the length of
words in this book.

24For a rigorous set of answers to this question, take a course in mathematical statistics!
25In addition, it might be nice to know things like (1) the shape of the distribution of

X̄, and (2) what happens to X̄ as n æ Œ.
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way to use internal information to estimate ‡2, and thus, V ar(X̄)? It turns
out that we can estimate ‡2 internally using the sample variance:

s2 = 1
n ≠ 1

nÿ

i=1
(Xi ≠ X̄)2.

How does this substitution impact the accuracy of the analysis of the good-
ness of X̄ as an estimator of µ. The answer to that question depends on the
context, and in particular, on the size of n. Stigler (2016) writes:

With large samples, statisticians would with no reluctance re-
place ‡ with

Ò
1
n

q
(Xi ≠ X̄)2 (or by Gauss’ preference,

Ò
1

n≠1
q

(Xi ≠ X̄)2 ) when its value was not otherwise available.
Gosset’s goal in the article [The Probable Error of a Mean] was
to understand what allowance needed to be made for the inade-
quacy for this approximation when the sample was not large and
these estimates of accuracy were themselves of limited accuracy.

When n is small, the students-t distribution allows statisticians to perform
rigorous analyses of how good X̄ is as an estimator of µ, while using the
substitution of s2 in for ‡2.

This result is an example of intercomparison, which Stigler (2016) de-
fines as the ability to make statistical comparisons “strictly in terms of the
interior variation of the data, without reference to or reliance upon exterior
criteria [e.g., ‡2].” If estimating a population mean using a sample mean
was the only context in which intercomparison arose, then intercomparison
it would not rise to the status of a “pillar” of statistical wisdom. In fact, the
use of interior variation to estimate exterior variation arises in many areas
of statistics, including regression, analysis of variance, and more advanced
statistical models.

Regression

Regression is, at its core, about relationships between variables. Can we
predict the sales of a product from the amount of money spent on advertising
it? Do changes in meteorological conditions—e.g., temperature, windspeed,
humidity—lead to systematic changes in atmospheric ozone concentration?
What can we say about the relationship between the heights of parents
and the heights of their children? Questions like these clearly require a
framework that can model several (well, at least two) variables, at least
some of which are measured with some uncertainty (“statistical noise”).

To get a sense of the fundamentals of linear regression, consider the cars

dataset, which comes with the R statistical programming software.26 The
26https://www.r-project.org
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Figure 1.1: A plot of the speed of cars and the distances taken to stop.

data give some measurements of the speed of cars and the distances taken
for those cars to stop. A priori, you might guess that the distance that it
takes for a car to stop will increase as a function of the speed that the car
was traveling. The plot in Figure 1.1 confirms this suspicion. But what is
the relationship? More specifically,

1. Suppose that we increased speed by one mile per hour; how much, on
average, would we need to increase our stopping distance by?

2. How could we predict stopping distance for a new speed?

We can answer these questions with regression.
Given the plot in Figure 1.1, it might be reasonable to assume that there

is an approximately linear relationship between speed (x) and distance (Y );
that is

Y = —0 + —1x + Á,

where —0 is the intercept and —1 the slope of the line relating speed and
distance, and Á captures what we mean by “approximately linear”. More
precisely, Á is a random variable centered around zero (i.e., mean zero),
and models nonsystematic variability in the measurement process. That
is, for each value of xi, the value of Yi is perturbed o� of the true line
f(x; —0, —1) = —0 + —1x (up or down) by a random draw from the random
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variable Ái. Notice that f is given as a function of x, and the fixed, unknown
parameters are specified after the semicolon.

If we knew the values of —0 and —1, we could answer questions 1. and 2.
above:

1a. If we increased speed by one mile per hour, we would need to increase
our stopping distance —1 units, on average.

2a. To predict stopping distance for a new speed, x0, we could compute
f(x0; —0, —1) = —0 + —1x0.

Unfortunately, these answers involve unknown quantities (parameters) —0
and —1. An important component of regression is to estimate —0 and —1
based on the data. The estimators of —0 and —1, call them ‚—0 and ‚—1,
could then replace —0 and —1 in 1a. and 2a. above. Note that estimation
can be done in the frequentist framework—through, for example, maxi-
mum likelihood estimation or ordinary least squares27—or in the Bayesian
framework—through, for example, the maximum a posteriori estimate.

A careful reading of the questions posed in this section reveals a few
important distinctions related to the goals of regression. For example, the
first question in the first paragraph is about prediction—if we know the
amount of money spent on advertising in a particular region, can we predict,
to some degree of accuracy, sales? In constructing a regression model used
for making a prediction, we are not necessarily concerned with whether that
model is an accurate depiction of the world. Rather, we are concerned with
whether it can tell us something useful about the response variable—sales
in dollars—based on known measurements of the predictor variable—dollars
spent on advertising.

By contrast, the second question in the first paragraph refers not to
prediction, but to “systematic changes” in the response—atmospheric ozone
concentration—based on changes in the predictors—temperature, windspeed,
and humidity. Here, prediction might be an auxiliary goal, but language
about systematic changes seems to suggest something more; in particular,
we might want to explain the rise in atmospheric ozone concentration in
terms of changes in meteorological conditions. The need for an explanation
seems to point toward an accurate depiction of the world, meaning that our
model should, in some sense, model the world (e.g., through a law of na-
ture). Models that provide explanations often raise the issue of causation.
Do the predictor variables cause the response? In what sense? What does
it mean for X to cause Y , anyway? These questions that arise in the regres-
sion framework have a long and fascinating history in philosophy and the
sciences, and we will explore some of them in chapter 8.

27Which are equivalent when Ái
iid≥ N(0, ‡2).
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Design

No aphorism is more frequently repeated in connection with field
trials, then that we must ask Nature few questions, or, ideally,
one question, at a time. The writer [Fisher] is convinced that
this view is wholly mistaken. Nature...will best respond to a
logical and carefully thought out questionnaire; indeed, if we ask
her a single question, she will often refuse to answer until some
other topic has been discussed.–R.A. Fisher in (Stigler, 2016)

Depression is a tricky condition to treat, and there are several treatment
options to choose from. Among them are medications, such as selective sero-
tonin reuptake inhibitors (SSRIs) and the newly approved Esketamine28;
and talk therapies, such as cognitive behavioral therapy (CBT) and emo-
tionally focused therapy (EFT). Suppose that we are interested in learning
which treatment works best for depression, as measured using the Beck’s
Depression Instrument.29 To simplify our example, consider just two medi-
cal treatments, the SSRI citalopram, and Esketamine; and one talk therapy
treatment, CBT.

We can think of each treatment as a categorical variable, called a factor,
with two levels: either the treatment has been given to a patient at the
specified dosage and schedule, or it hasn’t. We might imagine that patients
receiving citalopram will receive 40 mg, once per day; patients receiving
Esketamine will receive 28 mg in the form of a nasal spray, twice per week.

One procedure for testing the e�ectiveness of treatments for depression
might be to consider only one factor; that is, administer a treatment, and
only that treatment, and measure its e�ect on depression. For example, we
might administer 40 mg of citalopram once per day, for 6 weeks, to a group
of n1 people, and administer a placebo to a separate group of n2 people;
neither group receives Esketamine or CBT. Then, we could compare groups
with respect to their average levels of depression. Such a procedure is called
a one factor at a time, or OFAT, design, because it only varies one factor,
while keeping all others constant.

An OFAT design is an intuitively plausible design for learning about an
e�ective treatment, and has a long history. As reported in Stigler (2016), the
Arabic medical scientist Avicenna, 1000 CE, comments on the importance
of experimenting by changing only one factor at a time in his discussion of
planned medical trials in his Cannon of Medicine. But as Fisher suggests in
the quote above, “asking nature one question at a time” has disadvantages.
For example, when compared with carefully designed experiments that vary
more than one factor at a time, OFAT designs require more resources (such
as more time and medication); are unable to estimate interactions between

28See Meisner (2019) for information about this new treatment for depression.
29See https://bit.ly/2VFmhW5.

https://bit.ly/2VFmhW5.
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treatments (for example, whether Esketamine is only e�ective in conjunc-
tion with CBT); and, produce less precise estimates of the e�ects of each
treatment (Czitrom, 1999).

Factorial designs are used as alternatives to OFAT designs. In factorial
designs, we consider two or more factors, and allow factors to vary at the
same time. To continue with our example above, imagine that we wanted to
consider both citalopram and Esketamine. The administration of each would
be a factor (and thus, we have a 2 ◊ 2 factorial design). If a patient received
28 mg of Esketamine twice per week, we might assign them a variable E = 1;
otherwise, we would assign E = 0. Similarly, if a patient receives 40 mg of
citalopram, once per day, we might assign C = 1, and C = 0 otherwise.
Importantly, in designing our experiment, it is desirable to have individuals
with all combinations of E and C, i.e, E = 1 and C = 1; E = 1 and
C = 0; E = 0 and C = 1; E = 0 and C = 0.30 Allowing all factors to
vary, rather than just one, we are able to estimate interactions, for example,
the extent to which taking both Esketamine and citalopram is better than
taking either one alone. Of course, factorial designs exist for two-factor
experiments with several levels—e.g., di�erent doses of each drug—and for
multi-factor experiments.

Factorial designs are an important example of the design pillar in statis-
tics. Many other important principles in experimental design that help
us decide whether an experimental treatment is e�ective are described in
Fisher’s Design of Experiments (Fisher, 1935). Here are some examples:

1. Randomization. In a randomized experiment, units (e.g., individu-
als) are assigned to treatment groups (e.g., citalopram vs placebo)
according to some random process (e.g., a coin flip). The use of ran-
domization helps block the negative e�ect of confounding variables.
For example, suppose that, in our depression study, subjects were not
chosen by random, but instead by convenience: we assigned CBT to all
University of Colorado Boulder students because they had easy access
to talk therapy and CBT; all other individuals in the experiment were
not given CBT. In such a case, the e�ectiveness of CBT is confounded
(at least) by education level—it may be that University of Colorado
Boulder students, or individuals with some college education respond
better to CBT than the general population.

2. Blocking. Blocking is a technique for including a factor (or factors) in
an experiment that lead to undesirable variation in the outcome. In a
sense, we are able to control for that variation. In a randomized block
design, units are first divided into blocks, and then, within each block,
units are randomly assigned levels of the treatment. For example,
in our depression study, we might group subjects by their education

30As long as we have no reason to believe that this would be harmful or unethical.
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level—no HS diploma, HS diploma only, bachelor’s degree, master’s
degree, terminal graduate degree (e.g., PhD)—and then, within each
level, randomly assign CBT.

3. Replication. Replication is the repetition of an experiment on many
di�erent units. In the blocking example above, we might only recruit
two subjects at each education level, and within each education level,
randomly assign CBT or no CBT. Here, there would be no replication
within blocks. However, to derive more reliable estimates of e�ects,
we might recruit several subjects at each education level and randomly
assign CBT or no CBT. If a treatment is actually e�ective, e.g., CBT
does reduce depression, then aggregating over replications should re-
flect that fact; if a treatment is not e�ective, e.g., CBT does not reduce
depression, then replication will guard against coincidences, such as a
subject receiving CBT and a reduction in their depression by chance,
or for some other reason.

Residual

We can learn by trying explanations and then seeing what re-
mains to be explained.–Stephen Stigler (Stigler, 2016)

Consider again the cars dataset, discussed in the section on regression
above. Recall that this dataset gives some measurements of the speed of
cars and the distances taken for those cars to stop. We decided that there
is an approximately linear relationship between speed (x) and distance (Y ):
Y = —0 + —1x + Á. After fitting the model—i.e., using measured (x, Y ) pairs
to estimate —0 and —1—we might use the model to explain something about
stopping distance, or predict stopping distance for a new speed not measured
in the original dataset. But how do we know that the model fits well? Is the
assumed linear relationship the true relationship between these variables?

Statisticians answer this question by analyzing the residuals of the model.
To define the model residuals, and to understand why they are helpful in
assessing fit, let’s decompose the model into two components: a fixed, struc-
tural component, given by f(x; —0, —1) = —0+—1x, and a random component,
given by Á. We assume that the measurement process is noisy, resulting in
random normal errors: Á

iid≥ N(0, ‡2). Suppose that we took our response
variable Y , and subtracted from it the structural part of the model; we’d be
left with the error term:

Y ≠ f(x; —0, —1) = Á (1.1)

So, if we could perform this operation, Y ≠ f(x; —0, —1), and if we could
check that the result were normal, then we would have a sense of whether
the model fit well or not; if the structure of the model has been specified
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Figure 1.2: A qqplot of the (standardized) residuals from the linear model
fit to the cars dataset. If the residuals are normal, we would expect to see
them gather along the solid black line. In this qqplot, we see some deviations
for small and large quantiles, suggesting some deviation from normality.

correctly, then the distribution of Y ≠ f(x; —0, —1) should be normal, as
assumed. But, recall that we do not know —0 and —1, and estimate them
from the data; the estimates are denoted ‚—0 and ‚—1. This estimation changes
things. Instead of equation (1.1), we now have

Y ≠ f(x; ‚—0, ‚—1) = ‚Á, (1.2)

which is the definition of the residual for this model. How does this help
us with assessing fit? Well, we could think of ‚Á as an estimate of the error
term, Á, and thus, check the normality of ‚Á. If the model is specified correctly,
then we should expect that ‚Á will be approximately normally distributed. In
Figure 1.2, we see a qqplot of the (standardized) residuals, which is one way
of assessing normality. Notice that some points deviate from the line y = x,
which suggests that the residuals deviate from normality. This suspicion
is further corroborated by Figure 1.3, where a plot of the (standardized)
residuals against fitted values, ‚Y = f(x; ‚—0, ‚—1), shows some structure—a
slight downward linear trend—rather than random scatter around y = 0.

Analyses of the residuals of a statistical model can be a powerful tool in
assessing its fit. It can alert practitioners to issues with their given theory—
as specified by a statistical model—and can suggest that a simpler or more
complicated theory might better explain the phenomena in question.

https://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm
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Figure 1.3: A plot of the residuals against fitted values, extracted from the
linear model fit to the cars dataset. In this plot, if the model fits correctly,
we would expect to see points scattered around the line y = 0, with many
points close to y = 0, and few points far above or below. In this case, we
see a slight downward trend in the points, suggesting that the model is not
specified correctly. In addition, we also see higher variation in the residuals
at larger fitted values.

1.3 What is the philosophy of statistics?

Now that we have a sense of some important features of philosophy and
statistics as distinct disciplines, we are in the position to think about how
they might be related. Broadly, there are two ways:

(1) Philosophical issues in statistics. The use of statistics to solve real sci-
entific problems requires, either implicitly or explicitly, certain philo-
sophical commitments. Philosophers of statistics, and philosophically
oriented statisticians, are interested in critically evaluating those com-
mitments to decide whether they are justified. Many philosophical
commitments receive attention in the practice of statistics and data
science. For example, the inability to replicate many scientific results
is often blamed on the inherent defectiveness of frequentist statistical
methods, such as hypothesis testing (J. P. A. Ioannidis, 2005). To
launch an e�ective critique of frequentist methods, one must often ad-
dress the underlying philosophical and logical principles in play. Much
of this book will deal with these sorts of issues, that is, philosophical
issues that arise in statistics.

(2) Statistical methodologies in philosophy. Many philosophers use sta-
tistical tools to attempt to solve important philosophical problems,
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such as the problem of induction (Chapter 2), scientific theory confir-
mation, and various problems in the philosophy of mind. Of course,
attempts to utilize, for example, Bayesian tools to solve problems in
scientific confirmation theory, may run into broad objections about
the Bayesian tools themselves; so, the sorts of issues that arise in (1)
are relevant here.

We end this chapter by briefly considering an example from both (1) and
(2).

1.3.1 Philosophy in statistics

The relationship between breast cancer and behaviors such as smoking and
alcohol consumption has been studied extensively. In 2002, a report pub-
lished in Lancet claimed that moderate drinking was not associated with a
higher risk of breast cancer. With respect to smoking, the report found that
premenopausal women who smoke had an increased risk of breast cancer,
but that postmenopausal women had a significantly reduced risk of breast
cancer (Band et al., 2002). Months later, in a report published in The British
Journal of Cancer, a di�erent group of researchers concluded that, in women
who reported drinking no alcohol, smoking was not associated with breast
cancer, and go on to conclude that “smoking has little or no independent
e�ect on the risk of developing breast cancer” (Hamajima et al., 2002).

Both reports used observational, rather than experimental, data. In an
observational study, researchers do not manipulate any variables or impose
any treatments.31 In particular, both reports mentioned above made use of
a type of observational study called a case-control study. Studies of this sort
identify the case, i.e., a group known to have an outcome. In these studies
above, groups of women with breast cancer constituted the case. Then,
controls are identified, i.e., a group known to be free of the outcome. Many
variables are measured within each group. The goal of a case-control study
is to look back in time to determine associations between the outcome and
other variables (e.g., breast cancer and smoking) (Lewallen & Courtright,
1998).

In the Band et al. (2002) study, a questionnaire was sent to 1431 women
under 75 years old with breast cancer; these women were listed on the
population-based British Columbia cancer registry between June 1, 1988,
and June 30, 1989. Questionnaires were also sent to 1502 age-matched con-
trols, randomly selected from the 1989 British Columbia voters list. A sub-
set of 318 and 340, respectively, replied. Researchers assessed the e�ects of
alcohol consumption and smoking (separately for premenopausal and post-
menopausal women), and adjusted for confounding variables (Band et al.,

31Reasons for not controlling for variables or imposing treatments may be logistical—
i.e., it would be costly, or impossible—or ethical.



30 1. PHILOSOPHY, STATISTICS, AND THE PHILOSOPHY OF STATISTICS

2002). The Hamajima et al. (2002) study is a meta-analysis, which combined
data from many studies of the type conducted in Band et al. (2002).

The results from the two reports are, at least on their surface, in ten-
sion (if not, outright in contradiction) with one another: one suggests that
smoking is a risk factor for breast cancer; another suggests that smoking is
not a risk factor if we “control” for alcohol consumption (e.g., there may be
an interaction between alcohol consumption and smoking). One practical
implication of this tension is that, if one were to attempt to make behavioral
changes based on these studies, it’s not clear what behaviors ought to be
adopted. The correct adoption of a particular behavior depends on, among
other factors, the reliability of the statistical analyses used, and there are a
number of conceptual issues that bear on the reliability of these analyses.
Many of these conceptual issues, while related to empirical content, are not
empirical in and of themselves, and thus, I count them as philosophical.
Some important philosophical issues that arise are:

1. How does using a meta-analysis strengthen the inductive support of the
conclusions being drawn? It is often thought that combining several
studies together into a meta-analysis can “create a single, more precise
estimate of an e�ect” (Ho�man, 2015; Ferrer, 1998). A correctly per-
formed meta-analysis that creates a more precise estimate of an e�ect
would increase the inductive support of the conclusion being drawn;
but in practice, few meta-analyses meet all the criteria for correctness,
and thus, the inductive support provided by meta-analyses can be
weak (Ho�man, 2015; J. P. Ioannidis, 2010). Assessing the strength
that a meta-analysis brings to a statistical argument is logical, and
thus, philosophical, in nature.

2. How does each study avoid, or fail to avoid, data dredging? Data
dredging is a set of fallacious procedures that result in claimed associ-
ations when, in fact, no associations exist. One popular type of data
dredging is post hoc multiple comparisons, which arises when many
claims are tested simultaneously, after the data have been collected.
When a large number of claims are tested without adjustments being
made to the testing procedures, the large majority of findings will be
inadequately supported, i.e., they will be false positives (Smith, 2002).
But there is no universally agreed upon method for adjusting testing
procedures for multiple comparisons. In choosing a particular method,
one is advancing (either explicitly or implicitly) a set of values, e.g.,
conservatism about avoiding a particular type of error. We will revisit
this issue in Chapter 4.

3. Does the fact that only a subset of chosen subjects respond to a ques-
tionnaire impact the conclusions being drawn? Even if the original
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group sent the questionnaire was randomly chosen, the subset of ac-
tual respondents is likely not a random sample from the desired pop-
ulation. If questionnaire response is correlated with a confounding
variable, conclusions drawn will be weakly supported.

4. Even if the associations discovered are real, what can we conclude about
causal relationships? The strength of support lent to causal conclu-
sions based on analyses of observational studies is disputed. Some ar-
gue that “case-control studies may prove an association but they do not
demonstrate causation” (Lewallen & Courtright, 1998). Others argue
that causal conclusions can be drawn from case-control studies and,
more broadly, observational studies (Persson & Waernbaum, 2013).
Further, among those who believe that observational studies can sup-
port causal conclusions, there is disagreement as to which methods
provide the strongest inductive argument (Gelman, 2009; Pearl, 2009)

1.3.2 Statistics in philosophy

There are several areas of philosophy that make use of statistical method-
ology in advancing solutions to philosophical problems. One example is in
scientific confirmation theory. Generally, given a scientific theory T , scien-
tists use empirical evidence to attempt to confirm or refute T . As a simple
example, consider the ‘scientific theory’ T : All swans are white. How might
one confirm or refute T? Immediately, we notice that there is an asymmetry;
to refute T , one only needs to observe a single non-white swan. However,
to conclusively confirm T , one needs to show that all swans, even those yet
to be observed are white. That is a much harder task. But, suppose that
many, many swans have been observed, and all of them have been white.
Does this add some confirmatory support to T? Intuitively, it does, and
Bayesian confirmation theorists have made attempts to formalize this intu-
ition by quantifying the degree to which new observations consistent with a
theory T actually confirm T .

Let’s consider one simple attempt at a Bayesian confirmation theory. Let
x be a new observation; some have proposed that a theory T is confirmed
by x just in case the probability of the theory given the new observation is
greater than the probability of the theory without the observation (Mayo,
2018):

P ( T | x) > P (T ). (1.3)

In equation (1.3), P (T ) is the prior probability that the theory is true, and
P ( T | x) is the posterior probability that the theory is true, given the ob-
served evidence, x. The posterior probability can (at least in theory!) be
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computed using Bayes’ theorem:

P ( T | x) = P ( x | T )P (T )
P (x) . (1.4)

This view of confirmation theory raises many questions. Ostensibly, theories
are either true of false, i.e., they are assigned uninteresting probabilities:
either zero or one. So, does it make sense to assign non-zero and non-unit
probabilities to theories? What could that probability mean? Further, what
does it mean to assign a prior probability to a theory, i.e., P (T )? If we have
no evidence bearing on that theory, then what probability should we assign
to it (we need some prior to use Bayes’ theorem!)? Finally, as Mayo (2018)
suggests, equation (1.3), while intuitively plausible, has its problems and
rival proposals. For example, we might say that T is confirmed by x just in
case the probability of the theory given the new observation is high in some
absolute sense, at least greater than the negation of that theory given the
new observation:

P ( T | x) > P ( ¬T | x). (1.5)

Equations (1.3) and (1.5) provide di�erent accounts of theory confir-
mation. How can we decide between the two? Formal epistemologists use
statistical (especially Bayesian) tools to work on these issues.

The goal of this chapter has been to provide a shared framework to think
through important issues in the philosophy of statistics. We saw that philos-
ophy is rooted in a shared commitment to providing reasons for particular
views about the world, and has a close historical connection to the sciences.
Philosophers often care about empirical content, but often, the arguments
that they advance depend on concepts (e.g., values, metaphysical commit-
ments) that go beyond empirical content. We also saw that (inferential)
statistics can be thought of as a set of inductive methods used to draw gen-
eral conclusions about the world from limited information. In remaining
chapters, we will compare, contrast, and explore the inductive strength of
particular statistical methodologies.

We continue in the next chapter by expanding upon the inductive nature
of statistics. What is induction, and what forms can it take? What are
some general principles that make statistical methodologies strong, in the
inductive sense? Do any of the competing statistical methodologies provide
solution to the longstanding philosophical problem of induction?
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1.4 Discussion Questions
1. What is a reasonable working definition of philosophy? Of statistics?

2. Describe some ways in which academic philosophy di�ers from “per-
sonal philosophies”.

3. What are some important issues that arise in the philosophical study of
logic? Metaphysics? Epistemology? Ethics? Philosophy of Statistics?

4. What is the verifiability criterion of meaning? What are some prob-
lems with this criterion? What bearing does this have on metaphysics
as a discipline?

5. In the discussion of hypothesis testing in Section 1.2.2, we reasoned as
follows: we might act as if a hypothesis is false if, under that hypoth-
esis, the data in hand are improbable. Is this strong reasoning? Can
we think of an example in which it is not?

6. What is the relationship between philosophy and science?

7. In what sense do the “pillars of statistical wisdom" provide a definition
of statistics?

8. What is the relationship between philosophy and statistics?

9. Fisher writes, “Nature...will best respond to a logical and carefully
thought out questionnaire; indeed, if we ask her a single question, she
will often refuse to answer until some other topic has been discussed.”
What does he mean by “asking nature a single question”, and how
might doing so not be optimal?

10. What is the di�erence between an observational study and an experi-
ment? For what reasons might we prefer the former?

11. Describe some interesting issues that arise in Bayesian confirmation
theory. For example, Bayesians assign probability values to theories.
Is that coherent?

12. Which “confirmation theory” given in Section 1.3.2 do you prefer and
why?
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Contextualizing statistics

The general body of researches in mathematical statistics during
the last fifteen years is fundamentally a reconstruction of logical
rather than mathematical ideas, although the solution of mathe-
matical problems has contributed essentially to this reconstruction.

– R.A. Fisher, The Logic of Inductive Inference

In Chapter 1, we saw that inductive arguments are such that, even if
the premises are true, the conclusions may be false. For example, it might
be true that, (P) up to the current time, t, all observed swans have been
white, and false that (C) All swans, including those yet to be observed, are
white. As such, an inference about a hypothesis, H, based on an inductive
argument is risky, in the sense that we may have taken in good information
from the world, and properly encoded that information into a set of premises
and assumptions, but drawn incorrect conclusions with respect to H.

Why does this problem arise? Why do we need to draw inferences to
hypotheses or theories that go beyond the observations at hand? One reason
is that scientific laws are su�ciently general, in the sense that they refer not
to particular entities, but broad categories. For example, Hubble’s Law of
Cosmic Expansion states that V = h ◊ d, where V is galaxy’s recessional
velocity, h is a parameter representing the rate of universe expansion, and
d is the galaxy’s distance from a reference galaxy. Hubble’s Law is not
only about the relationship between velocity and distance for galaxies that
have been observed, but about the relationship between distance and ve-
locity for all, including unobserved, galaxies. Further, the constant, h, is
strictly speaking, an unobservable; it represents “the constant rate of cosmic
expansion caused by the stretching of space-time itself” Bagla (2009).

Inferences to broad generalizations or unobservable entities aren’t partic-
ular to the physical sciences. For example, psychologists are often interested
in measuring unobservable psychological traits, called latent variables, such
as general intelligence, g, self-esteem, or extroversion. To “measure” la-
tent variables, psychologists must measure observable variables, and have a

35
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statistical model—e.g., factor analysis—describing how the latent variables
relate to what was measured.

In this chapter, we take a closer look at inductive inference. What forms
can it take? What problems arise in attempting to justify inductive in-
ference? How do statistical models contribute to the growth of scientific
knowledge? How strong are the arguments that justify statistical method-
ologies? By expanding upon induction and these related questions, we gain a
broader and contextualized view of the nature of statistical inference. From
there, we will be in the position to begin to evaluate di�erent statistical
methodologies.

2.1 Types of inductive inference

To better understand inductive inferences, it may be helpful to study di�er-
ent types of inductive inference. Here, we will study three types: inference to
the best explanation, induction by enumeration, and inference from analogy.
For more information on types of inductive inference, see Vickers (2006).

2.1.1 Inference to the best explanation

Today, Estelle woke up late. She was in a rush to get ready, and quickly
grabbed her phone o� of the charger on her way out of the house. Soon
after, on her way to work, she noticed that her phone battery was only at
20 percent. Drat! What could be the explanation for why her phone was
not charged to (or near) 100 percent? There any many logically possible
explanations. Here are a few:

H1 Estelle plugged her phone in properly the night before, but the power
went out for a long period of time, and as a result, her phone did not
charge.

H2 Estelle plugged her phone in properly the night before, but the phone
charging cord is faulty and no longer working, and as a result, her
phone did not charge.

H3 Estelle plugged her phone in properly the night before, but a demon
visited her room and unplugged it for most of the night. As a result,
her phone did not charge.

H4 Estelle, in fact, didn’t plug her phone in properly the night before, and
as a result, her phone did not charge.

Our intuition says that some of these explanations are plausible, and others
are not. For example, in the absence of additional information, H1, H2, and
H4 seem plausible. H3 seems implausible because we have no good reasons
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to believe that demons exist, and even if they did exist, we have no reason
to believe that they have the goal of unplugging our phones.

Now, suppose that Estelle thinks a bit more, and remembers two things:
First, she remembers that the digital clock on her stove displayed the correct
time on the way out of the house. Second, she remembers that a few other
times in the last month, she’s plugged in her phone improperly, and once she
secured the connection, her phone charged without issue. This information
changes which explanations are plausible. In particular, H1 now becomes
much less plausible, and H4 becomes much more plausible. In fact, we
might infer that H4 is the best explanation for the fact that the phone is
only charged to 20 percent, based on the information at hand.

The reasoning employed in this example is a type of inductive infer-
ence1 called inference to the best explanation (IBE). Generally, IBE might
be characterized as the process of “accepting a hypothesis on the grounds
that [it] provides [a] better explanation of the given evidence comparing to
the other competing hypotheses” (Erdenk, 2015). Notice that IBE is clearly
not deductive, because there is no requirement that, with limited informa-
tion, the best explanation is logically entailed by the observed phenomena.
In the example above, H2 has not been eliminated on the basis of logical
impossibility; rather, it just seems less plausible than H4.

In science, we often use statistical models to provide explanations for the
phenomena that generated the data. Statistical models can help construct
such explanations. In many cases, there will be several candidate models for
a particular set of data. For example, we might like to explain atmospheric
ozone concentration based on certain known conditions, such as tempera-
ture, windspeed, humidity, and concentration of certain pollutants, such as
sulfur dioxide. Many plausible models could be constructed with respect to
these data—some models might include possible pollutants as explanatorily
relevant to the variation in atmospheric ozone concentration, while other
models might exclude (some of) these pollutants. Statisticians have come
up with processes to select a “best” model among the candidates. Some cri-
teria that measure “best”, for example Bayes’ Information Criterion (BIC)
might be thought of as a formalization of inference to the best explanation.
That is, among several explanations (models) of the regularities in the data,
BIC selects a “best” explanation by balancing goodness of fit with simplicity
Faraway (2015).2

1Note that some philosophers do not classify IBE as a type of induction (or deduction);
such philosophers carve up the space of non-deductive arguments di�erently than we have
here, to leave space for IBE as its own type of inference. See Chapter 2 of Okasha (2016)
for more details

2Arguably, using BIC for explanation rather than prediction would require that we
know something about the extent to which each input variable in the statistical model
is causally related to the output variable. BIC does not, on its own, select for causal
relationships, and such relationships are typically what is desired in an explanation.



38 2. CONTEXTUALIZING STATISTICS

2.1.2 Induction by enumeration
What justifies our knowledge that all electrons have a mass of 9.1 ◊ 10≠31g?
Or that a hot stove will burn my hand? Or that there will be a full moon on
January 18, 2030?3 The argument for such knowledge is often of the form
(Norton, 2002):

(P1) All observed instances of A have had property p.

(C) Therefore, all (including unobserved) instances of A will have property
p.4

This type of argument—often called induction by enumeration, or enumer-
ative induction—allows us to generalize from observed regularities to unob-
served regularities, and as such, is indispensable to science. Often, induction
by enumeration is the only justification that we have for a particular scien-
tific fact, as is the case for the mass of electrons (Norton, 2002). In other
cases, such as those that predict the phases of the moon, physical theories
describe the necessary causes that produce the e�ect that A has property p,
and we don’t necessarily need to rely on induction by enumeration directly.
But the justification for the physical theories themselves seems to rely on in-
duction by enumeration: how do we know that the laws of planetary motion
will hold on January 18, 2030, so that our predictive model will be accurate?
We know this because all observed phenomena in the universe (A) have had
the property of obeying the laws of planetary motion (p), and infer that all
phenomena—including future phenomen—in the universe will obey the laws
of planetary motion. That is, we know they will hold because of induction
by enumeration!

2.1.3 Inference from analogy
A 1978 study of the artificial sweetener saccharin concluded that “saccharin
is carcinogenic for the urinary bladder in rats and mice, and most likely is
carcinogenic in human beings” Reuber (1978). How might we reason from
the premise that saccharin is carcinogenic in rats to the conclusion that
it is (likely) carcinogenic in humans? We might argue something like the
following:

(P1) Humans, on the one hand, and rats and mice on the other, share many
anatomical, physiological, and genetic properties.5

(P2) Many of these shared properties are relevant to the development of
di�erent types of cancer.

3https://bit.ly/2lMDuPM
4A more modest version of the conclusion of enumerative induction is (C) Therefore,

the next unobserved instance of A will have property p.
5See Bryda (2013) for evidence of the claim that there are such similarities.
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(P3) Saccharin has been shown to be carcinogenic in rats and mice.

(C) Therefore, cancer is (likely) carcinogenic in humans.

This argument might be strengthened by another premise that claims that
often in the past, when a result has been demonstrated in rats, it has also
been demonstrated in humans (Animal research at the ICR, 2019). We
might interpret such an argument form as an argument from analogy. The
general form of an argument from analogy might look something like this:

(P1’) A and B share properties p1, ..., pn.

(P2’) A has property p (p ”= pi, i = 1, ..., n).

(C’) Therefore, B has property p.

Such an argument is (almost) always categorized as inductive, because it
is (almost) never logically inconsistent for B to not have property p. And
in fact, to the best of our knowledge as of this writing, C is believed to
be false; there is “no consistent evidence that saccharin is associated with
bladder cancer incidence” (Artificial Sweeteners and Cancer , 2016).

Arguments by analogy are often used in science and statistics, as sug-
gested by the saccharin case above. For another example, in Origin of
Species, Darwin draws analogy between domestic selection by breeders and
selective process that arises in nature to argue for natural selection as a key
mechanism for evolution Norton (2018).

2.2 The problem of induction
Common to all types of inductive inference is the fact that the inferences
made are risky: even if the premises are true, the conclusion does not nec-
essarily follow. Consider the following inductive inference:

Argument #4 P In a sample of n = 100 University of Colorado Boulder students,
85 students claimed to have some amount of student loan debt.

C† Therefore, 85% of all University of Colorado Boulder students
have some amount of student loan debt.

How can we justify this inference from P to C†? More generally, what
makes inductive inference a reliable form of inference? Can we come up with
an argument for the conclusion that C: inductive inferences are justified?
Intuitively, we believe that inductive inference is a reliable form of infer-
ence, for example, when we believe that the key to our home or appartment
will work today because it worked yesterday. Many of the conclusions that
we draw, including scientific conclusions supported by statistical arguments,
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rely on inductive inference. However, as philosopher David Hume argued,
there is no strong argument for the conclusion that C: inductive inferences
are justified. That is, there is no rigorous justification for inductive infer-
ence. This fact is called the problem of induction. As statisticians and data
scientists (and more generally, as human beings who might care to draw
true and reliable conclusions about the world), we should care about the
problem of induction. If it truly is a problem, it threatens the veracity and
reliability of our supposed knowledge.

Let’s briefly work through Hume’s argument that leads to the problem of
induction.6 To gain some insights into Hume’s argument, let’s first consider
the ways in which the conclusion of an inductive inference, e.g., C†, might
be wrong. With respect to C†, it might be the case that the chosen sample
is biased in some way; if the sample is biased, then it may be the case
that students with student debt had a higher chance (or lower chance) of
being chosen for the sample. In that case, we might attempt to take a truly
random sample, where every student had the same chance of being chosen.
In that case, we could modify our argument:

Argument #4† P † In a random sample of n = 100 University of Colorado Boulder
students, 85 students claimed to have some amount of student
loan debt.

C† Therefore, 85% of all University of Colorado Boulder students
have some amount of student loan debt.

This modification does not solve the issue; still, C† can be false, while P †

true. Even with a large random sample, it is possible that we are unlucky in
the sense that the sample percentage di�ers significantly from the population
percentage. A second issue with our argument is that, in inferring from a
sample of University of Colorado Boulder students to the population of all
University of Colorado Boulder students, we are making some assumptions
about the uniformity of nature across time and space. For example, in
choosing a random sample, we are assuming that:

• the parameter percent of University of Colorado Boulder students who
have some amount of student debt stays constant across short periods
of time; and

• students that we have not observed are similar in the relevant ways
(e.g., with respect to finances and student debt) to students that we
have observed.

Generalized versions of these assumptions,7 taken together, are some-
times called the “Uniformity Principle” (UP). The UP plays a critical role

6My explanation of Hume’s argument relies on (Henderson, 2018).
7That is, (1) parameters stay constant across short periods of time, and (2) units that

we have not observed are similar in the relevant ways to units that we have observed.
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in Hume’s claim that there is no strong justification for inductive inference.
First, Hume claims that the UP appears to be assumed in any inductive
inference. This claim seems quite plausible: any time that we infer a con-
clusion based on one of the argument types from section 2.1—e.g., that all
observed electrons have mass of 9.1 ◊ 10≠31g, therefore all electrons (ob-
served and unobserved) will have this mass—we are implicitly assuming the
UP. So, inductive inference cannot be justified without some justification
for the UP. And in fact, the UP seems like the crucial premise in need of
justifying.

Once Hume has established the centrality of the UP, he then notes that
any justification of the UP must either be deductive or inductive. That is,
the UP will either follow necessarily from the premises (deductive); or it will
be possible for the premises to be true but for the UP to be false (inductive).
As Hume argues, the UP cannot be justified deductively, because it’s nega-
tion does not imply a contradiction; there is nothing internally inconsistent
about a universe that isn’t uniform across space or time. So, the deductive
route will not work. But further, the UP cannot be justified inductively,
because any inductive argument justifying the UP would assume the UP
itself! and therefore be circular. Thus, according to Hume, our hopes of
justifying inductive inference are hopeless: we have failed to justify the UP,
which was a necessary condition for justifying inductive inference.

Hume’s problem of induction is well-known among philosophers, and es-
pecially philosophers of science. While many have made attempts to solve
the problem, many others think that the problem is impossible to solve.
For an overview of some famous solutions from philosophers, see Henderson
(2018). In the remaining sections in this chapter, we will work toward un-
derstanding how statistical methods may (or may not!) solve the problem of
induction. In order to better understand these methods, we’ll first describe
the general notion of a statistical model.

2.3 Statistical models
Common to (almost) all paradigms in statistics is the use of probability
theory, perhaps in conjunction with some “substantive” empirical theory, to
model the observed data. Suppose that we observe data x = (x1, ..., xn), and
assume that the data are realizations of a stochastic (probabilistic) process
X = (X1, ..., Xn). This assumption is often justified in terms of repeated
sampling. We might assume that, if we observed the same phenomena (e.g.,
experiment, physical process) again under su�ciently similar conditions, we
would have observed di�erent values x = (x1, ..., xn). Howson & Urbach
(2005) write that

The assumption of such knowledge [stochasticity] is more or less
realistic in many cases, for instance, where an instrument is used
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to measure some physical quantity. The instrument would, as a
rule, deliver a spread of results if used repeatedly under similar
conditions, and experience shows that this variability, or error
distribution, often approximates a normal curve.

Stochasticity enters here as an assumption about what would have happened;
the world would have been di�erent if we repeated the sampling process
again.

In the simplest case, we might be lucky enough that the data are inde-
pendent and identically distributed (iid). Informally:

(i) Xi is independent from Xj if the occurrence of Xi does not influence
the probability of occurrence of Xj , for all i, j = 1, ..., n, i ”= j.

(id) X1, ..., Xn are assumed to have the same probability distribution, i.e.,
the same “shape” (e.g., normal), center, scale, etc.

For example, if X = (X1, X2) represents the stochastic process of drawing
two playing cards from a shu�ed standard deck8 without replacement, then
the probability of drawing, say, 2˚ after having drawn K¸ is di�erent from
just the probability of having drawn 2˚. Thus, such a stochastic process is
not iid because violates the independence assumption. As another example,
if Y1 ≥ N(0, 1) and Y1 ≥ N(0.5, 1), then Y = (Y1, Y2) is not iid, because it
violates the identically distributed assumption.

Under the assumption that X = (X1, ..., Xn) is an iid stochastic process,
we can typically9 write down the joint probability density (or mass) function
(pdf) associated with the stochastic process. In general, we might write
that X iid≥ f(x; ◊), where ◊ is a vector of parameters coming from some set
� µ Rm, and x œ Rn

x. Using these ingredients, we can define the statistical
model associated with data x = (x1, ..., xn) as

M◊(x) = {
!

X, f(x; ◊)
"

: ◊ œ �, x œ Rn
x}.

That is, the statistical model, M◊(x), is a pair
!

X, f(x; ◊)
"
, where X is the

sample of possible observations, and f(x; ◊) is the set of possible probability
distributions on observations, parameterized by ◊ œ �.

For example, suppose that we have good reason to believe that the ob-
served data, x = (x1, ..., xn), can be modeled by X = (X1, ..., Xn), where
each Xi comes from a univariate normal distribution. Thus, each Xi has
the following pdf:

8An explanation of a standard deck of playing cards can be found here:
https://bit.ly/2ZupVHK

9But not always! Some random variables do not have density functions. For example,
see https://bit.ly/2ZDYpqz
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f(x; µ, ‡) = 1Ô
2fi‡

exp
;

≠ (x ≠ µ)2

2‡2

<
,

with parameters ◊ = (µ, ‡), where µ is the mean and ‡ is the standard devi-
ation. Under the assumption that the sample is iid, the joint pdf associated
with the sample is

f(x; µ, ‡) =
nŸ

i=1
f(xi; µ, ‡),

because the joint distribution of independent random variables is the product
of the marginal distributions. So, our statistical model can then be written
as

M◊(x) = {
!

X, f(x; ◊)
"

: ◊ = (µ, ‡) œ � = R2, x œ Rn}.

The goal of the statistical model is to accurately describe the data generating
process, and to allow for inferences about important parameters of interest.
Such parameters of interest might be ◊ itself, or some function of ◊, say,
· = g(◊).

How does this formalization of a statistical model help tackle the prob-
lem of induction? Recall that the problem arises because we have no way of
formally justifying the methodological procedure of inductive inference. A
deductive argument cannot justify induction because of the very nature of
inductive inference; deductive arguments produce a conclusion that follows
necessarily from the premises, but inductive arguments contain no neces-
sary relation. On the other hand, an inductive attempt to justify induction
would, itself, require a justification, which would lead to an infinite regress.
Statistical models may provide a mathematical formalization that makes in-
duction more rigorous by quantifying our uncertainty in the conclusions we
draw from them.

2.4 Statistics as a solution to the problem of in-
duction?

In this section, we will consider two attempts at statistical solutions to the
problem of induction: The Fisherian/Popperian solution and the Bayesian
solution. Both of these methods use the statistical models described above.
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2.4.1 Popper, Fisher, and induction

Every experiment may be said to exist only in order to give the
facts a chance of disproving the null hypothesis.

– R.A. Fisher, Design of Experiments

Philosopher of science Karl Popper (1902 - 1994) recognized that Hume’s
problem of induction was, in a certain sense, insurmountable. Popper writes:

Hume, I felt, was perfectly right in pointing out that induction
cannot be logically justified. He held that there can be no valid
logical arguments allowing us to establish ‘that those instances,
of which we have had no experience, resemble those, of which we
have had experience’. Consequently ‘even after the observation
of the frequent or constant conjunction of objects, we have no
reason to draw any inference concerning any object beyond those
of which we have had experience’ (Popper, 2010 [1963]).

As a result, Popper made no attempt to solve the problem of induction by
justifying induction. Rather, he denied that induction was necessary for the
proper functioning of science. Instead of generalizing from observations to
theories (e.g., scientific laws), Popper believed that science properly func-
tions by first posing the theories, and then testing those theories against
particular relevant data. In this way, the proper justificatory structure of
science is deductive rather than inductive: a scientific theory T , so Popper
claimed, can be conclusively falsified given certain empirical evidence. As
an example, consider the theory T : All swans are white. This theory can be
conclusively and deductively falsified with the observation of (at least) one
non-white swan. The argument would be:

(P1) If T : all swans are white, then any swan observed will be white.

(P2) A black swan was observed.

(C) Therefore, T is false.

This general argument form,

(P1) If T , then e.

(P2) Not e.

(C) Therefore, not T

is valid, and therefore, deductive. For Popper, falsification—the process of
proposing theories and attempting to refute them—rather than induction,
is the real mode of scientific progress.
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To be sure, this view has some problems. For one, we might notice that
there is an asymmetry between our ability to reject T as false, i.e., when
evidence e contradicts T ; and accepting T as true, i.e., when e does not
contradict T . In the latter case, strictly speaking, e being broadly consistent
with T does not confirm T , because e will be consistent with other (in fact,
infinitely many other) theories, Ti, each of which is not equivalent to T .
Popper’s solution to this problem is to introduce the notion of corroboration.
A theory T is corroborated by e if e were produced by a “severe test”. By
a “severe test”, Popper means “tests that would probably have falsified a
claim if false” (Mayo, 2018). We should note though, that corroboration is
not strict confirmation, if by ‘confirmation’ one means conclusively true.

If one is familiar with the statistical hypothesis testing of Fisher or
Neyman-Pearson,10 Popper’s logic of conjecture and refutation should not
be entirely foreign. In statistical hypothesis testing, and in Popper’s falsifi-
cation paradigm, a hypothesis is put forward, and a procedure is conducted
to attempt to falsify it. There are important di�erences, however:

1. in most cases, statistical hypothesis testing explicitly deals with hy-
potheses that cannot be conclusively falsified;

2. statistical hypothesis testing, thanks to Fisher, deploys a formal sta-
tistical model to formulate hypotheses and to attempt to falsify them.

To get a sense how this works, recall that a statistical model associated
with data x = (x1, ..., xn) is given as

M◊(x) = {
!

X, f(x; ◊)
"

: ◊ œ �, x œ Rn}.

Broadly,11 a statistical hypothesis test works as follows:

1. Specify two hypotheses,

H0 : ◊ œ �0

H1 : ◊ œ � \ �0

where �0 µ �. H0 is referred to as the null hypothesis because it often
refers to parameter values that reflect “no e�ect” or “no relationship”
among variables. H1 is referred to as the alternative hypothesis. In
the simplest case, where �0 = {◊0}, the statistical model is reduced
to a single distribution over X, because the null hypothesis contains
only a single point.

10Or some blend of the two, which is how Hypothesis testing is often taught
11Fisher and Neyman-Pearson had di�erent versions of hypothesis tests, and we will

consider some of the di�erences between the two, and whether those di�erences render
the two versions incompatible, in Chapter 4.
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2. Decide on a distance measure, d(X), for the sample, under H0. This
measure is called the test statistic. It is a distance measure in the sense
that it will di�er from sample to sample, and the di�erences in d(X)
will track how “rare” the sample is.

3. Specify a rejection region—a region of the output of d(X) that corre-
sponds to a “rare” dataset, under H0.

4. Collect the relevant data x and calculate d(x) under H0. If d(x) falls
within the pre-specified rejection region, then we may infer that the
data indicate a genuine deviation from H0. If d(x) falls outside of
the rejection region, then we do not have an indication of a genuine
deviation from H0 (Mayo, 2018).

Before we consider a simple example, notice the similarities between this
formal set up, and Popper’s less formal way of conjecture and refutation.
Hypotheses are specified. With the right evidence, some hypotheses are
considered suspect, but many hypotheses still remain viable. Note also that
the failure to falsify a null hypothesis H0 does not constitute evidence for it.
Similarly, with Popper, the failure to falsify does not imply corroboration.
We need something else (i.e., a severe test).

A hypothesis testing example

Let’s turn to an example. Consider Marilynne, the head of the research and
development department at Ames’ Appliances. Marilynne suspects that
a modification to the motor of their best-selling refrigerator will impact
the refrigerator’s energy consumption, as measured in kilowatts over a 24-
hour period. She isn’t sure whether the modification will have a positive
or negative impact on consumption. As such, she might state the following
research hypotheses:

R0 : The motor modification will not impact energy consumption
R1 : The motor modification will impact energy consumption

In order to translate the research hypotheses into a formal statistical
test, Marilynne must choose a statistical model. She might reasonably
assume—perhaps based on knowledge of the measurement process—that
the measurements of refrigerator energy consumption are independent, and
well-modeled by a normal (that is, Gaussian) probability model. Under
these assumptions, Marilynne randomly selects sixty refrigerators from her
production line, and randomly assigns a label ‘unmodified’ or ‘modified’ to
each one. As a result, thirty refrigerators undergo a motor modification and
thirty remain unmodified.
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Under this model, the research hypotheses can be reformulated into sta-
tistical hypotheses. Let µ1 be the mean energy consumption in the unmod-
ified group, and µ2 be the mean energy consumption in the modified group.
Marilynne’s statistical hypotheses are:12

S0 : µ1 = µ2

S1 : µ1 ”= µ2

Assuming that the variability in kilowatt measurements are the same in the
unmodified and modified groups, the test method for these data and these
hypotheses is the pooled t-test, which has test statistic:

t = x̄ ≠ ȳ

sp

Ò
1

nx
+ 1

ny

where:

• x̄ is the sample mean of the unmodified group

• ȳ is the sample mean of the modified group

• nx = ny = 30 is the number of units in each group

• sp is the pooled standard deviation: sp =
ı̂ıÙ(nx ≠ 1) s2

x + (ny ≠ 1) s2
y

n2
x + n2

y ≠ 2

• s2
x = 1

nx ≠ 1

nÿ

i=1
(xi ≠ x̄)2 is the sample variance for the unmodified

group

• s2
y = 1

ny ≠ 1

nÿ

i=1
(yi ≠ ȳ)2 is the sample variance for the modified group

Marilynne will fix the significance level to – = 0.05, and let t0 denote
the value of t for the data collected in this experiment. Marilynne sets the
test rule to be:

T : whenever t0 > 2 or t0 < ≠2, where t0 is the test statistic t for our
data, infer S1.

At level –, and for the data collected, t0 ¥ 2.51 > 2. Thus, Marilynne
can infer S1: that the means of the groups are di�erent, i.e., µ1 ”= µ2. That
is, if the modeling assumptions are correct, Marilynne can also infer R1, that,

12We can explicitly relate this modeling scenario and hypotheses to the general statistical
model above: f is the joint pdf of a normal distribution, and ◊ =

!
µ1 ≠ µ2, ‡2"

, where
‡2 is the variance associated with refrigerator energy consumption measurements.
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on average, the motor modification has an impact on energy consumption.
She can also use the sign of t0 to infer which group consumes less energy.
Since the denominator of t will always be positive, the numerator controls
the sign. Since t0 is positive, it must be that x̄ > ȳ, which implies that the
unmodified group used more energy, and that the modified group did better
in terms of energy e�ciency.

It’s important to note that the logical terms above—terms like ‘infer’
and ‘imply’—are not to be taken deductively. Marilynne may be wrong
in ‘inferring’ S1; but given the statistical reasoning above, it is reasonable
to behave as if S1, and thus R1, are correct. The reasonableness of that
behavior comes from the logic of repeated sampling: if Marilynne were to
use the same statistical procedure, and collect di�erent random samples of
the same size from the same population, she would infrequently be in error.
Precise statements can be made about how infrequently errors would occur.
These statements—rate of false positive and false negative errors—depend
on what is in fact true about the di�erences across groups.

So, how does this hypothesis testing framework work toward solving the
problem of induction? First, hypothesis testing provides a formal framework
for assessing the evidence against a (null) hypothesis. In this sense, it is
a kind of falsification method. Second, under the statistical assumptions,
hypothesis testing provides a framework for quantifying uncertainty in our
conclusions and behaviors by controlling error rates. This error control
represents an important step forward in strengthening inductive inference:
if the modeling assumptions are (roughly) met, we know how often we will
be in error in the long run.

Ultimately, the statistical method described above fails to be a solution
to the problem of induction. While it does make explicit and precise state-
ments about probabilities, it still assumes that the future will be roughly
like the past, i.e., it assumes the UP. But, as we saw in section 2.2, the UP
cannot be justified without circularity. So, in failing to avoid the UP, this
statistical method has failed to circumvent the problem of induction.

2.4.2 Bayesian inference and induction

The most popular alternative to the statistical framework given above is
called Bayesian inference. Bayesian inference still makes use of statistical
models, as defined in section 2.3; however, the way that these models are
used and interpreted is quite di�erent from Fisher’s and Neyman-Pearson’s
frequentist inference.

Recall again that a statistical model associated with data x = (x1, ..., xn)
is given as

M◊(x) = {
!

X, f(x; ◊)
"

: ◊ œ �, x œ Rn}.
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Bayesian inference makes use of this statistical model within Bayes’ theorem.
In particular, it is possible to use Bayes’ theorem to produce a probability
distribution over hypotheses about the parameter, ◊, given data x. Bayesian
inference thus allows us to quantify our degree of belief in di�erent hypothe-
ses, i.e., di�erent values of ◊. For example, the result of a Bayesian inference
might be that, given the modeling assumptions (to be made more explicit
below), we are justified in believing H0 : ◊ Æ 0 is five times more likely than
H0 : ◊ > 0.

Consider again the research question about refrigerator energy consump-
tion from the previous section. Let µ1 be the mean energy consumption in
the unmodified refrigerator group, and µ2 be the mean energy consumption
in the modified refrigerator group. For the sake of simplicity, let’s assume
that we have enough experience with the unmodified group to know that
µ1 = 1.5. Using this assumption, Marilynne’s research hypotheses from
above are:

R0 : The motor modification will not impact energy consumption
R1 : The motor modification will impact energy consumption

Those research hypotheses were translated into statistical hypotheses:

S0 : µ1 = µ2 ≈∆ µ2 = 1.5
S1 : µ1 ”= µ2 ≈∆ µ2 ”= 1.5.

In Bayesian inference, we must start with a prior set of beliefs (or a “prior”)
about the parameter of interest, in this case, ◊ = µ2. A prior will specify
a probability distribution over the relevant values of ◊, before observing the
data. It quantifies our degree of belief in ◊ before collecting observations. In
this case, a reasonable choice might be a normal distribution of ◊, centered
at 1.5, with variance ‡2

0:

◊ ≥ N
1
1.5, ‡2

0
2

.

Informally, by selecting this prior distribution, we are stating that we believe
it is very likely that the true value of ◊ is relatively close to 1.5 (i.e., the
normal distribution has its peak at 1.5, the value under H0), and less likely
that ◊ is far from 1.5 in either direction. This prior quantifies our belief that,
before observing the data, there is a high probability that the modified group
is no di�erent than the unmodified group. The goal of a Bayesian analysis
is to update our prior based on the data. This update results in a posterior
distribution, fi (◊ | x), our degree of belief in ◊ given the data x. The posterior
distribution comes from Bayes’ theorem:

fi (◊ | x) = f (x | ◊) fi(◊)⁄
f (x | ◊) fi(◊)d◊

.
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Here, f (x | ◊) is mathematically equivalent (but not philosophically or sta-
tistically equivalent!) to f (x ; ◊) as given in M◊(x); that is, f (x | ◊) is the
joint pdf of the data interpreted as a function of ◊. Bayesians use “|” rather
than “;” for reasons that will become clear in our chapter on the interpreta-
tion of probability theory. When a joint pdf is interpreted as a function of
the parameter ◊, with the data fixed, rather than as a function of the data,
with ◊ fixed, it is called the likelihood function.

Let’s analyze Bayes’ theorem.

1. First, note that the lefthand side is a probability distribution over ◊
given the data x, i.e., the posterior distribution fi (◊ | x) is a function
of ◊. It quantifies our degree of belief in ◊ given the data.

2. Second, note that, on the righthand side, the denominator is an inte-
gral over ◊. So, ◊ will be “integrated out”—that is, the denominator
will not contain ◊, but only x (along with other constants). Conse-
quently, the denominator does not contribute to the shape or position
of fi (◊ | x); instead, it is just a normalizing constant, setting the height
of fi (◊ | x).

3. The shape and position of the posterior distribution are set by the
numerator on the righthand side. That numerator combines our pre-
data prior beliefs about ◊, fi(◊), with information contained in the
data, encoded by the likelihood, f (x | ◊). So, our posterior degree of
belief in ◊ given x is an update of our prior beliefs based on the data!

With respect to Marilynne’s refrigerators, since measurements were as-
sumed to be normally distributed,

f (x | µ2) =
1
2fi‡2

2≠n/2
exp

;
≠ 1

2‡2

nÿ

i=1
(x ≠ µ2)2

<
.

Again, for simplicity, we’ll assume that the standard deviation of the
modified group measurements is known to be ‡ = 0.3.

The prior distribution over µ2 is given by:

fi (µ2) = 1
Ò

2fi‡2
prior

exp
;

≠ 1
2‡2

prior

(µ2 ≠ µprior)2
<

,

where µprior = 1.5 is the prior mean and ‡prior = 1 is the standard
deviation of the normal prior.

It can be shown that the posterior distribution on µ2 given the data is
normal:
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µ2 | x ≥ N
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≥ N (1.536, 0.003) .

The posterior distribution on µ2 | x provides us with degrees of belief
about µ2 after seeing the data. So, we can answer questions like, what is the
probability that the mean of the modified group is greater than the mean
of the unmodified group.

P ([µ2 | x] > 1.5) ¥ 0.74.

As with frequentist analysis, we should ask: how does this framework
work toward solving the problem of induction? First, Bayesian inference
provides a formal framework for assessing how evidence bears on di�erent
hypotheses, e.g., the hypothesis µ2 | x > 1.5. Second, under the statisti-
cal assumptions, Bayesian inference provides a framework for quantifying
uncertainty in our conclusions. It does so by assigning probabilities to
various hypotheses (as opposed to frequentist inference, which controlled
error rates). These probability assignments represent an important step for-
ward in strengthening inductive inference: if the modeling assumptions are
(roughly) met, the probabilities of various hypotheses, which means we have
degrees of belief in various hypotheses; thus, we can act accordingly.

Ultimately, the statistical method described above fails to be a solution
to the problem of induction. While it does make explicit and precise state-
ments about degrees of belief in various hypotheses, it still assumes that the
future will be roughly like the past, i.e., it assumes the UP. But, as we saw in
section 2.2, the UP cannot be justified without circularity. So, in failing to
avoid the UP, this statistical method has failed to circumvent the problem
of induction.



References

Animal research at the icr. (2019). Retrieved from https://www

.icr.ac.uk/our-research/about-our-research/animal-research/

animal-research-at-the-icr

Artificial sweeteners and cancer. (2016, Aug). Retrieved from
https://www.cancer.gov/about-cancer/causes-prevention/risk/

diet/artificial-sweeteners-fact-sheet

Bagla, J. S. (2009). Hubble, hubble?s law and the expanding universe.
Resonance, 14 (3), 216?225. doi: 10.1007/s12045-009-0022-8

Band, P. R., Le, N. D., Fang, R., & Deschamps, M. (2002). Carcinogenic and
endocrine disrupting e�ects of cigarette smoke and risk of breast cancer.
The Lancet, 360 (9339), 1044?1049. doi: 10.1016/s0140-6736(02)11140-8

Baumer, B. S., Kaplan, D. T., & Horton, N. J. (2017). Modern data science
with r. CRC Press,Taylor Francis Group.

Brown, D. L. (2019, Aug). ’you’ve got bad blood’: The horror of
the tuskegee syphilis experiment. WP Company. Retrieved from
https://www.washingtonpost.com/news/retropolis/wp/2017/05/

16/youve-got-bad-blood-the-horror-of-the-tuskegee-syphilis

-experiment/

Bryda, E. C. (2013). The mighty mouse: the impact of rodents on advances
in biomedical research. Journal of the Missouri State Medical Associa-
tion. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC3987984/

Cahan, D. (2003). From natural philosophy to the sciences: writing the
history of nineteenth-century science. The University of Chicago Press.

Cohon, R. (2018, Aug). Hume’s moral philosophy. Stanford University. Re-
trieved from https://plato.stanford.edu/entries/hume-moral/#io

Curd, P. (2016, Apr). Presocratic philosophy. Stanford University. Retrieved
from https://plato.stanford.edu/entries/presocratics/

73

https://www.icr.ac.uk/our-research/about-our-research/animal-research/animal-research-at-the-icr
https://www.icr.ac.uk/our-research/about-our-research/animal-research/animal-research-at-the-icr
https://www.icr.ac.uk/our-research/about-our-research/animal-research/animal-research-at-the-icr
https://www.cancer.gov/about-cancer/causes-prevention/risk/diet/artificial-sweeteners-fact-sheet
https://www.cancer.gov/about-cancer/causes-prevention/risk/diet/artificial-sweeteners-fact-sheet
https://www.washingtonpost.com/news/retropolis/wp/2017/05/16/youve-got-bad-blood-the-horror-of-the-tuskegee-syphilis-experiment/
https://www.washingtonpost.com/news/retropolis/wp/2017/05/16/youve-got-bad-blood-the-horror-of-the-tuskegee-syphilis-experiment/
https://www.washingtonpost.com/news/retropolis/wp/2017/05/16/youve-got-bad-blood-the-horror-of-the-tuskegee-syphilis-experiment/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987984/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987984/
https://plato.stanford.edu/entries/hume-moral/#io
https://plato.stanford.edu/entries/presocratics/


74 REFERENCES

Czitrom, V. (1999). One-factor-at-a-time versus designed experiments.
The American Statistician, 53 (2), 126?131. doi: 10.1080/00031305.1999
.10474445

Davenport D.J, T. H., Patil, McAfee, A., & Brynjolfsson, E. (2012,
Oct). Data scientist: The sexiest job of the 21st century. Re-
trieved from https://hbr.org/2012/10/data-scientist-the-sexiest

-job-of-the-21st-century

Dphil, M. S. (2009). Meaning (verification theory). Encyclopedia of Neuro-
science, 2253?2256. doi: 10.1007/978-3-540-29678-2_3346

Erdenk, E. A. (2015). Two tokens of the inference to the best explanation:
No-miracle argument and the selectionist explanation. Beytulhikme An
International Journal of Philosophy, 5 (1), 31. doi: 10.18491/bijop.59053

Faraway, J. J. (2015). Linear models with r. CRC Press, Taylor & Francis
Group.

Ferrer, R. L. (1998). Graphical methods for detecting bias in meta-analysis.
FAMILY MEDICINE-KANSAS CITY-, 30 , 579–583.

Fisher, R. (1935). The design of experiments. 1935. Edinburgh: Oliver and
Boyd.

Gelman, A. (2009). Statistical modeling, causal inference, and social science.
Retrieved from https://statmodeling.stat.columbia.edu/2009/07/

05/disputes_about/

Gottfried, J., & Grieco, E. (2018, Oct). Younger ameri-
cans are better than older americans at telling factual news
statements from opinions. Pew Research Center. Retrieved
from https://www.pewresearch.org/fact-tank/2018/10/23/

younger-americans-are-better-than-older-americans-at-telling

-factual-news-statements-from-opinions/

Green, B. (2019). Data science as political action: Grounding data science
in a politics of justice. Retrieved from https://scholar.harvard.edu/

files/bgreen/files/data_science_as_political_action.pdf

Hamajima, N., Hirose, K., Tajima, K., Rohan, T., Calle, E., Heath, C.,
& Coates, R. (2002). Alcohol, tobacco and breast cancer—collaborative
reanalysis of individual data from 53 epidemiological studies, including
58 515 women with breast cancer and 95 067 women without the dis-
ease. British Journal of Cancer , 87 (11), 1234?1245. doi: 10.1038/
sj.bjc.6600596

https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://statmodeling.stat.columbia.edu/2009/07/05/disputes_about/
https://statmodeling.stat.columbia.edu/2009/07/05/disputes_about/
https://www.pewresearch.org/fact-tank/2018/10/23/younger-americans-are-better-than-older-americans-at-telling-factual-news-statements-from-opinions/
https://www.pewresearch.org/fact-tank/2018/10/23/younger-americans-are-better-than-older-americans-at-telling-factual-news-statements-from-opinions/
https://www.pewresearch.org/fact-tank/2018/10/23/younger-americans-are-better-than-older-americans-at-telling-factual-news-statements-from-opinions/
https://scholar.harvard.edu/files/bgreen/files/data_science_as_political_action.pdf
https://scholar.harvard.edu/files/bgreen/files/data_science_as_political_action.pdf


REFERENCES 75

Henderson, L. (2018, Mar). The problem of induction. Stanford Univer-
sity. Retrieved from https://plato.stanford.edu/entries/induction

-problem/#Bib

Ho�man, J. I. (2015). Chapter 36 - meta-analysis. In J. I. Ho�man
(Ed.), Biostatistics for medical and biomedical practitioners (p. 645 -
653). Academic Press. Retrieved from http://www.sciencedirect.com/

science/article/pii/B9780128023877000366 doi: https://doi.org/
10.1016/B978-0-12-802387-7.00036-6

Howson, C., & Urbach, P. (2005). Scientific reasoning: the bayesian ap-
proach. Open Court.

Ichikawa, J. J., & Steup, M. (2017, Mar). The analysis of knowledge.
Stanford University. Retrieved from https://plato.stanford.edu/

archives/sum2018/entries/knowledge-analysis/

Ioannidis, J. P. (2010). Meta-research: The art of getting it wrong. Research
Synthesis Methods, 1 (3-4), 169–184.

Ioannidis, J. P. A. (2005). Why most published research findings are false.
PLoS Medicine, 2 (8). doi: 10.1371/journal.pmed.0020124

Jacobs, A. Z., & Wallach, H. (2019). Measurement and fairness.

Lewallen, S., & Courtright, P. (1998). Epidemiology in practice: case-
control studies. International Centre for Eye Health. Retrieved from
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1706071/

Mayo, D. G. (2018). Statistical inference as severe testing: how to get beyond
the statistics wars. Cambridge University Press.

McAllister, T. (2018). Sam harris and the is/ought gap. Re-
trieved from https://www.lesswrong.com/posts/HLJGabZ6siFHoC6Nh/

sam-harris-and-the-is-ought-gap

Mcbrayer, J. P. (2015, Mar). Why our children don’t think
there are moral facts. The New York Times. Retrieved
from https://opinionator.blogs.nytimes.com/2015/03/02/why-our

-children-dont-think-there-are-moral-facts/

Meisner, R. C. (2019, May). Ketamine for major depression: New tool,
new questions. Retrieved from https://www.health.harvard.edu/

blog/ketamine-for-major-depression-new-tool-new-questions

-2019052216673

Mitchell, A., Gottfried, J., Barthel, M., & Sumida, N. (2019, Dec). Can
americans tell factual from opinion statements in the news? Retrieved

https://plato.stanford.edu/entries/induction-problem/#Bib
https://plato.stanford.edu/entries/induction-problem/#Bib
http://www.sciencedirect.com/science/article/pii/B9780128023877000366
http://www.sciencedirect.com/science/article/pii/B9780128023877000366
https://plato.stanford.edu/archives/sum2018/entries/knowledge-analysis/
https://plato.stanford.edu/archives/sum2018/entries/knowledge-analysis/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1706071/
https://www.lesswrong.com/posts/HLJGabZ6siFHoC6Nh/sam-harris-and-the-is-ought-gap
https://www.lesswrong.com/posts/HLJGabZ6siFHoC6Nh/sam-harris-and-the-is-ought-gap
https://opinionator.blogs.nytimes.com/2015/03/02/why-our-children-dont-think-there-are-moral-facts/
https://opinionator.blogs.nytimes.com/2015/03/02/why-our-children-dont-think-there-are-moral-facts/
https://www.health.harvard.edu/blog/ketamine-for-major-depression-new-tool-new-questions-2019052216673
https://www.health.harvard.edu/blog/ketamine-for-major-depression-new-tool-new-questions-2019052216673
https://www.health.harvard.edu/blog/ketamine-for-major-depression-new-tool-new-questions-2019052216673


76 REFERENCES

from https://www.journalism.org/2018/06/18/distinguishing

-between-factual-and-opinion-statements-in-the-news/

Morris, W. E., & Brown, C. R. (2019, Apr). David hume. Stanford Univer-
sity. Retrieved from https://plato.stanford.edu/entries/hume/

Norton, J. D. (2002, Apr). A survey of inductive generalization. University
of Pittsburg. Retrieved from http://www.pitt.edu/~jdnorton/papers/

Survey_ind_gen.pdf

Norton, J. D. (2018). The material theory of induction.

Okasha, S. (2016). Philosophy of science: a very short introduction. Oxford
University Press.

Papineau, D. (2018, Sep). Is philosophy simply harder than science? The
Times Literary Supplement. Retrieved from https://www.the-tls.co

.uk/articles/public/philosophy-simply-harder-science/

Paul, C., & Brookes, B. (2015, Oct). The rationalization of unethi-
cal research: Revisionist accounts of the tuskegee syphilis study and the
new zealand "unfortunate experiment". American Public Health Associ-
ation. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC4568718/

Pearl, J. (2009). Myth, confusion, and science in causal analysis.

Persson, E., & Waernbaum, I. (2013). Estimating a marginal causal odds
ratio in a case-control design: analyzing the e�ect of low birth weight on
the risk of type 1 diabetes mellitus. Statistics in Medicine, 32 (14), 2500-
2512. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10

.1002/sim.5826 doi: 10.1002/sim.5826

Popper, K. R. (2010 [1963]). Conjectures and refutations: the growth of
scientific knowledge. Routledge.

Reuber, M. D. (1978, Aug). Carcinogenicity of saccharin. U.S. National
Library of Medicine. Retrieved from https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC1637197/

Romeijn, J.-W. (2014, Aug). Philosophy of statistics. Stanford
University. Retrieved from https://plato.stanford.edu/entries/

statistics/#BaySta

Sayre-McCord, G. (2015, Feb). Moral realism. Stanford University. Re-
trieved from https://plato.stanford.edu/entries/moral-realism/

https://www.journalism.org/2018/06/18/distinguishing-between-factual-and-opinion-statements-in-the-news/
https://www.journalism.org/2018/06/18/distinguishing-between-factual-and-opinion-statements-in-the-news/
https://plato.stanford.edu/entries/hume/
http://www.pitt.edu/~jdnorton/papers/Survey_ind_gen.pdf
http://www.pitt.edu/~jdnorton/papers/Survey_ind_gen.pdf
https://www.the-tls.co.uk/articles/public/philosophy-simply-harder-science/
https://www.the-tls.co.uk/articles/public/philosophy-simply-harder-science/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568718/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568718/
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.5826
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.5826
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637197/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637197/
https://plato.stanford.edu/entries/statistics/#BaySta
https://plato.stanford.edu/entries/statistics/#BaySta
https://plato.stanford.edu/entries/moral-realism/


REFERENCES 77

Skorton, D. J., & Bear, A. (2018). The integration of the humanities and arts
with sciences, engineering, and medicine in higher education: branches
from the same tree. The National Academies Press.

Smith, G. D. (2002, Dec). Data dredging, bias, or confounding. Bmj,
325 (7378), 1437?1438. doi: 10.1136/bmj.325.7378.1437

Stigler, S. M. (2016). The seven pillars of statistical wisdom. Harvard
University Press.

Tuskegee study timeline. (2015, Dec). Centers for Disease Control and
Prevention. Retrieved from https://www.cdc.gov/tuskegee/timeline

.htm

Vickers, J. (2006, Nov). The problem of induction. Stanford University.
Retrieved from https://stanford.library.sydney.edu.au/archives/

sum2016/entries/induction-problem/#CarIndLog

Ward, J., Williams, J., & Manchester, S. (2017, Jul). 111
n.f.l. brains. all but one had c.t.e. The New York Times.
Retrieved from https://www.nytimes.com/interactive/2017/07/25/

sports/football/nfl-cte.html?_r=0

Wittgenstein, L. (2001 (1953)). Philosophical investigations. Blackwell
Publishing.

https://www.cdc.gov/tuskegee/timeline.htm
https://www.cdc.gov/tuskegee/timeline.htm
https://stanford.library.sydney.edu.au/archives/sum2016/entries/induction-problem/#CarIndLog
https://stanford.library.sydney.edu.au/archives/sum2016/entries/induction-problem/#CarIndLog
https://www.nytimes.com/interactive/2017/07/25/sports/football/nfl-cte.html?_r=0
https://www.nytimes.com/interactive/2017/07/25/sports/football/nfl-cte.html?_r=0

	Philosophy, statistics, and the philosophy of statistics
	What is philosophy?
	A historical approach
	Core subdisciplines of philosophy

	What is statistics?
	A very short and general primer on statistical inference
	Pillars of statistical wisdom

	What is the philosophy of statistics?
	Philosophy in statistics
	Statistics in philosophy

	Discussion Questions

	Contextualizing statistics
	Types of inductive inference
	Inference to the best explanation
	Induction by enumeration
	Inference from analogy

	The problem of induction
	Statistical models
	Statistics as a solution to the problem of induction?
	Popper, Fisher, and induction
	Bayesian inference and induction


	A source of the divide: interpretations of probability theory
	What is an interpretation of probability?
	The relative frequency interpretation
	The Bayesian/subjective interpretation
	The classical interpretation
	The logical interpretation
	Looking ahead: what do interpretations have to do with statistics?

	The frequentist statistical paradigm
	Core philosophical commitments of the frequentist paradigm
	Hypothesis testing
	Interpretations of frequentist hypothesis tests
	Connections to falsificationism
	Objections to hypothesis testing

	Point estimation
	Interval estimation
	Interpretation of confidence intervals

	The big picture: defenses of and objections to the frequentist paradigm
	The likelihood principle


	The Bayesian statistical paradigm
	Core philosophical commitments of the Bayesian paradigm
	Bayesian updating
	Bayesian confirmation theory
	The big picture: defenses and objections to the Bayesian paradigm
	The problem of the prior
	Invariance


	Philosophical issues in practice
	Thinking probabilistically
	Theory ladenness
	Philosophical issues in measurement
	Statistics and data science
	The end of theory in science
	A replication crisis in science?

	Ethical issues in statistics
	The problem of relativism
	Ethical theory
	Consequentialism
	Deontology
	Virtue ethics

	Global vs local ethics in statistics and data science
	Case studies
	Are some results too good to be true?
	Misuse of statistics as an ethical transgression
	Bias in machine learning algorithms
	Machine learning and filter bubbles
	Ethical issues in the statistics classroom


	Statistics and Causation
	Philosophical background
	Randomized control trials: the gold standard
	Learning about causation from observational studies?

	Phenomenology of Statistics

