Periodicity is a class property. ie: If \(i \leftrightarrow j \), then \(i \) and \(j \) have the same period.

Proof:

- To show this, I will use the notation
 \[a | b, \]
to say that \(a \) divides evenly into \(b \). We read \(a | b \) as “\(a \) divides \(b \)”. Equivalently, this means that \(b \) is a multiple of \(a \). (i.e. There exists a positive integer \(k \) such that \(b = ka \).)

For example, \(3 \) divides \(9 \) and \(3 \) divides \(21 \) but \(3 \) does not divide \(5 \). We write \(3 | 9 \), \(3 | 21 \), and \(3 \nmid 5 \).

Note that if \(a | b \), then \(b \) must be greater than or equal to \(a \). If \(a | b \) and \(b | a \) then the integer \(k \) must be 1 and we can conclude that \(a = b \).

Now let’s get to the proof...

- Let \(d_i \) and \(d_j \) be the periods of states \(i \) and \(j \), respectively.

 Since \(i \leftrightarrow j \), there exist integers \(m \) and \(n \) so that
 \[p_{ij}^{(n)} > 0 \quad \text{and} \quad p_{ji}^{(m)} > 0. \]

- Since
 \[p_{jj}^{(m+n)} \geq p_{ji}^{(m)} p_{ij}^{(n)} > 0, \]
 we must have that \(d_j | (m+n) \) since, by definition of period, \(d_j \) is the greatest common divisor of all integers \(k \) such that \(p_{jj}^{(k)} > 0 \).

- Let \(u \) be any integer such that \(p_{ii}^{u} > 0 \). (We know such an integer exists since one example is given by \(u = n + m \) since
 \[p_{ii}^{(n+m)} \geq p_{ij}^{(n)} p_{ji}^{(m)} > 0. \]

- Since
 \[p_{jj}^{(m+u+n)} \geq p_{ji}^{(m)} p_{ii}^{(u)} p_{ij}^{(n)} > 0, \]
 we know that \(d_j | (m + k + n) \).

- Now \(d_j | (m + n) \) and \(d_j | (m + u + n) \) implies that \(d_j | u \). (Check this!)
• Since u was arbitrary, we now know that d_j divides every power k such that $P_{ii}(k) > 0$. So, we can conclude that $d_j | d_i$ since d_i is the greatest common divisor of all powers k such that $p_{ii}^{(k)} > 0$.

• A symmetric argument shows that $d_i | d_j$.

• If both $d_i | d_j$ and $d_j | d_i$, we must have that $d_i = d_j$.

• Yay.