
PARTIAL DIFFERENTIAL EQUATIONS PRELIMINARY EXAMINATION
August 2019

• You have three hours to complete this exam.

• Each problem is worth 25 points.

• Work only four of the five problems problems.

• You must mark which four that you choose—only four will be graded.

• Start each problem on a new page.

1. Method of characteristics. Suppose that u(x, t) is defined by a PDE and by initial values
(at t = 0):

∂tu+ t∂xu = u for all x, and t > 0.

u(x, 0) = −x for all x, with t = 0.

(a) Sketch a few of the characteristic curves in the (t, x)-plane for t > 0, and label them.

(b) Find u(x, t)as explicitly as possible in the region in which u(x, t) is defined.

(c) State whether the characteristics ever cross for t > 0. If they cross, find a time (t) and
location (x) where they cross, and do not answer 1d.

(d) If the characteristics never cross, then evaluate u(x, t) at {x = 1, t = 1}.

Solution:

(a) The characteristic curves are defined by dx
dt

= t, for t > 0, all real x.

=⇒ x(t) = x(0) +
t2

2
.

(b) Along every characteristic curve, dx
dt

= t for t > 0, so the PDE becomes an ODE for

u(x(t), t) :
du

dt
= ∂tu+

(
dx

dt

)
∂xu = u .

=⇒ u(x(t), t) = C(x(0))et = C(1/2)et .
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(c) From 1a, every characteristic is half of a parabola, and the curves are identical, except
for their starting values of x = x(0) at t = 0 =⇒ the characteristics never cross each
other.

(d) From 1a, if follows that the characteristic that goes through (x = 1, t = 1) goes through
x = x(0) = 1

2
at t = 0. =⇒ u(x, t) = C(1/2)e = −1/2e.

2. Fourier Series.
Let f(x) = sin {π |x|}, −1 ≤ x ≤ 1.

(a) Sketch f(x) on −1 ≤ x ≤ 1.

(b) Find the first four nonzero terms in the Fourier series for f(x).

(c) Does the Fourier series fail to converge to f(x) anywhere in [−1, 1]? If so, where?
Justify your answer.

Solution:

(a) Sketch

(b)

f(x) = a0 +
∞∑
n=1

an cos(nπx) .

a0 =
2

π
; for all n ≥ 1 ,

a2n−1 = 0, a2n =
2[

1− (2n)2
]
π
.

(c) The series converges absolutely for −1 ≤ x ≤ 1, so it converges pointwise to f(x) for
−1 ≤ x ≤ 1.

3. Wave Equation. Let v(x, t) denote the solution of:

vtt(x, t) = c2vxx(x, t) + 2 sin(x) cos(ct),−π < x < π, t > 0, c > 0
v(−π, t) = v(π, t) = 0, t > 0,
v(x, 0) = cos(x

2
), vt(x, 0) = 0.

(1)

(a) Find v(x, t) for t > 0, −π < x < π.

(b) Is v(x, t) periodic in time? (Yes or No)
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(c) If Yes, find the period (in time) of the motion. If No, is there a time t > 0 when
v(x, t) = v(x, 0) for all −π < x < π? If so, find the first such time after t = 0.

Solution:

(a) Verify directly that v(x, t) = cos(x
2
) cos( ct

2
) + t sin(x) sin(ct) solves the problem in a.

To derive this solution:

i. Solve the homogeneous problem: wtt = c2wxx, −π < x < π, t > 0, with
w(−π, t) = w(π, t) = 0, t > 0.
Separate variables: w = F (x)G(t), =⇒ F (x)G′′(t) = c2G(t)F ′′(x)

=⇒ G′′(t)

c2G(t)
=
F ′′(x)

F (x)
= K whereK = const. The x-equation and boundary con-

ditions are:
F ′′(x) = KF (x), F (−π) = F (π) = 0
First, show that there are no nonzero solutions for K > 0 or for K = 0 with given
boundary condition.
For K = −λ2 < 0, F (x) = A sin(λ(x+ π)) +B cos(λ(x+ π)),
F (−π) = 0 =⇒ B = 0 and F (π) = 0 =⇒ λ = λn = n

2
, n = 1, 2, 3, · · · , and

Fn = sin(λn(x+ π)).
With λn = n

2
and we solve theG equation to getGn = an sin(cλnt)+bn cos(cλnt).

un(x) = sin(n
2
(x+ π))(an sin( cn

2
t) + bn cos( cn

2
t)) is a solution.

The general (formal) solution of the homogeneous problem is
∞∑
n=1

sin(
n

2
(x+ π))(an sin(

cn

2
t) + bn cos(

cn

2
t)).

Notice that u1(x, t) = sin(x+π
2

)(a sin( ct
2

)+b cos( ct
2

)) = cos(x
2
)(a sin( ct

2
)+b cos( ct

2
))

it is easy to see that the solution of our homogeneous problem is given by b = 1
and a = 0:

w(x, t) = cos(
x

2
) cos(

ct

2
).

ii. Next, address the forced problem. The spatial structure of the forced problem is
simple, and sin (x) satisfies the boundary conditions, so we can look for a particular
solution of the forced problem of the form:

u(x, t) = sin(x)Q(t)

Substituting this into the PDE: =⇒ Q′′(t) = −c2Q(t) + 2cos(ct). The general
solution of this ODE is: Q(t) = t sin(ct) + a sin(ct) + b cos(ct) with the initial
condition Q(0) = Q′(0) = 0 we get:

Q(t) = t sin(ct).
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Thus the complete solution of the problem is:

v(x, t) = w(x, t+ u(x, t) = cos(
x

2
) cos(

ct

2
) + t sin(x) sin(ct).

(b) v(x, t) is NOT periodic, because of the second term.

(c) v(x, t) = v(x, 0) = cos(x
2
) at ct = 4π.

4. Elliptic Problem.
In the following, the 2-norm will be assumed, i.e., |•| := ‖•‖2.

(a) Construct the Green’s function G(x,x′) for the Dirichlet problem:

∆G(x,x′) = δ(x− x′) ; x ∈ R2, |x| < 1

G(x,x′) = 0 ; |x| = 1

(b) Write down and justify the formula for smooth solutions of

∆u = 0 ; x ∈ R2, |x| < 1

u(x) = g(x) ; |x| = 1

where g is a smooth function on the unit circle.

(c) Use the maximum principle to prove the uniqueness of the solution in (b).

Solution:

(a) A homogeneous solution of Laplace’s equation in R2 is

Φ(r) =
1

2π
ln(r), r = |x| .

Using the method of images, we utilize the image point x′∗ = x′/ |x′|2, so for any x
on the unit circle, |x− x′|2 = |x′|2 |x− x′∗|, so the Green’s function for the unit disk
is

G(x,x′) = Φ(|x− x′|)− Φ(|x− x′∗|)− Φ(|x′|) =
1

4π
ln

r2 + r′2 − 2rr′ cos(θ − θ′)
r2r′2 + 1− 2rr′ cos(θ − θ′)

4



(b) Justified using the Green’s representation theorem, we can identify the solution using
our result from (a), and mapping the boundary condition to polar coordinates: u(1, θ) =
g(θ). We know then the unit normal is in the radial direction, so for x′ = (1, θ′),

∂G(x,x′)

∂n′
=
∂G(r, θ, 1, θ′)

∂r′
=

1

2π

1− r2

r2 + 1− 2r cos(θ − θ′)

Applying the Green’s representation formula, we know the solution is

u(r, θ) =
1

2π

ˆ 2π

0

1− r2

r2 + 1− 2r cos(θ − θ′)
g(θ′)dθ′

(c) Let B = {(r, θ)|0 ≤ r < 1, 0 ≤ θ < 2π} ∈ R2. If we assume for a set B and its
closure B̄ that u ∈ C2(B)∩C(B̄) and ∆u = 0 in B, then |u| ≤ max∂B |u| = max |g|.
If u1 and u2 are both solutions in C2(B)∩C(B̄), then w = u1−u2 solves the Dirichlet
problem, so the maximum principle ensures |w| ≤ 0, so w ≡ 0, so u1 ≡ u2.

5. Heat equation.

(a) Consider Q = {(x, t)|0 < x < L, t > 0} and Q̄ to be the closure of Q. Assume u and
v are in C(Q̄) ∩ C2(Q) (), and are solutions to the heat equation (∂tu = ∂2xu) on Q.
Furthermore, suppose u ≤ v for t = 0, for x = 0, and for x = L. (Use the Maximum
Principle) to show that u ≤ v on Q.

(b) More generally, consider functions u and v which solve ∂tu − ∂2xu = f(x, t) and
∂tv − ∂2xv = g(x, t) on Q. Furthermore, assume that f ≤ g on Q and u ≤ v for t = 0,
for x = 0, as well as x = L. Show that u ≤ v on Q.

(c) Suppose v satisfies ∂tv − ∂2xv ≥ sin(x) on R = {(x, t)|0 < x < π, t > 0}. Moreover,
assume v(0, t) ≥ 0 and v(π, t) ≥ 0 for all t > 0 and v(x, 0) ≥ sin(x) for all 0 ≤ x ≤ 1.
Then show that v(x, t) ≥ (1− e−t) sin(x) on R.

Solution:

(a) Take w := u − v, then w solves the heat equation. Fix T > 0, then w ≤ 0 on
t = 0, x = 0, and x = 1. Thus, by the maximum principle, it follows that w ≤ 0 on
[0, 1] × [0, T ]. Choose T > 0 arbitrarily large, so w ≤ 0 on [0, 1] × [0,∞), so u ≤ v
on [0, 1]× [0,∞).
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(b) Fix T > 0 and consider QT := [0, 1] × [0, T ]. Look at w := u − v on QT , then
∂tw − ∂2xw ≤ 0 on [0, 1] × (0, T ] and w ≤ 0 on t = 0, x = 1, and x = 1. We want to
show w ≤ 0 on QT . Define wε := w+ εx2 and suppose there exists (x0, t0) ∈ QT such
that wε obtains its max, which does not lie on t = 0, x = 0, or x = 1:
1. If (x0, t0) ∈ (0, L) × (0, T ) then ∂tw

ε(x0, t0) = 0 and ∂2xw(x0, t0) ≤ 0, so
∂tw

ε(x0, t0)−∂2xw(x0, t0) ≥ 0. However, ∂twε−∂2xwε = ∂tw−∂2xw− 2ε ≤ −2ε < 0,
contradiction.
2. If (x0, t0) lies on t = T , then ∂twε(x0, t0) ≥ 0 and ∂2xw

ε(x0, t0) ≤ 0, so ∂twε(x0, t0)−
∂2xw(x0, t0) ≥ 0. Again, this is a contradiction.
Therefore, the maximum of wε on QT can only be attained on t = 0, x = 0, or x = 1.
Thus, w ≤ 0 on QT . Taking T →∞, w ≤ 0 on Q so u ≤ v on Q.

(c) Take u = (1 − e−t) sinx, then ∂tu = e−t sinx and ∂2xu = −(1 − e−t) sinx. Hence,
∂tu − ∂2xu = sin x. Furthermore u(0, t) = u(π, t) = 0 for all t > 0. Furthermore,
u(x, 0) = 0 ≤ sin(x) = v(x, 0). From (b), note it follows u ≤ v on R, so v ≥
(1− e−t) sinx on R.
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