PARTIAL DIFFERENTIAL EQUATIONS PRELIMINARY EXAMINATION
August 2019

You have three hours to complete this exam.

Each problem is worth 25 points.

Work only four of the five problems problems.

You must mark which four that you choose—only four will be graded.

Start each problem on a new page.

1. Method of characteristics. Suppose that u(x,t) is defined by a PDE and by initial values
(att = 0):

Owu +tdyu =u forall z,and t > O.
u(z,0) = —z forall z, with t = 0.

(a) Sketch a few of the characteristic curves in the (¢, z)-plane for ¢ > 0, and label them.
(b) Find u(x,t)as explicitly as possible in the region in which u(x, t) is defined.

(c) State whether the characteristics ever cross for ¢ > 0. If they cross, find a time (¢) and
location (z) where they cross, and do not answer [1d|

(d) If the characteristics never cross, then evaluate u(z,t) at {x = 1,¢t = 1}.
Solution:

(a) The characteristic curves are defined by ‘Cil—f =t,fort > 0, all real z.

= x(t) :x(0)+§.

(b) Along every characteristic curve, fl—f =t fort > 0, so the PDE becomes an ODE for

d d
u(z(t),t) :d—? = Ou + (d—f) O,u=1u.

= u(x(t),t) = C(x(0))e’ = C(1)2)e".
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(c) From |la] every characteristic is half of a parabola, and the curves are identical, except
for their starting values of = z(0) at t = 0 = the characteristics never cross each
other.

(d) From|[ld] if follows that the characteristic that goes through (z = 1,¢ = 1) goes through
r=2(0)=satt =0. = u(z,t) = C(Y2)e = —1)2.

2. Fourier Series.
Let f(z) =sin{m|z|}, -1 <z < 1.
(a) Sketch f(z)on —1 <z < 1.
(b) Find the first four nonzero terms in the Fourier series for f(z).

(c) Does the Fourier series fail to converge to f(x) anywhere in [—1,1]? If so, where?
Justify your answer.

Solution:

(a) Sketch
(b) .
flz) =ao+ Z a, cos(nmx) .

n=1
2
ag = —; foralln > 1,
7
2
[1- (2n)2} T

(c) The series converges absolutely for —1 < z < 1, so it converges pointwise to f(x) for
-1 <z <1

azp—1 =0, ag, =

3. Wave Equation. Let v(x,t) denote the solution of:

vt (2,1) = Pvge(x, t) + 2sin(z) cos(ct), —r <x <m, t >0, c>0
v(—m,t) =v(m,t) =0, t >0, (1)
v(z,0) = cos(5), v(z,0) = 0.

(a) Find v(z,t) fort > 0, -7 <z < 7.

(b) Is v(x,t) periodic in time? (Yes or No)



(c) If Yes, find the period (in time) of the motion. If No, is there a time ¢ > 0 when
v(z,t) = v(z,0) forall -7 < = < w? If so, find the first such time after ¢ = 0.

Solution:

(a) Verify directly that v(x,t) = cos(%) cos($) + t sin(z) sin(ct) solves the problem in a.
To derive this solution:

i.

il.

Solve the homogeneous problem: wy; = c*w,,, —7 < z < m,t > 0, with
w(—m,t) =w(m,t) =0,t>0.
Separate variables: w = F(x)G(t), = F(z)G"(t) = AG(t)F"(x)
G”(lf) B F”(:L’)
2G(t)  F(x)
ditions are:
F'"(z) = KF(x),F(—m)=F(m) =0
First, show that there are no nonzero solutions for X > 0 or for X = 0 with given
boundary condition.
For K = —\? < 0, F(z) = Asin(A(z + 7)) + Bcos(A(x + 7)),
F(-m)=0= B=0and F(mr) =0 = A=A\, = §,n =123, and
F, = sin(\,(z + 7)).
With A, = % and we solve the G equation to get G, = ay, sin(cA,t)+by, cos(cAnt).
Uy (z) = sin(5(x + 7))(ay, sin(Ft) + by, cos(5't)) is a solution.
The general (formal) solution of the homogeneous problem is

Z sin(=(z + 7))(ay, sin(%t) + b, cos(%t)).

= K where K = const. The x-equation and boundary con-

Notlce that uy (z,t) = sin(£3%) (asin($)+bcos($)) = cos(£)(asin($)+bcos(S))

it is easy to see that the solution of our homogeneous problem is given by b = 1

and a = 0: - ot
w(x,t) = cos(§) COS(5>.

Next, address the forced problem. The spatial structure of the forced problem is

simple, and sin (x) satisfies the boundary conditions, so we can look for a particular

solution of the forced problem of the form:

u(z,t) = sin(z)Q(t)

Substituting this into the PDE: = Q" (t) = —c*Q(t) + 2cos(ct). The general
solution of this ODE is: Q(t) = tsin(ct) + asin(ct) + bcos(ct) with the initial
condition Q(0) = Q’(0) = 0 we get:

Q(t) = tsin(ct).
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Thus the complete solution of the problem is:
x ct . :
v(z,t) = w(x,t +u(z,t) = COS(§) COS(E) + ¢ sin(x) sin(ct).
(b) v(x,t)is NOT periodic, because of the second term.
(¢) v(x,t) = v(z,0) = cos(3) at ct = 4.
4. Elliptic Problem.
In the following, the 2-norm will be assumed, i.e., |8| := ||e/l,.

(a) Construct the Green’s function G(x, ') for the Dirichlet problem:

AG(z,x')=6(x—x') ; zcR? |z|<1
Gz, )=0 ; |z|=1

(b) Write down and justify the formula for smooth solutions of
Au=0 ; zeR? |z|<1
u(x) =g(x) ; |zf=1
where g is a smooth function on the unit circle.

(c) Use the maximum principle to prove the uniqueness of the solution in (b).

Solution:

(a) A homogeneous solution of Laplace’s equation in R? is

1
()=o), v =l
Using the method of images, we utilize the image point "* = '/ |x'|", so for any x

on the unit circle, | — x’|” = |&'|” | — x’*|, so the Green’s function for the unit disk
is

/’2

1 r? + 1'% — 2rr' cos(0 — 0")

G, @) = lfe — ) ~ @l — ")) — @(fa’)) = - g e




(b) Justified using the Green’s representation theorem, we can identify the solution using

©

our result from (a), and mapping the boundary condition to polar coordinates: u(1,6) =
g(0). We know then the unit normal is in the radial direction, so for ' = (1,¢’),

0G(x,x') 0G(r,0,1,0) 1 1—r?

on’ or’ T 2rr24l-2r cos(f — )

Applying the Green’s representation formula, we know the solution is

(r.0) = - / K L= @)dy’
u(r,0) = —
’ 27 J, T2+1—2TCOS(9—9/)9

Let B = {(r,0)|0 <r < 1,0 < 0 < 27} € R2 If we assume for a set B and its
closure B that u € C*(B) N C(B) and Au = 0 in B, then |u| < maxpp |u| = max |g|.
If u; and us are both solutions in C?(B) N C(B), then w = u; — uy solves the Dirichlet
problem, so the maximum principle ensures |w| < 0, so w = 0, s0 u; = us.

5. Heat equation.

(a)

(b)

(c)

Consider Q = {(z,)|0 <z < L,t > 0} and Q to be the closure of (). Assume u and
v are in C'(Q) N C%(Q) (), and are solutions to the heat equation (J;u = d*u) on Q.
Furthermore, suppose ©v < v for ¢t = 0, for x = 0, and for x = L. (Use the Maximum
Principle) to show that u < v on Q).

More generally, consider functions u and v which solve du — d?u = f(z,t) and
Oy — 0?v = g(x,t) on Q. Furthermore, assume that f < gon Q and u < v fort = 0,
for x = 0, as well as x = L. Show that u < v on ().

Suppose v satisfies 9,v — 9?0 > sin(z) on R = {(z,1)|0 < x < m,t > 0}. Moreover,
assume v(0,¢) > 0and v(7,t) > Oforallt > 0and v(x,0) > sin(z) forall0 < z < 1.
Then show that v(z,¢) > (1 — e™*) sin(z) on R.

Solution:

(a)

Take w := u — v, then w solves the heat equation. Fix 7" > 0, then w < 0 on
t =0,x =0, and x = 1. Thus, by the maximum principle, it follows that w < 0 on
[0,1] x [0,T]. Choose T > 0 arbitrarily large, so w < 0 on [0, 1] x [0,00), so u < v
on [0, 1] x [0, 00).



(b)

(©)

Fix T" > 0 and consider Q7 := [0,1] x [0,7]. Look at w := u — v on Qr, then
dyw — 0w < 0on [0,1] X (0,7]and w < 0ont =0,z =1,and z = 1. We want to
show w < 0 on Q7. Define w® := w + ex? and suppose there exists (g, t) € Qr such
that w® obtains its max, which doesnotlieont =0,z = 0,or z = 1:

1. If (zo,t0) € (0,L) x (0,T) then dyw(wo,ty) = 0 and J?w(xg,ty) < 0, so
Oywe (g, to) — O%w(zo,ty) > 0. However, d,w® — Ow* = dyw — 02w — 2e < —2¢ < 0,
contradiction.

2. If (g, to) liesont = T, then O;w(zq, to) > 0and O?w(zg, ty) < 0, s0 ywe(xg, to)—
02w (g, to) > 0. Again, this is a contradiction.

Therefore, the maximum of w*® on ()7 can only be attainedont = 0, z = 0, or x = 1.
Thus, w < 0 on Q. Taking T' — oo, w < 0 on ) sou < v on Q.

Take u = (1 — e ') sinx, then dyu = e 'sinz and 9?u = —(1 — e ") sinz. Hence,
Owu — 0*u = sinz. Furthermore u(0,t) = wu(m,t) = 0 for all ¢ > 0. Furthermore,
u(z,0) = 0 < sin(z) = v(z,0). From (b), note it follows v < v on R, so v >
(1—e ") sinx on R.



