Preliminary Exam

Partial Differential Equations

10:00 AM - 1:00 PM, Friday, Aug. 28, 2020
Room: ECCR 244

possible | score
25
25
25
25
25

There are five problems. Solve four of the five problems. Total 100

Each problem is worth 25 points.

A sheet of convenient formulae is provided.

Student ID (do NOT write your name):

SN U S

1. Quasilinear first order equations. The density of cars p(x,t) in a traffic model satisfies the
continuity equation

op 0
T 21 =p)] = _
t+ x[p( p)] =0, t>0,—00<x <00

with initial conditions

1—2% —l<ax<l,

(a) (15 points) Find p(x,t) for times t less than the time at which a shock forms.
(b) (10 points) Find the time at which a shock forms.

Solution:

(a) The PDE can be rewritten as

ap ap
— 4+ (1 —=2p)— =0. 1
5 T (1= 20)5 (1)
The characteristics are determined by the equations
dt
— =1 2
S &)
dx
—=1-2 3
dT p’ ( )
dp
] 4
dr ()

Inserting the initial conditions t(0) = 0, p(0) = po(zo), x(0) = o, we find that p is
constant along the characteristics

x=x0+ [1 — 2po(x0)]t.
Therefore the density p at (z,t), provided no shock has formed, satisfies

p = po(xo) = polz — [1 = 2po(z0)]t).



For (z,t) such that o0 < —1 or &y > 1, p = 0. These correspond to z < —1 + ¢ and
x > 1+ t, respectively. For (z,t) such that |zo| < 1, we have

p=po(xo) =1 — (z — [1—2p]t)*.
Solving the quadratic, we get

A2 — Atx — 1+ /82 + 8tz + 1

8t?

plx,t) =

Choosing the positive sign so that lim g 40,0y p(2, 1) = po(0) = 1, we obtain that provided
no shock has formed,

0 r<—1+torx>1+t

p(m,t) = { 4t2—4tm—1+\/;8t2+8tx+1 (5)
St )

otherwise.

When zg < —1 the slope of the characteristics is +1 and when x = 1 the slope is —1, so
characteristics will cross at some point and there will be a shock (see Figure). To find the
time at which the shock forms, we can proceed by taking a partial = derivative of (1):

pat — 205 + (1= 2p)pue = 0.

Along characteristics, 4 = 2 4922 — 0 4 [1—92p0(z0)] 2, 50 pyr + (1 —2p) e = dpy/dt.
Letting y = p,, we get
dy
dt

Solving this ODE with the initial conditions y(0) = p,(zo) we get

21°.

14-4txg”’

0, |z] > 1. (6)

S I 2
y(t):{

The time at which y(t) diverges is t = —1/(4x), which is minimized at xg = —1. Therefore
the shock forms at t = 1/4. (You can also directly use the formula ¢t = —1/(2min(pj)).)
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Figure 1: Characteristics given by = = xo + [1 — 2po ()]t



2. Heat Equation. Consider the heat equation in an infinite rod

W = W, —0o<x<oo,t>0
w(z,0) = f(x),
where f(x) € C(R) is zero for |z| > L.
(a) (13 points) Show that

/OO wdx

is independent of time.

(b) (12 points) Show that
qn(t) = / v wdz
is a polynomial of degree n in t for n > 0.

Solution:

(a) We first show that ¢y = [* wdx is independent of time. Taking a time derivative, we get

d 00 fe’e)
%:[thdx:[wwxzdx:wx

The solution w and its spatial derivative w, can be expressed in terms of the fundamental
solution as

o0

[e.e]

oo 1 _ (z—y)?
ve [ s ”
_ [ 2z —y) _eew?
W, —/m TN f(y)dy, (8)

and since f(y) = 0 for |y| > L, we have that for x > L and larger than the value at which
(r — L) exp(—(x — L)?/4t) is maximized

©2r—y|l 1 _@w? 2@ +L) 1 @ (L

wx</ ————e ® dy < e4t/ dy.
wl< | T Vi F(y)ldy 0 via | w)ldy
Since f € C(|—L, L]) and the function multiplying the integral goes to zero as z — oo for
any fixed ¢, lim, o |w,| = 0. Similarly, lim, , . |w,| =0, so

dqo
— =0
dt ’

and ¢o(t) is a constant, i.e., a polynomial of degree 0.

(b) We proceed by induction. The case n = 0 was shown in (a). For the inductive step,
d(In+l .

assume ¢, (t) is a polynomial of degree n in t. Now let’s calculate =t

dQn 00 o)
+1
—_— :/ x2”+2wtdx:/ 22" 2,d.
dt — 00 —0oQ

Integrating by parts twice,

qn+1 0 [e's)
n — x2n+2wz
dt

— 00

— (2n + 2)x2”+1w‘ +(2n+1)(2n+2) / r* wdz.

-0 —00



Like before, one can show that x2"+2wz’io —(2n + Q)xz’”lw‘io =0, and so

q:;l =(2n+1)(2n + 2)q,,

which using the induction hypothesis is a polynomial of degree n in t. Integrating with
respect to t, we find that ¢, is a polynomial of degree n + 1 in ¢.
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3. Wave Equation. Consider the following initial boundary value problem

Ut = C2ux’za x> 07 t> 07
u(z,0) =0, w(z,0)=g(v),

(a) (10 points) Find all solutions to the above IBVP that lie in x > 0, ¢ > 0.
Solution: By d’Alembert’s approach, we know for =z > ct,

]_ x+ct
u(r,t) = */x 9(y)dy,

2c —ct

but for x < ct, consider the interaction of the initial condition with the boundary. To do so,
note the solutions take the form wu(z,t) = F(x + ct) + G(x — ct), so F(x) + G(z) = 0 and
cF'(z) — c¢G'(z) = g(z) and F'(ct) + G'(—ct) = F'(z) + G'(—x) = 0. Integrating the 2nd and
3rd expressions yields

[ gwyie + FO) - G0)
F(z) — G(—z) = F(0) — G(0).

Applying the 1st expression (G(x) = —F(z)) to integrated 2nd expression yields

=5 / y)dy + F(0).

Rearranging the last expression then implies

G(x) = (=) —2F(0) = - [ gly)dy - F(0).
Thus, for x < ct,

u(z,t) = F(z +ct) + Gz — ct) =

L st [T gty

(b) (10 points) Using an energy functional, show if a solution to the IBVP exists, it is unique,
given adequate assumptions. State these needed assumptions

Solution: Define the following energy functional E(t) = 5 [5° uf (2, t)+c*u2(z, t)dz and assume
there are two solutions to the IBVP, v and v and take w = u — v. First, note by linearity, w
solves the same IBVP:

Wy = CWep, w(x,0) = wi(x,0) =0, w,(0,t) =0.

Thus, passing w(z,t) through the energy functional and differentiating with respect to time,
we obtain

d1
"t)=—=
®) dt2 Jo
:/ wt(‘x;t)[wtt('r?t) - C2’wx$({ﬂ,t>]d$€ = 07
0

wi(z,t) + Aw?(r, t)dr = / wy(x, t)wy (x, t)de + 02/ Wt (z, t)wy (2, t)dx
0 0



following from integration by parts and the IBVP for w. Thus, since E(0) = 0 by initial con-
ditions, E(t) = 0, which implies w;(x,t) = w,(x,t) = 0 as long as w € C*, bounded, and
integrable. This implies w = 0 since w vanishes on the boundaries, implying u = v, indicating
uniqueness.

(c) (5 points) Determine the region of influence of the segment = € [1, 2] of the initial condition
function g(z). You may draw this in the upper right quadrant or write corresponding inequal-
ities with respect to x and t.
Solution: The region of influence is bounded by the lines t = 0, z = 0, 1 — x = ct, and
r—2=ct
. Poisson’s Equation/Green’s Functions.
(a) (8 points) Consider Poisson’s equation with homogeneous Dirichlet boundary conditions in
the half 2D ball:

—Au(x) = f(x), xeQ={xeR? |1 >0&|x]| <1},

u(x) = g(x), x € 0Q.

Determine the associated Green’s function G(x,y) in terms of the fundamental solution ®(|x|) =
i log |x|, and write the solution to the above boundary value problem.
Solution: Define X = (z1, —13), X = x/|[x||?, and x* = x/||x||? then

Gxy) = ®(x —y|) = 2(x —y[) = S([Ix][ - [x = y]) + S(||x][ - [x" = y]).
The solution to the boundary value problem is then

:/QG(x,y)f(y)dy /aQ gf(x ¥)9(y)dSy.

(b) (8 points) Use the maximum principle to prove the uniqueness of the solution in part (a).
Solution: Assume u and v both solve the BVP, then w = u — v solves

—Aw(x) =0, x€Q
w(x) =0, x¢€oN.
By the maximum principle, since €2 is simply connected, any smooth solution to the BVP has
its maximum and minimum on 92 which is zero throughout, so w = 0, implying u = v.

(c) (9 points) Assume f =0 in the above BVP and prove for any ball B,(x) of radius 7 in :
b
0B,(x)] JoB, (x)
Hint: Show that the function h(r) = m Jo,(x) u(y)dSy is constant in r.
Solution: Let

u(x) = u(y)dSy for all B,(x) C .

1 1
hir) = dSy = X+ rz)dS,
)= 58,5 oo " = BB©)] Jome "
Then
/ 1 - 1 y —X
R (r)= |(9Bl( T Josao )z Vu(x + rz)dS, = \aB( T Jos, )77" Vu(y)dSy
1 ou

= (0B, ()] Jos, 00 90 = |aB / Auly)dy =0,

where v is the unit normal and by the dlvergence theorem. This implies the given integral is
constant for all 7. In the limit as » — 0, note h(r) — u(x) for a smooth function w.



5. Separation of Variables. Consider Laplace’s equation in the sector W = {(r,0) : 1 <r <
a,0 <6 <a} CR?

Au =0, xeW,

with boundary conditions

(a) (17 points) Find a formal solution u(r,t) of the above boundary value problem in terms
of f.

(b) (8 points) Find nontrivial conditions on g that guarantee that the solution you found is a

classical solution u in C*(W).
Solution:

(a) In polar coordinates, we have

Pu 1w 10
or2  ror 12002

Using separation of variables we set u(r,t) = R(r)O(¢) and obtain

=0.

1 1.
R'®©+ -RO©+ —-RO =0,
r 72

where prime and dot are derivatives with respect to r and 6, respectively. Separating
variables we get

R’ +rR =aR, (9)
O = —ab. (10)
First consider the angular equation. If a < 0 we get ©(0) = AeV=9 4 Be V=9 and
from the boundary conditions ©(0) = O(a) = 0 we get A = B = 0. If a = 0 we get
©(f) = A+ Bf and again we obtain A = B = 0. To avoid a trivial solution, a must be

positive, and we get ©(0) = Asin(y/af) + B cos(y/a#). The boundary condition ©(0) =0
gives B =0, and O(«a) = 0 gives \/a = 2nw/«, with n € Z. So we obtain the solutions

sin <27m9> : nez. (11)

«

Now consider the radial equation. We have r2R” + rR' — aR = 0. Inserting the ansatz
R =" we get u(pn— 1)+ p—a =0, and so u = +y/a = £2n7/a. Therefore we obtain
the solutions

Cn?"Znﬂ'/a—FDnT_Qnﬂ-/a.

Now we construct the general solution as

u(r,0) = sin (27m9
n=1

> [Cn,r2n7r/a+DnT—2n7r/oc ) (12)
(6



(Note that n = 0 does not contribute and n < 0 are redundant).

Now we need to choose C,, and D,, to satisfy the boundary conditions at » = 1 and r = a.
Atr=1

Since this is true for all 6 in [0, «], by orthogonality of {sin (

have

Therefore the solution is

Finally, we use the boundary condition at » = a to find the coefficients C,:

u(a, ) =

Multiplying by sin (2”k9) and integrating from 0 to o we get

It is enough that f(0) =

n=1

2””9)}n6N in [0, o] we must

C,+ D, =0.
) = Cysin (27m9> [7"2"”/0‘ - 7“_2””/“} . (13)

n=1
Z Cy, sin (27rn9> [ /o _ a‘zm/a} : (14)
2km/a _  —2km/o -1 z “ : 2mko

[a a } - /0 f(0) sin ( o do. (15)

Cr =

fla), f7(0) =

["(a), f € CHW

) for the solution to be a classical

solution. To show this, we need to show that the solution (12) with coefficients (15) can
be differentiated termwise as needed. We have

Ugp = — ZC <2m)2sm<
ZC <27rn) : <
ZO (27m) - (

27ran(9> [Tgm/a B T—2mr/a} ,

> |:r2n7r/0c—1 _I_T—an/a—l} ’
2mn

)i

«

2mnb

2mnd

+ 1) r—2mr/a—2] )
0%

If these series converge absolutely and uniformly, we can differentiate termwise. To show
this, we use Weierstrass’ M-test, and note that for 1 <r < a

¢ F14s
9

i
I

M]3
9

3
Il
—_

||M8

C. 2mn

2mnb

n
sin

<2z7><

(%
7<T 2mnf

<>:m (2280 vt -
I

)

#1)l

< S () [,
26 (55) e +1],

27T7L + 1) 7,—2717‘('/0(—2:|

2nm/a—1 + T72n7r/a71}

< (16)

-<27T7’L . 1) 7,2n7r/04—2 o (
L (8%

(0%

ot 4]



Therefore, it is enough to show that |C,|(a®"/*2 + 1) < % for some constant M. Inte-

grating (15) by parts twice and using f(0) = f(«) we get

2 ra
Qdfmm_aﬂhm}:—Q((l)L/fﬂwan(hmvd&
0

a \27k «Q

Integrating by parts twice again and using f”(0) = f”(«) we get

«

4 ra
C [a%ﬂ/a — Q*Qkﬂ/a] — 2 <27O:]€) / f”ll(@) sin (27Tk39> 0.
0

Using f € CHW), we find, letting E' = maxjg o) | f""|

-1 2 4
G| < {a%’r/“—a_%”/a} < a ) ok,

a \ 27k
and so
a2n7r/a—2 +1 2 a \4 M
S (o) o=t
C,|(a TS e~ gmmga g \amn ) “F S 0

and the formal solution can be differentiated termwise as required.

(17)

(18)

(19)

(20)



