
Preliminary Exam
Partial Differential Equations
10:00 AM - 1:00 PM, Friday, Aug. 28, 2020
Room: ECCR 244

Student ID (do NOT write your name):

There are five problems. Solve four of the five problems.
Each problem is worth 25 points.
A sheet of convenient formulae is provided.

# possible score
1 25
2 25
3 25
4 25
5 25

Total 100

1. Quasilinear first order equations. The density of cars ρ(x, t) in a traffic model satisfies the
continuity equation

∂ρ

∂t
+ ∂

∂x
[ρ(1− ρ)] = 0, t > 0,−∞ < x <∞

with initial conditions

ρ(x, 0) = ρ0(x) =
{

1− x2, −1 < x < 1,
0, |x| ≥ 1.

(a) (15 points) Find ρ(x, t) for times t less than the time at which a shock forms.
(b) (10 points) Find the time at which a shock forms.

Solution:

(a) The PDE can be rewritten as

∂ρ

∂t
+ (1− 2ρ)∂ρ

∂x
= 0. (1)

The characteristics are determined by the equations

dt

dτ
= 1, (2)

dx

dτ
= 1− 2ρ, (3)

dρ

dτ
= 0. (4)

Inserting the initial conditions t(0) = 0, ρ(0) = ρ0(x0), x(0) = x0, we find that ρ is
constant along the characteristics

x = x0 + [1− 2ρ0(x0)]t.

Therefore the density ρ at (x, t), provided no shock has formed, satisfies

ρ = ρ0(x0) = ρ0(x− [1− 2ρ0(x0)]t).



For (x, t) such that x0 < −1 or x0 > 1, ρ = 0. These correspond to x < −1 + t and
x > 1 + t, respectively. For (x, t) such that |x0| < 1, we have

ρ = ρ0(x0) = 1− (x− [1− 2ρ]t)2.

Solving the quadratic, we get

ρ(x, t) = 4t2 − 4tx− 1±
√

8t2 + 8tx+ 1
8t2 .

Choosing the positive sign so that lim(x,t)→(0,0) ρ(x, t) = ρ0(0) = 1, we obtain that provided
no shock has formed,

ρ(x, t) =
{

0, x < −1 + t or x > 1 + t
4t2−4tx−1+

√
8t2+8tx+1

8t2 , otherwise. (5)

(b) When x0 < −1 the slope of the characteristics is +1 and when x = 1 the slope is −1, so
characteristics will cross at some point and there will be a shock (see Figure). To find the
time at which the shock forms, we can proceed by taking a partial x derivative of (1):

ρxt − 2ρ2
x + (1− 2ρ)ρxx = 0.

Along characteristics, d
dt

= ∂
∂t

+ ∂x
∂t

∂
∂x

= ∂
∂t

+[1−2ρ0(x0)] ∂
∂x
, so ρxt+(1−2ρ)ρxx = dρx/dt.

Letting y = ρx, we get
dy

dt
= 2y2.

Solving this ODE with the initial conditions y(0) = ρx(x0) we get

y(t) =
{ −2x0

1+4tx0
, −1 < x < 1,

0, |x| ≥ 1. (6)

The time at which y(t) diverges is t = −1/(4x0), which is minimized at x0 = −1. Therefore
the shock forms at t = 1/4. (You can also directly use the formula t = −1/(2 min(ρ′0)).)

Figure 1: Characteristics given by x = x0 + [1− 2ρ0(x0)]t



2. Heat Equation. Consider the heat equation in an infinite rod

wt = wxx, −∞ < x <∞, t > 0
w(x, 0) = f(x),

where f(x) ∈ C(R) is zero for |x| > L.

(a) (13 points) Show that ∫ ∞
−∞

wdx

is independent of time.
(b) (12 points) Show that

qn(t) =
∫ ∞
−∞

x2nwdx

is a polynomial of degree n in t for n ≥ 0.

Solution:

(a) We first show that q0 =
∫∞
−∞wdx is independent of time. Taking a time derivative, we get

dq0

dt
=
∫ ∞
−∞

wtdx =
∫ ∞
−∞

wxxdx = wx
∣∣∣∞
−∞

.

The solution w and its spatial derivative wx can be expressed in terms of the fundamental
solution as

w =
∫ ∞
−∞

1√
4πt

e−
(x−y)2

4t f(y)dy, (7)

wx =
∫ ∞
−∞

−2(x− y)
4t
√

4πt
e−

(x−y)2
4t f(y)dy, (8)

and since f(y) = 0 for |y| > L, we have that for x > L and larger than the value at which
(x− L) exp(−(x− L)2/4t) is maximized

|wx| ≤
∫ ∞
−∞

2|x− y|
4t

1√
4πt

e−
(x−y)2

4t |f(y)|dy < 2(x+ L)
4t

1√
4πt

e−
(x−L)2

4t

∫ L

−L
|f(y)|dy.

Since f ∈ C([−L,L]) and the function multiplying the integral goes to zero as x→∞ for
any fixed t, limx→∞ |wx| = 0. Similarly, limx→−∞ |wx| = 0, so

dq0

dt
= 0,

and q0(t) is a constant, i.e., a polynomial of degree 0.
(b) We proceed by induction. The case n = 0 was shown in (a). For the inductive step,

assume qn(t) is a polynomial of degree n in t. Now let’s calculate dqn+1
dt

:

dqn+1

dt
=
∫ ∞
−∞

x2n+2wtdx =
∫ ∞
−∞

x2n+2wxxdx.

Integrating by parts twice,
qn+1

dt
= x2n+2wx

∣∣∣∞
−∞
− (2n+ 2)x2n+1w

∣∣∣∞
−∞

+ (2n+ 1)(2n+ 2)
∫ ∞
−∞

x2nwdx.



Like before, one can show that x2n+2wx
∣∣∣∞
−∞
− (2n+ 2)x2n+1w

∣∣∣∞
−∞

= 0, and so

qn+1

dt
= (2n+ 1)(2n+ 2)qn,

which using the induction hypothesis is a polynomial of degree n in t. Integrating with
respect to t, we find that qn+1 is a polynomial of degree n+ 1 in t.

♦ ♠ TURN OVER ♥ ♣



3. Wave Equation. Consider the following initial boundary value problem

utt = c2uxx, x > 0, t > 0,
u(x, 0) = 0, ut(x, 0) = g(x),
ux(0, t) = 0.

(a) (10 points) Find all solutions to the above IBVP that lie in x > 0, t > 0.
Solution: By d’Alembert’s approach, we know for x > ct,

u(x, t) = 1
2c

∫ x+ct

x−ct
g(y)dy,

but for x < ct, consider the interaction of the initial condition with the boundary. To do so,
note the solutions take the form u(x, t) ≡ F (x + ct) + G(x − ct), so F (x) + G(x) = 0 and
cF ′(x) − cG′(x) = g(x) and F ′(ct) + G′(−ct) = F ′(x) + G′(−x) = 0. Integrating the 2nd and
3rd expressions yields

F (x)−G(x) = 1
c

∫ x

0
g(y)dx+ F (0)−G(0)

F (x)−G(−x) = F (0)−G(0).

Applying the 1st expression (G(x) = −F (x)) to integrated 2nd expression yields

F (x) = 1
2c

∫ x

0
g(y)dy + F (0).

Rearranging the last expression then implies

G(x) = F (−x)− 2F (0) = 1
2c

∫ −x
0

g(y)dy − F (0).

Thus, for x < ct,

u(x, t) = F (x+ ct) +G(x− ct) = 1
2c

[∫ x+ct

0
g(y)dy +

∫ ct−x

0
g(y)dy

]
.

(b) (10 points) Using an energy functional, show if a solution to the IBVP exists, it is unique,
given adequate assumptions. State these needed assumptions.
Solution: Define the following energy functional E(t) ≡ 1

2
∫∞

0 u2
t (x, t)+c2u2

x(x, t)dx and assume
there are two solutions to the IBVP, u and v and take w ≡ u − v. First, note by linearity, w
solves the same IBVP:

wtt = c2wxx, w(x, 0) ≡ wt(x, 0) ≡ 0, wx(0, t) ≡ 0.

Thus, passing w(x, t) through the energy functional and differentiating with respect to time,
we obtain

E ′(t) ≡ d

dt

1
2

∫ ∞
0

w2
t (x, t) + c2w2

x(x, t)dx =
∫ ∞

0
wt(x, t)wtt(x, t)dx+ c2

∫ ∞
0

wxt(x, t)wx(x, t)dx

=
∫ ∞

0
wt(x, t)[wtt(x, t)− c2wxx(x, t)]dx = 0,



following from integration by parts and the IBVP for w. Thus, since E(0) = 0 by initial con-
ditions, E(t) ≡ 0, which implies wt(x, t) ≡ wx(x, t) ≡ 0 as long as w ∈ C1, bounded, and
integrable. This implies w ≡ 0 since w vanishes on the boundaries, implying u ≡ v, indicating
uniqueness.
(c) (5 points) Determine the region of influence of the segment x ∈ [1, 2] of the initial condition
function g(x). You may draw this in the upper right quadrant or write corresponding inequal-
ities with respect to x and t.
Solution: The region of influence is bounded by the lines t = 0, x = 0, 1 − x = ct, and
x− 2 = ct

4. Poisson’s Equation/Green’s Functions.
(a) (8 points) Consider Poisson’s equation with homogeneous Dirichlet boundary conditions in
the half 2D ball:

−∆u(x) = f(x), x ∈ Ω = {x ∈ R2 | x2 > 0 & ||x|| < 1},
u(x) = g(x), x ∈ ∂Ω.

Determine the associated Green’s functionG(x,y) in terms of the fundamental solution Φ(|x|) =
1

2π log |x|, and write the solution to the above boundary value problem.
Solution: Define x̃ = (x1,−x2), x̂ = x/||x||2, and x∗ = x̃/||x||2 then

G(x,y) = Φ(|x− y|)− Φ(|x̃− y|)− Φ(||x|| · |x̂− y|) + Φ(||x|| · |x∗ − y|).
The solution to the boundary value problem is then

u(x) =
∫

Ω
G(x,y)f(y)dy−

∫
∂Ω

∂G

∂n
(x,y)g(y)dSy.

(b) (8 points) Use the maximum principle to prove the uniqueness of the solution in part (a).
Solution: Assume u and v both solve the BVP, then w = u− v solves

−∆w(x) = 0, x ∈ Ω
w(x) = 0, x ∈ ∂Ω.

By the maximum principle, since Ω is simply connected, any smooth solution to the BVP has
its maximum and minimum on ∂Ω which is zero throughout, so w ≡ 0, implying u ≡ v.
(c) (9 points) Assume f ≡ 0 in the above BVP and prove for any ball Br(x) of radius r in Ω:

u(x) = 1
|∂Br(x)|

∫
∂Br(x)

u(y)dSy for all Br(x) ⊂ Ω.

Hint: Show that the function h(r) = 1
|∂Br(x)|

∫
∂Br(x) u(y)dSy is constant in r.

Solution: Let

h(r) := 1
|∂Br(x)|

∫
∂Br(x)

u(y)dSy = 1
|∂B1(0)|

∫
∂B1(0)

u(x + rz)dSz

Then

h′(r) = 1
|∂B1(0)|

∫
∂B1(0)

z · ∇u(x + rz)dSz = 1
|∂Br(x)|

∫
∂Br(x)

y− x
r
· ∇u(y)dSy

= 1
|∂Br(x)|

∫
∂Br(x)

∂u

∂ν
dSy = 1

|∂Br(x)|

∫
Br(x)

∆u(y)dy = 0,

where ν is the unit normal and by the divergence theorem. This implies the given integral is
constant for all r. In the limit as r → 0, note h(r)→ u(x) for a smooth function u.



5. Separation of Variables. Consider Laplace’s equation in the sector W = {(r, θ) : 1 < r <
a, 0 < θ < α} ⊆ R2

∆u = 0, x ∈ W,

with boundary conditions

u(r, 0) = u(r, θ0) = 0,
u(1, θ) = 0,
u(a, θ) = f(θ).

(a) (17 points) Find a formal solution u(r, t) of the above boundary value problem in terms
of f .

(b) (8 points) Find nontrivial conditions on g that guarantee that the solution you found is a
classical solution u in C2(W̄ ).

Solution:

(a) In polar coordinates, we have

∂2u

∂r2 + 1
r

∂u

∂r
+ 1
r2
∂2u

∂θ2 = 0.

Using separation of variables we set u(r, t) = R(r)Θ(θ) and obtain

R′′Θ + 1
r
R′Θ + 1

r2RΘ̈ = 0,

where prime and dot are derivatives with respect to r and θ, respectively. Separating
variables we get

r2R′′ + rR′ = aR, (9)
Θ̈ = −aΘ. (10)

First consider the angular equation. If a < 0 we get Θ(θ) = Ae
√
−aθ + Be−

√
−aθ, and

from the boundary conditions Θ(0) = Θ(α) = 0 we get A = B = 0. If a = 0 we get
Θ(θ) = A + Bθ and again we obtain A = B = 0. To avoid a trivial solution, a must be
positive, and we get Θ(θ) = A sin(

√
aθ) +B cos(

√
aθ). The boundary condition Θ(0) = 0

gives B = 0, and Θ(α) = 0 gives
√
a = 2nπ/α, with n ∈ Z. So we obtain the solutions

sin
(

2πnθ
α

)
, n ∈ Z. (11)

Now consider the radial equation. We have r2R′′ + rR′ − aR = 0. Inserting the ansatz
R = rµ we get µ(µ − 1) + µ − a = 0, and so µ = ±

√
a = ±2nπ/α. Therefore we obtain

the solutions
Cnr

2nπ/α +Dnr
−2nπ/α.

Now we construct the general solution as

u(r, θ) =
∞∑
n=1

sin
(

2πnθ
α

) [
Cnr

2nπ/α +Dnr
−2nπ/α

]
. (12)



(Note that n = 0 does not contribute and n < 0 are redundant).
Now we need to choose Cn and Dn to satisfy the boundary conditions at r = 1 and r = a.
At r = 1

u(1, θ) = 0 =
∞∑
n=1

sin
(

2πnθ
α

)
[Cn +Dn] .

Since this is true for all θ in [0, α], by orthogonality of {sin
(

2πnθ
α

)
}n∈N in [0, α] we must

have
Cn +Dn = 0.

Therefore the solution is

u(r, θ) =
∞∑
n=1

Cn sin
(

2πnθ
α

) [
r2nπ/α − r−2nπ/α

]
. (13)

Finally, we use the boundary condition at r = a to find the coefficients Cn:

u(a, θ) = f(θ) =
∞∑
n=1

Cn sin
(

2πnθ
α

) [
a2nπ/α − a−2nπ/α

]
. (14)

Multiplying by sin
(

2πkθ
α

)
and integrating from 0 to α we get

Ck =
[
a2kπ/α − a−2kπ/α

]−1 2
α

∫ α

0
f(θ) sin

(
2πkθ
α

)
dθ. (15)

(b) It is enough that f(0) = f(α), f ′′(0) = f ′′(α), f ∈ C4(W̄ ) for the solution to be a classical
solution. To show this, we need to show that the solution (12) with coefficients (15) can
be differentiated termwise as needed. We have

uθθ = −
∞∑
n=1

Cn

(2πn
α

)2
sin

(
2πnθ
α

) [
r2nπ/α − r−2nπ/α

]
,

ur =
∞∑
n=1

Cn

(2πn
α

)
sin

(
2πnθ
α

) [
r2nπ/α−1 + r−2nπ/α−1

]
,

urr =
∞∑
n=1

Cn

(2πn
α

)
sin

(
2πnθ
α

) [(2πn
α
− 1

)
r2nπ/α−2 −

(2πn
α

+ 1
)
r−2nπ/α−2

]
.

If these series converge absolutely and uniformly, we can differentiate termwise. To show
this, we use Weierstrass’ M-test, and note that for 1 < r < a

∞∑
n=1

∣∣∣∣∣Cn
(2πn
α

)2
sin

(
2πnθ
α

) [
r2nπ/α − r−2nπ/α

]∣∣∣∣∣ ≤
∞∑
n=1
|Cn|

(2πn
α

)2 [
a2nπ/α + 1

]
,

∞∑
n=1

∣∣∣∣∣Cn
(2πn
α

)
sin

(
2πnθ
α

) [
r2nπ/α−1 + r−2nπ/α−1

]∣∣∣∣∣ ≤
∞∑
n=1
|Cn|

(2πn
α

) [
a2nπ/α−1 + 1

]
,

∞∑
n=1

∣∣∣∣∣Cn
(2πn
α

)
sin

(
2πnθ
α

) [(2πn
α
− 1

)
r2nπ/α−2 −

(2πn
α

+ 1
)
r−2nπ/α−2

]∣∣∣∣∣ ≤ (16)

∞∑
n=1
|Cn|

(2πn
α

)(2πn
α

+ 1
) [
a2nπ/α−2 + 1

]
.



Therefore, it is enough to show that |Cn|(a2nπ/α−2 + 1) ≤ M
n4 for some constant M . Inte-

grating (15) by parts twice and using f(0) = f(α) we get

Ck
[
a2kπ/α − a−2kπ/α

]
= − 2

α

(
α

2πk

)2 ∫ α

0
f ′′(θ) sin

(
2πkθ
α

)
dθ. (17)

Integrating by parts twice again and using f ′′(0) = f ′′(α) we get

Ck
[
a2kπ/α − a−2kπ/α

]
= 2
α

(
α

2πk

)4 ∫ α

0
f ′′′′(θ) sin

(
2πkθ
α

)
dθ. (18)

Using f ∈ C4(W̄ ), we find, letting E = max[0,α] |f ′′′′|

|Ck| ≤
[
a2kπ/α − a−2kπ/α

]−1 2
α

(
α

2πk

)4
αE, (19)

and so

|Cn|(a2nπ/α−2 + 1) ≤ a2nπ/α−2 + 1
a2nπ/α − a−2nπ/α

2
α

(
α

2πn

)4
αE ≤ M

n4 , (20)

and the formal solution can be differentiated termwise as required.


