POU

Background

PUM

C-RBF-PUM LS-RBF-PUM Patch Sets

Conclusions

RBF Partition of Unity

February 28, 2018

Outline

Background

PUN

C-RBF-PUN LS-RBF-PUN Patch Sets

Conclusions

- 1 Background
- 2 Partition of Unity
- 3 RBF Partition of Unity Collocation based RBF-PUM Least squares RBF-PUM Patch Sets
- 4 Conclusions

Problem

- Solving partial differential equations (PDEs) or interpolating data with global radial basis functions (RBFs) can lead to large node sets
- Therefore the dependence of computational time as a function of the number of nodes (N) becomes important
- Using N nodes with Global RBF $\phi(|\mathbf{x}_i \mathbf{x}_i|)$, A is a dense N by N matrix

$$A = \begin{bmatrix} \phi(|\mathbf{x}_0 - \mathbf{x}_0|) & \phi(|\mathbf{x}_0 - \mathbf{x}_1|) & \dots & \phi(|\mathbf{x}_0 - \mathbf{x}_{N-1}|) \\ \phi(|\mathbf{x}_1 - \mathbf{x}_0|) & \phi(|\mathbf{x}_1 - \mathbf{x}_1|) & \dots & \phi(|\mathbf{x}_0 - \mathbf{x}_{N-1}|) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(|\mathbf{x}_{N-1} - \mathbf{x}_0|) & \phi(|\mathbf{x}_{N-1} - \mathbf{x}_1|) & \dots & \phi(|\mathbf{x}_{N-1} - \mathbf{x}_{N-1}|) \end{bmatrix}$$

Conclusion

Problem

- For a dense N by N matrix A
- Getting weights requires solving a system of linear equation $\mathbf{A}\lambda = \mathbf{u}$
 - O(N³) operation
- Applying the Differentiation Matrix (DM) is a matrix multiplication
 - O(N²) operation
- The resulting methods are computational difficult for large node sets
- RBF Partition of Unity (RBF-PUM) methods look to avoid these issues
- An additional leading approach for attacking these issues is RBF-FD

PUN

RBF-PUM C-RBF-PUM LS-RBF-PUM Patch Sets

Conclusions

Brief RBF-PUM history

- The idea of RBF-PUM was original proposed by Babuška and Melenk (1997)
- Used for interpolation with compactly supported RBFs by Wedland (2002)
- Further discussion in Fasshauer's book (2007)
- Explored for interpolating non uniform data sets in Cavoretto, De Rossi et. al. (2012-Present)
- Used to solve PDEs in E. Larsson et. al. (2012-present) and J. Ahlkrona and V. Shcherbakov (2017-present)

Conclusions

Partition of Unity

- Rather than taking N global nodes, the space is partitioned
- The partitions overlap, however the sum of their weights are unity throughout the whole space.
- The resulting matrix becomes sparse
- Aλ = u solution and matrix multiplication can be done significantly faster for sparse matrices.

Conclusions

Partition of Unity

Partition of Unity starts with a set of patches Ω_j , j = 1, ..., P that cover a domain Ω

$$\bigcup_{j=1}^P \Omega_j \supseteq \Omega$$

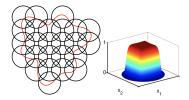


Fig. 3.1. To the left, the red curve is the outline of the domain Ω_S and the black circles are the boundaries of the overlapping circular patches Ω_j , $j = 1, \dots, P$. To the right, a partition of unity weight function w_j for one of the interior patches is shown.

Partition of Unity

Each patch has a weight ω_i such that

$$\sum_{j=1}^{P} \omega_j(\mathbf{x}) = 1, \forall \mathbf{x} \in \Omega$$

$$\omega_j(\mathbf{x}) = \frac{\phi_j(\mathbf{x})}{\sum_{i=1}^P \phi(\mathbf{x})}$$

One set of generating functions $\phi(r)$ (Wendland functions)

$$\phi_j(r) = (4r+1)(1-r^4)_+$$

pertain to a patch with center \mathbf{c}_i and radius ρ_i

$$\phi_j(\mathbf{x}) = \phi_j \left(\frac{|\mathbf{x} - \mathbf{c}_j|}{\rho_j} \right)$$

giving an interpolate from local interpolates $u_i(\mathbf{x})$

$$u(\mathbf{x}) = \sum_{j=1}^{P} \omega_j(\mathbf{x}) u_j(\mathbf{x})$$

PUN

RBF-PUM C-RBF-PUM LS-RBF-PUM

Conclusion

To move from PUM to RBF-PUM one introduces a RBF $\Phi(r)$ such as a Gaussian

$$\Phi(r) = e^{-(\epsilon r)^2}$$

and a set of node points \mathbf{x}_i where $u(\mathbf{x}_i)$ is known. Using the global RBF tools one gets the local interpolates $u_j(\mathbf{x})$ such that

$$u_j(\mathbf{x}) = \sum_{i=1}^{n_j} \lambda_i^j \Phi(|\mathbf{x} - \mathbf{x}_i|)$$

with the λ_i^j obtained using Global RBF in the particular patch. (RBF-QR)

I OIVI

RBF-PUM

LS-RBF-PUM Patch Sets

Conclusions

The same framework can be extended to a differential operator $\boldsymbol{\mathcal{L}}$ such that

$$\mathcal{L}u(\mathbf{x}) = \sum_{j=1}^{P} \mathcal{L}(\omega_{j}(\mathbf{x})u_{j}(\mathbf{x}))$$

This allows for the use of RBF-PUM to solve PDEs

C-RBF-PUM

Background

PUM

C-RBF-PUM
LS-RBF-PUM
Patch Sets

Patch Sets

Global node set

$$X = \{\boldsymbol{x}_k\}_{k=1}^N$$

Consisting of interior nodes

$$X^i = \{ \mathbf{x}_k \in X : \mathbf{x}_k \in \Omega \}$$

and boundary nodes

$$X^b = \{ \mathbf{x}_k \in X : \mathbf{x}_k \in \partial \Omega \}$$

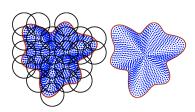


Fig. 3.2. A global node set and patches in Ω_S (left), and evaluation points for collocation (same as node points) (right) for C-RBF-PUM.

DLIM

C-RBF-PUM LS-RBF-PUM Patch Sets

Conclusions

LS-RBF-PUM

- Start with identical node sets X_i with respect to a patch Ω_i
- · Global set gives

$$X = \bigcup_{j=1}^{P} X_{j}$$

- The uniformity of X_i lead to only one linear system solve
- Decouples evaluation points $Y^i \subset Y$ and $Y^b \subset Y$

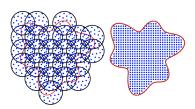
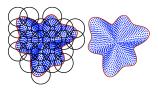


Fig. 3.3. Patches with identically distributed local node sets covering the domain Ω_S (left), and loast squares evaluation points on a Cartesian grid in the interior and uniform with respect to are length on the boundary (right) for LS-RBF-PUM.

LS-RBF-PUM

Comparison



as node points) (right) for C-RBF-PUM.

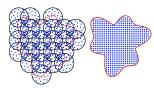


Fig. 3.3. Patches with identically distributed local node sets covering the domain Ω₂ (left), and FIG. 3.2. A global node set and patches in \Omega_S (left), and evaluation points for collocation (same least squares evaluation points on a Cartesian grid in the interior and uniform with respect to arc length on the boundary (right) for LS-RBF-PUM.

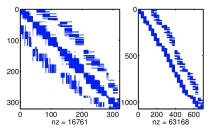


Fig. 3.4. The structure of the matrix L for a problem defined over Ω_S with P = 24 patches, box size H=0.6, and overlap $\delta=0.2$. For C-RBF-PUM (left), $13 \le n_j \le 42$, $h\approx 0.12$, and N=321, and for LS-RBF-PUM (right), n = 28, $h \approx 0.14$, N = 700, M = 1073, and $\beta = M/N \approx 1.5$.

C-RBF-PUM LS-RBF-PUM Patch Sets

Conclusion

Comparison

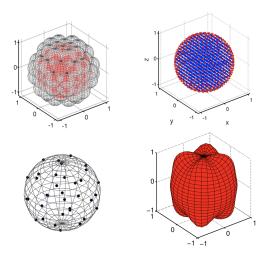


FIG. 5.10. Patches on the spherical domain Ω_U (top left), quasi uniformly distributed least squares points inside Ω_U and on the surface $\partial\Omega_U$ (top right), a single patch (enlarged) with n=35local node points (bottom left), and the star shaped domain Ω_Q (bottom right).

DUM

RBF-PUM C-RBF-PUM LS-RBF-PUM Patch Sets

Conclusion

Patch Sets

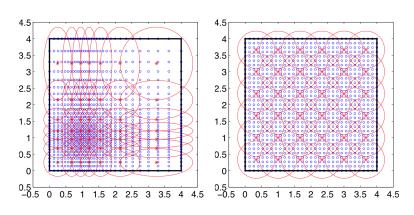


Fig. 12. Discretization of the square domain with oval and circle patches

A. Safdari-Vaighani, A.R.H. Heryudono, and E. Larsson (2015)

Conclusions

Conclusions

- RBF-PUM was proposed in 1997
- C-RBF-PUM and LS-RBF-PUM algorithms were presented
- Expended from 2D to 3D with spheres
- Non uniform patch sets have been shown
- The algorithms presented are by no means exhaustive

Questions

Background

PUM

C-RBF-PUM LS-RBF-PUM

Conclusions

Thank you for your attention!