
Finite difference formulas in the complex plane

Bengt Fornberg ∗

Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA

October 25, 2021

Abstract

Among general functions of two variables f(x, y), analytic functions f(z) with z = x + iy
form a very important special case. One consequence of analyticity turns out to be that 2-D
finite difference (FD) formulas can be made remarkably accurate already for small stencil sizes.
This article discusses some key properties of such complex plane FD formulas. Application areas
include numerical differentiation, interpolation, contour integration, and analytic continuation.
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1 Introduction

Finite difference (FD) formulas were widely used already in the 19th century, for tasks such as
interpolation and numerical solution of ODEs. Their use for approximating PDEs, with stencils
most commonly formed by combining 1-D approximations in the separate directions on a Cartesian
grid, dates back to around 1910 [20]. Surveys of FD approximations include [12, 17]. Tables 1 and
2 give the weights for some centered FD approximations for the first and second derivative.

While the calculation of FD weights and their subsequent applications (in particular to PDEs) is
extensively documented in the literature1, the same cannot be said of FD approximations in the
complex plane, applied to analytic functions. Reasons why such formulas can feature remarkably
high orders of accuracy without extending far from the point of approximation include

1. A derivative f (k)(z0) depends equally much on data from all directions surrounding z0 (which,
with no loss of generality, can be set to z0 = 0)2, i.e., stencils should not extend far out just
along a line, and

∗Email : fornberg@colorado.edu , ORCID 0000-0003-0014-6985
1Chapter 1 of [12] gives several algorithms for computing FD weights in 1-D on either equi-spaced or irregularly

spaced nodes, with its later chapters focusing on non-Cartesian node layouts in multiple dimensions.
2cf., equation (3) below.
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Table 1: Weights for centered FD approximations of the first derivative on a grid with spacing h
(omitting the factor 1/h).
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Table 2: Weights for centered FD approximations of the second derivative (omitting the factor
1/h2).
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2. The Cauchy-Riemann equations (defined below in (2)) put constraints on the range of func-
tions that need to be considered.

General background about complex variables and analytic functions (however, without any discus-
sion of computational aspects) can be found for example in [3, 13]. The focus of this current study
is to present the main features of FD counterparts in the complex plane, applied to functions that
are known to be analytic.

2 Finite difference formulas in the complex plane

Analytic functions form a very important special case of functions defined over a 2-D x, y-plane.
A function f(z) with z = x + iy is said to be analytic if df

dz = lim4z→0
f(z+4z)−f(z)

4z is uniquely
defined, no matter from which direction in the complex plane 4z approaches zero. One immediate
consequence is that one need not distinguish ∂f

∂x from ∂f
∂y . This in turn implies that, separating

f(z) into real and imaginary parts

f(z) = u(x, y) + i v(x, y), (1)

these parts will satisfy the Cauchy-Riemann (CR) equations3

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (2)

Any function f(x) that possesses a Taylor expansion at some x-location can be extended to an
analytic function, with a vast range of further consequences.4

Let L be a linear operator that we wish to approximate at some point (which, without loss of
generality, we set to z = 0) by using weights wk at surrounding nodes zk, k = 1, 2, . . . , N (which

typically will include z = 0). Examples of such operators include derivatives dk

dzk
, k = 1, 2, 3, . . ..

Two straightforward ways to determine the weights wk (neither requiring more than about 3-4 lines
of code) for analytic function FD stencils are:5

Method 1: Form and solve the linear system that enforces the exact result when applied to as
many of the test functions 1, z, z2, z3, . . . as possible, and

Method 2: Enforce that the Taylor expansion (in ξ) of
∑N

k=1wke
zk ξ matches that of Lez ξ

∣∣
z=0

to
as many powers of ξ as possible.

A third method, giving explicit weight expressions, is used for analysis in Section 8. For floating
point calculations, the first method is particularly convenient. The second method applies more
directly in a wider range of contexts (as noted at the end of Section 3.1). Appendix A gives
brief codes for the two methods, in MATLAB and Mathematica, respectively, when applied to the
case of finding centered FD weights for the the second derivative on a stencil of size 5 × 5 (with

3The reverse statement, that the CR equations imply analyticity, requires only slight ‘fine print’, to rule out cases

such as f(z) = e−1/z4 , for which the CR equations hold also at the point of discontinuity z = 0.
4As surveyed in text books on analytic functions, e.g., [3, 13].
5Chapter 1 in [12] provides a summary of FD methods, including Method 1. Method 2 produces the identical

linear system to solve (differing only in how the equations are scaled).
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comments indicating where the operator and the stencil type are specified, to make generalizations
straightforward).

In both methods, the coefficient matrix becomes of Vandermonde type

A =


1 1 · · · 1
z1

1 z1
2 z1

N
...

...

zN−1
1 zN−1

2 · · · zN−1
N

 .
Matrices of this type are non-singular, as long as the nodes zk are distinct. This can be seen by
writing zN = z. Then, det(A) becomes a polynomial in z of degree N − 1, with all its N − 1 zeros
accounted for by (the not permitted) cases z = z1, . . . , z = zN−1.

2.1 Examples of centered FD stencils

By either of the methods for calculating weights, one obtains for example the following 3×3 stencils
(i.e., with N = 9; centered at the origin and with grid spacing h):

f ′(0) =
1

40h

 −1− i −8i 1− i
−8 0 8
−1 + i 8i 1 + i

 f +O(h8),

f ′′(0) =
1

20h2

 i −8 −i
8 0 8
−i −8 i

 f +O(h7),

f (3)(0) =
3

40h3

 1− i 16i −1− i
−16 0 16
1 + i −16i −1 + i

 f +O(h6),

f (4)(0) =
3

10h4

 −1 16 −1
16 −60 16
−1 16 −1

 f +O(h5),

etc., up through the approximation for f (8)(0) that is discussed in different contexts in Sections 4
and 5. Counterpart formulas for 5× 5 stencils are given in Appendix B.

2.2 Discussion

Numerical evaluation of high order derivatives based only on function values along the real axis is
a severely ill-conditioned task. Cauchy’s integral formula

f (k)(z0) =
k!

2πi

‰
Γ

f(z)

(z − z0)k+1
dz, k = 0, 1, 2, . . . (3)

provides a much more stable option, as was noted in [1, 18, 19]. A key issue when using (3) becomes
how to best choose the integration path Γ (which must encircle z0 once in the positive direction,
but not include any singularity of f(z)). This has been addressed in [5, 6]. The present FD stencils
similarly use function values for f(z) in a singularity-free region surrounding z0, and require a
choice of step size h in place of choosing a path to discretize along. There are different contexts in
which analytic functions are numerically available on grids:

4



• Visualization of analytic functions is increasingly often used, and is virtually always grid-
based.

• Some analytic functions are most effectively calculated over gridded domains,6

• The present study was partly motivated by an application in mineral prospecting. Magnetic
and gravitational field variations can be measured from an airplane flying along successive
parallel straight paths over an area of interest, obtaining measurements at equi-spaced lo-
cations. Numerical Hilbert transforms followed by complex plane differentiations form key
post-processing steps [15].

FD formulas can re-purpose such grid-based data for a variety of different tasks, without needing
additional function evaluations at method-specific locations (as required for example when using
Gaussian quadrature).

3 Application of FD stencils to Euler-Maclaurin expansions

Asymptotic formulas arise in many applications, and may take the form of powers of some discretiza-
tion step h together with coefficients involving increasing order derivatives. Examples include two
common versions of the Euler-Maclaurin formula, which can be seen as error expansions of the
trapezoidal rule (TR) and the midpoint rule, respectively. We summarize next the discussions in
[9, 10].

3.1 The Euler-Maclaurin formulas

In the case of a semi-infinite interval [x0,∞], with nodes at xk = x0 +kh and at ξk = x0 +(k+ 1
2)h,

k = 0, 1, 2, . . ., respectively, these are

ˆ ∞
x0

f(x)dx− h
∞∑
k=0

f(xk) ≈

− h

2
f(x0) +

h2

12
f (1)(x0)− h4

720
f (3)(x0) +

h6

30240
f (5)(x0)− h8

1209600
f (7)(x0) +− . . . ,

(4)

and

ˆ ∞
x0

f(x)dx− h
∞∑
k=0

f(ξk) ≈

− h2

24
f (1)(x0) +

7 h4

5760
f (3)(x0)− 31 h6

967680
f (5)(x0) +

127 h8

154828800
f (7)(x0) +− . . . . (5)

In both cases, the coefficients are expressible in terms of Bernoulli numbers; cf., [8], Appendix A.
Applications include approximating infinite sums in cases where the function can be analytically
integrated. In case of finite intervals, the expansions can be applied separately at the two ends.

6such as the Painlevé transcendents, cf., [14].
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An alternate usage is then to approximate integrals by means of finite sums, as described below in
Section 3.2.

In the case that only equi-spaced function data is available, the derivatives in (4) and (5) can
be replaced by regular FD approximations that extend only along the x-direction, described for
centered approximation in [8], and for one-sided approximations (that do not extend outside the
interval) in [11]. However, if function values are available surrounding x0 in the complex plane, FD
formulas that utilize this provide a very attractive alternative.

Method 1: For both (4) and (5), the right hand sides (RHSs) can straightforwardly be approx-
imated by complex plane FD stencils, with the increasing powers of h perfectly balanced by the
powers of h in the denominators of these stencils. One strategy becomes to decide on a stencil
size (such as 3× 3, 5× 5, or 7× 7) and then approximate as many terms / derivatives as this size
permits, followed by adding these up according to their coefficients.

With no loss of generality, we set x0 = 0 and schematically write the regular TR (including only
the first term in the RHS of (4)) asˆ ∞

0
f(x)dx = h

{
1

2
1 1 1 1 1, . . . . . .

}
f +O(h2). (6)

For example, with 3 × 3 stencils, odd order derivatives up through f (7)(0) can be approximated.
Added together, we obtain an end correction to the trapezoidal rule (TR) that can similarly be
summarized as

ˆ ∞
0

f(x)dx = h




−821−779i

403200 − 1889i
100800

821−779i
403200

− 1511
100800

{
1

2
1 + 1511

100800

−821+779i
403200

1889i
100800

821+779i
403200

 1 1 1 1, . . . . . .

} f +O(h10),

(7)
where the added ’correction terms’ have been boxed. This approach is discussed in [9], in the
context of integrating an analytic function along finite line segments on an equi-spaced grid. With
a 5× 5 stencil, the accuracy becomes O(h26); in general one more than the number of nodes in the
stencil. Figure 1 illustrates that the correction coefficients are numerically very small compared to
the regular weights in the TR.

Method 2: This produces identical TR corrections more directly, as it requires no knowledge of
the Euler-Maclaurin expansion (4). The LHS of (4), applied to ezξ, becomes (when converging)´∞

0 ezξdz − h
∑∞

k=0 e
khξ = h

eh ξ−1
− 1

ξ . This expression is then substituted in place of ξ2 in the
second line of the Mathematica code in Appendix A, producing the same FD stencil (for TR end
correction) as obtained by Method 1.

3.2 Application to integration around a closed contour

We consider next one of the test problems discussed more extensively in [9, 10]: Integrate

f(z) =
2

z − 0.4(1 + i)
− 1

z + 0.4(1 + i)
+

1

z + (1.2− 1.6i)
− 3

z − (1.3 + 2i)
, (8)

around the rectangle indicated by red dots in Figure 2. The green dots indicate the additional
function values used when end-correcting each line segment by a 5 × 5 stencil, as illustrated in
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Figure 1: Illustration of the magnitudes of the weights in the 5 × 5 case of TR end correction.
Entries belonging to the TR formula are shown in red, to the correction stencil in green, and the
overlapping entries in blue. Compared to the TR weights (1/2 at the end point(s), and 1 otherwise),
the correction stencil weights are two (or more) orders of magnitude smaller. The exact correction
weights in this 5× 5 stencil case are given in [9].

Figure 1. Figure 3 shows the rates at which the errors go to zero as h decreases. The errors
originating from the path corners are in the 5× 5 case are so low that, for relatively large h (to the
left in the figure), the total error becomes instead dominated by the TR along the interior of the
line segments. Also these errors can be further improved on, as described in [10].

4 Test of analyticity

For a general function of two variables f(x, y) (not necessarily analytic), Taylor expansion in x and
y will show that

1

6 h2

 1 4 1
4 −20 4
1 4 1

 f =

(
∂2

∂x2
+

∂2

∂y2

)
f +O(h2), (9)

matching the highest order of accuracy that is possible for a 3 × 3 size stencil approximating the

Laplacian operator. Nevertheless, in the particular context of solving Laplace’s equation ∂2f
∂x2

+ ∂2f
∂y2

=

0, one finds (again by Taylor expansion7) that this same stencil then becomes accurate to O(h6).
If we next consider the case of f(z) either analytic or harmonic, we therefore obtain 1 4 1

4 −20 4
1 4 1

 f = 0 +O(h8). (10)

In contrast, if the function f(z) is not analytic, applying this stencil to a general function f(x, y)
will typically give a much larger result than O(h8), making the application of this stencil a rough
(but still often useful) numerical test of analyticity.

From the perspective of FD formulas for analytic functions, one can note that

f (8)(0) =
504

h8

 1 4 1
4 −20 4
1 4 1

 f +O(h1) (11)

7See for ex. [12], Section 1.2.2.
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Figure 2: Real part of the test function (8), with the integration contour shown by the red dots.
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Figure 3: Log-log plot of the error for the test problem described in Section 3.2. With the grid
spacing h ≈ 0.07 shown in Figure 2, the errors for the three approximations are roughly 10−2,
10−9, and 10−15, respectively. Roughly speaking, the grid density needed for a ‘reasonably resolved’
functional display is comparable to what is needed for double precision integration accuracy.
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contains a multiple of this same stencil. This observation generalizes to provide a systematic way
to obtain nontrivial stencils evaluating to zero particularly closely for analytic functions, i.e., find
the FD formula for the highest derivative that the stencil size permits.

The 5× 5 stencil corresponding to (10) is similarly obtained by approximating f (24)(0), giving
1 16(−3 + i) 180 16(−3− i) 1

16(−3− i) −5440 −24480 −5440 16(−3 + i)
180 −24480 119340 −24480 180

16(−3 + i) −5440 −24480 −5440 16(−3− i)
1 16(−3− i) 180 16(−3 + i) 1

 f = 0 +O(h24).

In this case, some of the entries are complex-valued. It depends on the context if this coupling
between an analytic function’s real and imaginary parts becomes a disadvantage, or can be used
to advantage (as in Section 6 below). Real-valued stencils larger than (10) can readily be found.
For example, including one more node in each direction of the two primary axes and considering
f (12)(0) leads to 

1
−12 −64 −12

1 −64 300 −64 1
−12 −64 −12

1

 f = 0 +O(h12).

5 Numerical analytic continuation

Numerical methods for analytic continuation are often very ill-conditioned. This section illustrates
that the complex plane FD formula (11), applied in the form of (10) for verifying analyticity, can
be applied successfully to this task.

5.1 Boundary value problem for a harmonic function

Figure 4 (a) shows the real part of 1/Γ(z) over the complex plane region [0, 3]× [−1.5, 1.5]. If one
is given the function values around the edge of such a domain, it is straightforward to accurately
approximate it throughout the domain interior, for example by applying (10) (ignoring its O(h8)
error term) at each interior grid point. This gives rise to a well-conditioned sparse linear system.
Assuming there is no singularity within the domain, the result will be accurate to O(h6). In
particular, this provides function values along any interior line segment, such as the one shown in
red in part (a) of the figure.

5.2 Analytic continuation

The reverse problem is to calculate the function across a full domain given values only for a small
interior part of the domain. A key theorem tells that, if two analytic functions coincide on any
curve segment, no matter how short (or on any infinite point set with a limit point), then the two
functions are identical.8 The task of analytic continuation is to use such information (for example
as provided by a Taylor series with finite radius of convergence) and then alter the functional
representation to obtain a form that is defined in a larger region. Numerous analytic approaches

8See for ex. [13], Theorem 2.12.
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(a) Re 1/Γ(z) displayed over [0, 3]× [−1.5, 1.5]. (b) Numerical analytic continuation.

Figure 4: (a) Test function Re 1/Γ(z), and (b) The result of numerical analytic continuation based
only on the grid point data along the dashed green line (17 equidistant points extending over
1 ≤ z ≤ 2).

for continuation are surveyed in [13]. Numerically, continuation is usually severely ill-conditioned,
as analyzed in [23]. In its most immediate formulation, numerical continuation can be seen as
solving Laplace’s equation as an initial value problem.

5.3 FD-based numerical continuation

As a preliminary observation, we consider an over-determined linear system, where some equations
C x = c are to hold exactly, while others Ax = b are to be solved in the least squares sense
(minimizing ||Ax − b||2). The solution x to this combination is obtained from the square linear
system  ATA CT

C 0


 x

λ

 =

 AT b

c

 , (12)

where the λ-vector, containing Lagrange multipliers, can be ignored.

The continuation shown in Figure 4 (b) was obtained by

1. Enforce exactly: (i) Equation (10) (again ignoring its O(h8) error term) at all interior grid
points, (ii) The input data (here the 17 function values at the equi-spaced grid points along
1 ≤ z ≤ 2), and (iii) Agreement between the values along top and bottom boundaries (assuring
symmetry around the real axis), and

2. Enforce in least square sense that the 3-point second derivative approximation (top line in
Table 2) evaluates to zero when centered at all edge points of the computational domain
(excepting the four corner points). Analytically, the second derivative should not be zero;
enforcing this in least square sense is a (quite crude) way to suppress oscillations that otherwise
would have been prominent around the boundaries.
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Although the provided data (here 17 centerline points along the dotted green line segment in
Figure 4 (b)) visually does not seem to provide much information, the approximate continuation
nevertheless bears a lot of resemblance to the true function in Figure 4 (a). This example is only
intended to illustrate the conceptual feasibility of quite direct FD approaches for continuation,
leaving much room for further improvements.

Other numerical continuation methods are available especially when the data is available in other
forms than (as in the current example) only at some low number of equi-spaced grid points. Con-
tinuation from data given at Chebyshev-type node sets is discussed in [22, 23]. In the case of data
provided in the form of a truncated Taylor expansion, Padé expansions are often highly effective
(and also capable of dealing quite well with functional singularities).

6 Approximation of harmonic conjugate functions

If the real part u(x, y) of an analytic function f(z) is given, the matching imaginary part v(x, y)
(known as the harmonic conjugate function) is determined by (2), apart from with respect to an
arbitrary constant (and similarly if v(x, y) is given). The simple complex plane FD relation

1

h

[
−1 1

]
v =

1

4h

 −1 −1
0 0
1 1

 u+O(h2) (13)

allows one to step v sideways from grid point to grid point (with an obvious counterpart stencil
for stepping up/down). However, the second order accuracy of (13) is likely too low for practical
use. The ’Method 1’ can be used to provide generalizations in which the LHS stays the same (to
allow easy node-by-node stepping) while the RHS (applied to known values) is extended in size.
The following is one such example9

1

h

[
−1 1

]
v =

1

1064448 h



−1013 −6253 −6253 −1013
23582 177346 177346 23582

149915 −263861 −263861 149915
0 0 0 0

−149915 263861 263861 −149915
−23582 −177346 −177346 −23582

1013 6253 6253 1013


u+O(h12) (14)

≈ 1

h



−0.0010 −0.0059 −0.0059 −0.0010
0.0222 0.1666 0.1666 0.0222
0.1408 −0.2479 −0.2479 0.1408

0 0 0 0
−0.1408 0.2479 0.2479 −0.1408
−0.0222 −0.1666 −0.1666 −0.0222

0.0010 0.0059 0.0059 0.0010


u+O(h12).

Although these weights numerically do not differ greatly from those of (13), the order of accuracy
is much increased. Yet higher orders of accuracy are readily achieved by still larger stencils for
u. Applying stencils such as (14) to step-by-step move sideways bears some resemblance to the

9Given the stencil size for u, this weight set is not unique, but it becomes unique if we impose the expected
symmetries in the two directions.
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quadrature procedure introduced in [4] (which however typically is less effective than end-corrected
TR, cf., [9], Section 4.3).

7 Interpolation to a finer grid

A common task when given equi-spaced grid data is to interpolate to a twice as dense grid. It
suffices for this to have a stencil for interpolating to the center location between two rows and
columns, since turning such a stencil 45° will then allow remaining nodes on the finer grid to be
filled in. The simplest such interpolation stencil can be written as

f(�) =
1

4

[
1
1
� 1

1

]
f +O(h4), (15)

where � marks the center of a local square on the coarse grid. The next size stencil of this type is
readily found (by either of Methods 1 or 2) to be

f(�) =
1

106496


−25 162− 459i

162 + 459i 26325
162− 459i 26325
−25 162 + 459i

�

162 + 459i −25
26325 162− 459i
26325 162 + 459i

162− 459i −25

 f +O(h16). (16)

Between these two cases, the weights differ numerically no more than around 4 ·10−3. For a general
function f(x, y) (not analytic), stencils of these sizes would at best be accurate to orders 2 and 4,
respectively, scaling with the number of node points in each direction rather than, as here, with
the total number of stencil nodes.

The error constant in the O(h16) term in (16) will typically be small (unless interpolating near
a singularity), making h ≈ 0.1 sufficient for preserving the accuracy level of the grid data, up to
the level of double precision (with a 6 × 6 stencil, h ≈ 0.35 similarly suffices). While the weights
will differ, the formal order of accuracy remains unchanged if the interpolation point is located
arbitrarily relative to the node points that the interpolation is based on.

If one wishes to interpolate a harmonic function without having its harmonic conjugate available,
it is convenient to have interpolation weights that are all real. This typically reduces the order of
accuracy. For example, in the 4× 4 stencil case10

f(�) =
81

1024


13/81 1

1 1
1 1

13/81 1

�

1 13/81
1 1
1 1
1 13/81

 f +O(h12). (17)

8 Weights for increasing stencil sizes

When using standard centered FD approximations along the real axis, and increasing the stencil
width / order of accuracy for a fixed derivative, the weights converge to a limit known as the
pseudospectral (PS) method [7, 21]. This is indicated in the bottom line of Tables 1 and 2, but
valid more generally, cf., [7], Chapter 3. A serious problem in the 1-D case is that, in this limit,

10Method 1 can similarly be adapted to provide highly accurate FD formulas for derivatives of harmonic functions.
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Figure 5: The magnitudes of the weights in the 9 × 9 complex stencil for the 4th derivative. The
corresponding values for the 3×3, 5×5, and 7×7 stencils are indicated by thin lines near the tops of
the bars. These stencils are accurate to orders O(h5), O(h21), O(h45), and O(h77). The differences
in weights are barely noticeable apart from near the top of the center column, illustrating the rapid
convergence of the weights as the stencil sizes / orders of accuracy are increased. For the 9 × 9
stencil shown, the largest magnitude along the outer edge is around 4 ·10−13 and the largest outside
the central 3× 3 area is around 3 · 10−3.

the weights decay only very slowly, conflicting with the fact that a derivative is a completely ‘local’
property of a function. Figure 5 illustrates that, for increasing stencil sizes, weights in the complex
FD case converge rapidly to a limit, and also that this limit is far more localized than in the PS
case. We next give supporting analysis for these observations.

In the case of approximating the first derivative, with nodes at z = zk, k = 1, 2, . . . , N , and with
N = 32, 52, 72, Figure 6 compares two unit-spaced cases of approximations centered around z = 0:
(i) nodes along the real axis (“FD real axis”) and (ii) nodes in a complex plane square (“FD complex
plane”). In both cases, the center weight is zero, and is omitted. It shows in the latter case a far
faster decay in the magnitude of the weights with node distance from the origin (i.e. these stencils
rely much more on data near the point of interest)11.

8.1 Approximations of the first derivative

For purposes of analysis, closed form expressions for FD weights wk can be more convenient than
the linear systems-based computational Methods 1 and 2 described in Section 2. By differentiating
the Lagrange interpolation formula based on nodes located at z = zk, k = 1, 2, . . . , N (distinct, but

11This is a key reason why these formulas can be highly effective also near singularities, as illustrated in Figures 2,
3.
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Figure 6: Magnitudes of weights wk for centered approximations to the first derivative on unit-
spaced grids, displayed on a log-linear scale against the distance of the respective node zk from the
origin. The “FD real axis” curves for N = 25 and N = 49 are truncated to the right. Increasing N
(approaching a PS limit) severely damages locality for “FD real axis”, but not so for “FD complex
plane”.

otherwise arbitrarily placed in the complex plane), one obtains for the first derivative at z = 0 the
weights12

wk = − 1

zk

(
dφ

dz

∣∣∣∣
z=0

)
/

(
dφ

dz

∣∣∣∣
z=zk

)
, (18)

where

φ(z) =
N∏
k=1

(z − zk). (19)

The decay in magnitude of the weights wk (with the distance of zk from the stencil center) depends

therefore mostly on the rate of growth of
∣∣∣dφdz ∣∣∣ with |z|.

8.1.1 Grid points along the real axis

As background before turning to the complex plane case, we note that (18), (19) reproduce the
traditional PS method in the real-valued case. With unit-spaced nodes, (19) can be compared

to the product sinπz
πz =

∏∞
k=1

(
1− z2

k2

)
. In the limit increasing N , the magnitude of the ratio(

dφ
dz

∣∣∣
z=0

)
/

(
dφ
dz

∣∣∣
z=zk

)
in (18) approaches 1, and the weights will decay in magnitude according the

remaining factor 1
zk

in (18), exactly matching the bottom line in Table 1. Growth of φ(z) with |z|
occurs in this limit only in directions away from the real axis, and and does not assist in decreasing
|wk|.13

12Here, and later in (21), (22), one stencil node is assumed located at z = 0, with zk a different node.
13Hermite-FD formulas approximate the pth derivative, p ≥ 2, using both function and first derivative values:

f (p)(0) ≈
∑n
k=−n bkf(k) +

∑n
k=−n ckf

′(k). Their infinite order PS limit is similar to that of regular FD-PS methods,
as analyzed in [2].
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Figure 7: The magnitude of
(
dφ
dz

∣∣∣
z=0

)
/

(
dφ
dz

∣∣∣
z=zk

)
(log-linear display) at the node points of unit-

spaced 3× 3, 5× 5 , 7× 7, and 9× 9 stencils. The outer edges of these stencils are highlighted by
dashed red curves.

8.1.2 Grid points in the complex plane

In this case, φ(z) cannot, for (2n + 1) × (2n + 1) sized stencils with n increasing, converge to a
bounded non-trivial limit function, since such a function would become doubly periodic and thus
reduce to the constant zero. As a square stencil gets larger, rapid growth in magnitude of |φ′(z)| for
increasing |z| becomes inevitable. Figure 7 confirms this by displaying the magnitude of the ratio(
dφ
dz

∣∣∣
z=0

)
/

(
dφ
dz

∣∣∣
z=zk

)
in the cases of 3×3, 5×5 , 7×7, and 9×9 unit spaced stencils, centered at

the origin. The difference between the first two cases is graphically invisible, while a careful look
at the corners of the 5× 5 and 7× 7 stencils, at locations ±2± 2i, and ±3± 3i, respectively, show
a very small difference to the corresponding values of the next larger stencil.

In the limit of n→∞ and nodes zk = µ+ i ν, with µ, ν integers, it is shown in Appendix C that

lim
n→∞

∣∣∣∣∣
(
dφ

dz

∣∣∣∣
z=0

)
/

(
dφ

dz

∣∣∣∣
z=zk

)∣∣∣∣∣ = e−
π
2

(µ2+ν2). (20)

The surfaces in Figure 7 (with the logarithmic vertical axis) thus converge to an axially symmetric
paraboloid. Weights in unit-spaced complex plane FD formulas of increasing orders of accuracy
thus decay roughly like the Gaussians O(e−

π
2
|zk|2) with the distance of the stencil node zk to the

center node.

8.2 Generalizations to higher derivatives

Counterpart formulas to (18) are readily available also for higher derivatives. With the same
assumptions as for (18), one obtains for the second derivative

wk = −
(

2

z2
k

(
dφ

dz

∣∣∣∣
z=0

)
+

1

zk

(
d2φ

dz2

∣∣∣∣
z=0

))
/

(
dφ

dz

∣∣∣∣
z=zk

)
, (21)

and for the third derivative
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wk = −
(

6

z3
k

(
dφ

dz

∣∣∣∣
z=0

)
+

3

z2
k

(
d2φ

dz2

∣∣∣∣
z=0

)
+

1

zk

(
d3φ

dz3

∣∣∣∣
z=0

))
/

(
dφ

dz

∣∣∣∣
z=zk

)
, (22)

generalizing for the pth derivative to

wk = −p!

(
p∑

ν=1

1

ν! zp−ν+1
k

(
dνφ

dzν

∣∣∣∣
z=0

))
/

(
dφ

dz

∣∣∣∣
z=zk

)
. (23)

In the complex FD case, the very rapid growth of
∣∣∣dφdz ∣∣∣ away from the stencil center will lead to

corresponding decreases in magnitude of the stencil weights (as

(
dφ
dz

∣∣∣
z=zk

)
enters in the denomi-

nators above). It is also apparent from (23) that the rates will depend very little on which order
derivative is approximated. In the case of (2n+1)× (2n+1) unit-spaced stencils centered at z = 0,

it follows from symmetries that dpφ
dzp

∣∣∣
z=0
6= 0 only for p = 1, 5, 9, 13, . . . causing terms in (21) - (23)

to drop out. In the PS n→∞ limit, the ratios
(
dpφ
dzp

∣∣∣
z=0

)
/
(
dφ
dz

∣∣∣
z=0

)
converge to constants.

9 Concluding discussion

FD formulas in the complex plane are generally considerably more accurate than traditional ones
which use function values only along the real axis. Two reasons for this were outlined in the
Introduction, both due to key aspects of analyticity. To these can be added the analysis in Section
8. Even as stencil sizes (and orders of accuracy) are increased, complex plane FD stencils continue
to extract their main information from a very small neighborhood of the point of interest. This is
in sharp contrast to traditional PS methods which, with their slow algebraic decay of weights, rely
heavily on distant data even when approximating local operators, such as derivatives.

Holding a stencil size fixed and increasing the order p of the derivative dp

dzp (as far as the stencil size
permits) will typically make the weights (following the leading factor 1/hp) increase rapidly. The
Euler-Maclaurin approximations described in Section 3 benefited from a compensating decrease
in the magnitude of coefficients for the successive terms. If a very high order derivative is to be
approximated, Cauchy integral-based algorithms (such as described in [5, 6]) may be preferable
to FD approximations. Another option in that case might be to find FD weight sets where some
orders of accuracy have been traded against reductions in the magnitude of the weights. This idea
has been used successfully in contexts such as numerical quadrature (cf., [11, 16] in the cases of
Gregory-type and Newton-Cotes-type formulas, respectively).

10 Appendix A: Code examples for the two weights algorithms

Let the task be to determine the weight set for the second derivative (i.e., L = d2/dz2) at the center
of a 5 × 5 stencil. The next two sections illustrate how this can be done with the two methods
described in Section 2. Comments indicate how to generalize to other node layouts and linear
operators.
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10.1 Method 1: MATLAB code

x = -2:2; zk = x-1i*x’; zk = zk(:).’; % Nodes z_k for 5x5 stencil (unit spaced)

A = zk.^((0:24)’); % Coefficient matrix for linear system to solve

v = zeros(25,1); v(3) = 2; % Form RHS; Set v(k+1) = k! for the k’th derivative

c2 = A\v; reshape(c2,5,5) % Solve for the weights and display in matrix form

For node spacing h, we replace x = -2,2; by x = (-2,2)*h;. This code produces the same
matrix as shown below for the Mathematica code, but as floating point numbers. Since the linear
system is of Vandermonde-type, it is prone to numerical ill-conditioning. In the present test case,
using standard double precision, about 4 digits get lost, leading to coefficient errors up to about
10−12. Since the loss increases rapidly with stencil size, either exact rational or extended precision
arithmetic is recommended (available in all common symbolic algebra packages). When using
MATLAB, both are available through its symbolic toolbox; the latter also with the Advanpix
toolbox14.

10.2 Method 2: Mathematica code

The following three Mathematica statements

computes the FD weights in closed form (with h as before denoting the node spacing). The further
statement

MatrixForm[ArrayReshape[Table [c[k]/.DM[[1]],{k,1,25}],{5,5}]]

displays this set of weights in a standard matrix format:

14Multiprecision Computing Toolbox for MATLAB, http://www.advanpix.com/, Advanpix LLC, Yokohama,
Japan.
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11 Appendix B: Stencils of size 5× 5 for the first four derivatives

f ′(0) =
1

h



1+i
477360

4(−1−i)
29835

i
1326

4(1−i)
29835

−1+i
477360

4(−1−i)
29835

8(−1−i)
351

−8i
39

8(1−i)
351

4(1−i)
29835

1
1326

−8
39 0 8

39
−1

1326

4(−1+i)
29835

8(−1+i)
351

8i
39

8(1+i)
351

4(1+i)
29835

1−i
477360

4(−1+i)
29835

−i
1326

4(1+i)
29835

−1−i
477360


f +O(h24),

f ′′(0) =
1

h2



−i
477360

8(−1+3i)
149175

1
1326

8(−1−3i)
149175

i
477360

8(1+3i)
149175

16i
351

−16
39

−16i
351

8(1−3i)
149175

−1
1326

16
39 0 16

39
−1

1326

8(1−3i)
149175

−16i
351

−16
39

16i
351

8(1+3i)
149175

i
477360

8(−1−3i)
149175

1
1326

8(−1+3i)
149175

−i
477360


f +O(h23),

f (3)(0) =
1

h3



−1+i
636480

8(7−i)
248625

−i
884

8(−7−i)
248625

1+i
636480

8(1−7i)
248625

8(1−i)
117

16i
13

8(−1−i)
117

8(−1−7i)
248625

1
884

−16
13 0 16

13
−1
884

8(1+7i)
248625

8(1+i)
117

−16i
13

8(−1+i)
117

8(−1+7i)
248625

−1−i
636480

8(7+i)
248625

i
884

8(−7+i)
248625

1−i
636480


f +O(h22),

f (4)(0) =
1

h4



1
318240

32(−9−13i)
1243125

−1
442

32(−9+13i)
1243125

1
318240

32(−9+13i)
1243125

−32
117

64
13

−32
117

32(−9−13i)
1243125

−1
442

64
13

−92937
5000

64
13

−1
442

32(−9−13i)
1243125

−32
117

64
13

−32
117

32(−9+13i)
1243125

1
318240

32(−9+13i)
1243125

−1
442

32(−9−13i)
1243125

1
318240


f +O(h21).

For this stencil size, one can approximate up through f (24)(0) which then becomes first order
accurate.

12 Appendix C:

Following up on Section 8, we consider again

φ(z) =

N∏
η=1

(z − zη) =
∏

µ = −n, . . . ,+n
ν = −n, . . . ,+n

(z − (µ+ i ν)),
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and note that

φ′(zk) =

N∏
η = 1
η 6= k

(zk − zη). (24)

We next refer to Figure 8, with a schematic illustration in the n = 4 case (with a total of N =
(2n+ 1)2 = 81 nodes), and µ = 2, ν = 1, i.e., zk = 2 + i (marked by a triangle, in contrast to z = 0
marked by a square). The value for φ′(0), according to (24), is obtained by a product over all nodes
inside the large solid square (omitting its center node). If the corresponding product for φ′(zk) had
used the nodes inside the dashed square (again omitting the center node), it would have evaluated
to the same result. However, it does not, but a calculation for log |φ′(0)| becomes a calculation for
log |φ′(zk)| if we to it add the sums

S1 =
∑

zη in rectangle 1

log |zη|, S2 =
∑

zη in rectangle 2

log |zη|

and subtract
S3 =

∑
zη in rectangle 3

log |zη|, S4 =
∑

zη in rectangle 4

log |zη|.

Each of these four sums is readily estimated to leading order. Along the center line of each of the
four narrow rectangles (marked 1, 2, 3, 4 in the figure) we can approximate the sum by suitable use
of the integral relation

ˆ b

a
log(x2 + y2)dx = 2y

(
arctan

b

y
− arctan

a

y

)
+ b

(
log(b2 + y2)− 2

)
− a

(
log(a2 + y2)− 2

)
together with multiplying each integral by the width (orthogonal to the center line) of the respective
rectangle. After straightforward algebra, this gives

S1 + S2 − S3 − S4 =
π

2
(µ2 + ν2)− 1

2n
(µ2 + ν2) +O

(
1

n2

)
, (25)

from with (20) then follows.
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