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Abstract

It has recently been demonstrated that both regular derivatives and contour integrals of
analytic functions can be numerically evaluated to very high orders of accuracy utilizing only
grid-based function values in the complex plane. Using closely related techniques, we show here
the same to be true for the task of evaluating fractional order derivatives of analytic functions
across the complex plane. Several cases are illustrated.

Keywords: Fractional derivatives, finite differences, complex variables, analytic functions,
Euler-Maclaurin, contour integration.

Mathematics Subject Classification: Primary: 30-08, 30-E10, 65D25; Secondary: 30B40,
30E20, 65E99.

1 Introduction

During the last decades, fractional derivatives have been utilized in increasingly many application
areas, as surveyed for ex. in [3, 23]. Regarding their numerical evaluations, previously available
methods have generally suffered from low convergence rates. For functions that are analytic along
a path connecting the fractional derivative’s base and evaluation points, the approach presented
here converges faster than O(h22), where h is the grid spacing, thereby easily providing close to
machine precision 10−15 accuracy.

1.1 Concept of present method

A fractional derivative takes the form of an integral between a base point and an evaluation point.
In the case that function values are available on an equispaced grid in the complex plane, we show
here that the quadrature method developed in [6, 7] generalizes to the fractional derivative case,
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which features an end point singularity. Since the method is here applied to analytic functions,
there is a wide choice of integration paths. We use straight line segments that follow grid lines,
together with 5 × 5-sized ‘correction stencils’ at each path corner and at the base and evaluation
points.

1.2 Outline of paper

Section 2 starts with an introductory description of fractional derivatives and of complex plane
finite difference (FD) approximations of regular derivatives. We focus on Caputo derivatives, since
this type commonly preferred in the context of differential equations. Such derivatives of analytic
functions again become analytic functions, with the base point typically becoming a branch point
of the derivative. Sections 3 and 4 review the complex plane quadrature method described in [6, 7]
and generalize this to the situation with the end point singularity in the integrand. The case when
the base- and evaluation points are only a few grid points apart requires a somewhat different
method, discussed in Section 5. Other special cases arise when the function to be differentiated
has singularities, discussed in Section 6. Some previous numerical methods, in particular the
Grünwald-Letnikov formula, are briefly commented on in Section 7. Following Conclusions, two
appendices give examples of correction stencil weights and illustrate computed fractional derivatives
in a number of cases, respectively. The latter is supplemented by displays of convergence rates as
the grid spacing h is reduced. In contrast to the case of regular (integer order) derivatives, it
is less common that fractional derivatives of elementary functions are available in closed form.
The examples in the last appendix where chosen among with analytic results available, in order
to readily confirm theoretically predicted convergence rates and that machine precision accuracies
indeed are reached.

2 Some background materials

2.1 Fractional derivatives

The history of fractional derivatives is almost as old as that of regular (integer order) derivatives1.
However, most applications as well as computational approaches are much more recent. An aspect
that still has received very little attention is accurate numerical computation of fractional derivatives
of analytic functions. We find in this study that for this task, a very effective computational
approach becomes available.

One standard reference for the main types of fractional derivatives is the monograph [20] (briefly
summarized in [14]). The two most commonly used definitions are

Riemann-Liouville:

RL
a Dα

t f(t) =
1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α+1−ndτ , n− 1 < α < n (1)

and Caputo [2]:

C
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a

dn

dτn f(τ)

(t− τ)α+1−ndτ , n− 1 < α < n. (2)

1Usually considered to have begun with Leibniz’ reply in 1695 to an inquiry by L’Hôpital “... This is an apparent
paradox from which one day useful consequences will be drawn.”
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With no loss of generality, we let the base point a be located at a = 0 and (initially) assume that
the evaluation point t satisfies t > 0 (later t will be generalized to an arbitrarily placed point z in
the complex plane). The two definitions are closely related:

RL
0 Dα

t f(t) = C
0 D

α
t f(t) +

n−1∑
k=0

tk−α

Γ(k + 1− α)
f (k)(0). (3)

In a complex z-plane, the derivatives f (k)(0) can be approximated very effectively from grid-based
values for f(z) [9]. Our present focus on Caputo rather than on Riemann-Liouville derivatives
is largely motivated by the simplicity these offer in the contexts of Laplace transforms and in
formulating initial conditions for ODEs, as described in [20], Chapter 4 and [14], Chapters 2,4.2

We simplify the notation by writing C
0 D

α
z f(z) as Dαf(z). Since, for m integer, Dα+mf(z) =

DαDmf(z), we furthermore focus on n = 1, i.e., 0 < α < 1.

2.2 Fractional derivatives of analytic functions

Functions f(z) with z = x + iy are analytic if df
dz = lim4z→0

f(z+4z)−f(z)
4z is uniquely defined, no

matter from which direction in the complex plane 4z approaches zero. Analyticity has a large
number of important consequences, as surveyed in complex variables textbooks, e.g., [1, 11]. Most
of the commonly used functions in applied mathematics generalize from the real axis to analytic
functions over parts or all of the complex plane.

Theorem 1. The fractional derivative

Dαf(z) =
1

Γ(1− α)

∫ z

0

f ′(τ)

(z − τ)α
dτ, 0 < α < 1 (4)

of an analytic function f(z) is again an analytic function.

Proof. We give two arguments below:

By Taylor expansion: With f(z) analytic around the base point z = 0, it has around this point a

convergent Taylor expansion. Since for m ∈ N, Dαzm = Γ(m+1)
Γ(m+1−α)z

m−α, a ratio test argument gives

that Dαf(z) = z−α ·
{

Taylor series with same
radius of convergence

}
. The fractional derivative introduces a branch

point at the base point, but is otherwise analytic within at least the same circle of convergence.

By integration by parts: Let g(z) = Dαf(z) . Integration by parts in (4) gives g(z) =
1

Γ(2−α)

(
f ′(0) z1−α +

∫ z
0 f
′′(τ) (z − τ)1−αdτ

)
and therefore g′(z) = 1

Γ(1−α)

(
f ′(0)
zα +

∫ z
0

f ′′(τ)
(z−τ)αdτ

)
. This

derivative being well defined is a sufficient condition for g(z) to be analytic. Alternatively, we can
note that g′(z) = RL

0 Dα
z f
′(z), which again is well defined.

2.3 Complex plane FD approximations

This section recalls briefly some observations from [9], in parts earlier described in [6, 7]. Complex
plane FD stencils with N = (2n+ 1)× (2n+ 1) nodes (n = 1, 2, . . .) on a grid with spacing h will,

2Another convenience with the Caputo version is that (2) implies that Dα{constant} = 0.
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n = 1; Stencil size 3× 3 n = 2; Stencil size 5× 5

f ′(0) ≈ 1
h
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Table 1: The weights in 3× 3 and 5× 5 size stencils for the first two derivatives.

for the pth derivative (p = 1, 2, 3, . . .), be accurate of order O(hN−p).3 As examples of such stencils,
Table 1 illustrates the weights in the cases of n = 1 and n = 2 for the first two derivatives. The
order of accuracy for the shown 3×3 stencils are O(h8) and O(h7), and for the 5×5 stencils O(h24)
and O(h23), respectively.

One major difference from traditional (real axis) FD approximations is that complex plane FD
weights decrease in magnitude very much faster with the distance from the stencil’s center. With
stencil nodes at zk = µ + i ν, −n ≤ µ, ν ≤ +n, the decay rate contains again an algebraic factor,
but now further multiplied by the extremely rapidly decreasing factor e−

π
2

(µ2+ν2). This makes
the approximations remain highly localized even when their stencil sizes / accuracy orders are
increased.4

3 Complex plane FD approximations for a fractional derivative

The present task is to numerically evaluate

Dαf(z) =
1

Γ(1− α)

∫ z

0

f ′(τ)

(z − τ)α
dτ (5)

for 0 < α < 1. Assuming that f(t) is analytic and singularity free along the integration path that
we choose, two issues prevent the trapezoidal rule (TR) end correction approach from [6] to be
immediately applicable to the numerical evaluation of (5):

i. The factor 1
(z−τ)α causes a singularity at the upper end of the integration interval, and

ii. The numerator of the integrand is f ′(τ) rather than f(τ).5

3Here and in the following, n denotes stencil size and not derivative ranges (as in (1), (2)).
4The infinite order accuracy (pseudospectral) n→∞ limit is studied in [10].
5We do not assume that also the derivative f ′(z) is numerically available.
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3.1 End corrections - concept

Before embarking on derivations of end correction stencils for numerical integration, we illustrate
their concept with two examples. The integral (5) is over a finite interval, and the path from 0
to z (complex) can be changed to line segments following grid lines horizontally and vertically in
the complex plane. With insights from [6, 7], placing a correction stencil at each sub-interval end
point, together with applying the trapezoidal rule (TR) in-between gives for analytic functions the
accuracy O(hN+1), where N is the total number of nodes in each of the correction stencils.6 For
short intervals, the stencils at the two ends may overlap.

For both conceptual descriptions and derivations, it is simplest to consider the semi-infinite interval
[0,∞]. In the case of

∫∞
0 f(z)dz, one finds

∫ ∞
0

f(z)dz = h



(−0.0020
−0.0019i

) (
0

−0.0187i

) (
0.0020
−0.0019i

)
(−0.0150

+0i

) (
0.5000

+0i

) (
0.0150

+0i

)
(−0.0020

+0.0019i

) (
0

+0.0187i

) (
0.0020

+0.0019i

)

 f + h
∞∑
k=1

f(kh) +O(h10). (6)

The stencil is centered at the origin z = 0, and its entries are here rounded to four decimal places.
These entries, as well as those for its 5 × 5 counterpart (accurate to O(h26)), were given in exact
rational form in [6]. Apart from the central stencil entry 1/2 (alternatively included in the TR
sum), the entries are numerically very small, but nevertheless greatly increase the accuracy order
from O(h2) for the standard TR.

In the case of 0 < α < 1, the upper end point in (5) is singular. After changing variable to move the
singularity to z = 0, an integration by part is needed to get f(z) instead of f ′(z).7 Additionally, the
interval [0, h] needs to be separated out to avoid subtracting infinities at the origin (arising from
the integration by parts). The present novelty is that similarly accurate end corrections are again
available. For example, in the case of α = 1/2 (with the correction weight matrix again centered
at z = 0):

∫ ∞
h

f(z)

z3/2
dz = h−1/2



(
0.0181

+0.0159i

) (
0.0218

+0.1433i

) (−0.0182
+0.0210i

)
(

0.1286
+0i

) (
1.3027

+0i

) (−0.1685
+0i

)
(

0.0181
−0.0159i

) (
0.0218
−0.1433i

) (−0.0182
−0.0210i

)

 f + h
∞∑
k=1

f(kh)

(kh)3/2
+O(h17/2). (7)

With 5 × 5 stencils, the accuracy orders increases to O(h49/2). End correction stencils of these
kinds provide the key tools utilized below for accurate evaluation of (5). Appendix A shows the
counterpart matrices to those in (6) and (7) for some different values of 0 < α < 1, and also the
n = 2 (size 5× 5) counterpart to the matrix in (7).

6The TR part is exponentially accurate once interval end effects have been handled, and will not influence the
order of accuracy.

7This changes the singularity at origin from O(1/zα) to O(1/zα+1).
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3.2 End corrections - explicitly

The task has become to numerically approximate

I =

∫ z

0

f ′(τ)

(z − τ)α
dτ (8)

for 0 < α < 1 and z > 0. Following the splitting of the interval [0, z] into [0, z − h] and [z − h, z]
and integration by parts for the first of these sub-intervals, we obtain

I =

{
−f(0)

zα

}
︸ ︷︷ ︸ −α

{∫ z−h

0

f(τ)

(z − τ)α+1
dτ

}
︸ ︷︷ ︸ +

{
f(z − h)

hα
+

∫ z

z−h

f ′(τ)

(z − τ)α
dτ

}
︸ ︷︷ ︸

left end interval right end

. (9)

For the central ‘interval’ part, we consider the trapezoidal rule (TR)-like approximation8:

∫ z−h

0

f(τ)

(z − τ)α+1
dτ ≈ h

[ zh ]−1∑
k=1

f(kh)

(z − kh)α+1
. (10)

For the discussion that follows, we introduce the notation b(τ) = f(τ)
(z−τ)α+1 and c(σ) = f(z−σ) such

that the ends of the original integration interval [0, z] correspond to τ = 0 and σ = 0, respectively.
We will next show how to obtain the weights in these correction stencils at the two ends.

3.2.1 Left end

We assume for now that the function f(τ) and, with that, also b(τ) is regular around τ = 0.9 Since
(10) amounts to a TR approximation, the correction approach sketched out in Section 3.1 applies.

Following the methodology in [6, 7], we replace b(τ) = f(τ)
(z−τ)α+1 in (10) by eξτ , obtaining from (9)

and (10)

S1 = −α

{∫ ∞
0

eξτdτ − h
∞∑
k=1

eξkh

}
= αh

∞∑
k=0

ζ(−k)

k!
(hξ)k. (11)

In this Taylor expansion (convergent for |hξ| < 2π), the terms for k = 2, 4, 6, . . . vanish, as these
correspond to the trivial zeros of the zeta function.10 The approach described below in Section 3.3
will convert this series expansion to weights in an end correction stencil.

3.2.2 Right end

We here changed notation by z − τ = σ, and therefore f(τ) = f(z − σ) = c(σ). The end correction
strategy, now replacing c(σ) by eξσ in (10), leads us to consider (for Re ξ < 0):

From the ‘interval’ part of (9):

8Including in the sum the right but not the left end point.
9The case when f(τ) has a singularity at τ = 0 is considered in Section 6.1.

10For deriving both this expansion and the corresponding one in (13), we can substitute z = eξ in [17], equation
25.12.12.
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S2 = −α
{∫ ∞

h

eξσ

σα+1
dσ

}
+ α

{
h
∞∑
k=1

eξkh

(kh)α+1

}
= (12)

= −α

{
(−ξ)αΓ(−α) + h−α

∞∑
k=0

1

k!(α− k)
(hξ)k

}
(13)

+ α

{
(−ξ)αΓ(−α) + h−α

∞∑
k=0

ζ(1 + α− k)

k!
(hξ)k

}
. (14)

It is critically important to what follows that the fractional power of ξ, present in both (13) and
(14), cancels when summed. The expression for S2 is thus a Taylor series in hξ (again convergent
for |hξ| < 2π). Without the terms with the fractional ξ-powers canceling, FD-based end correction
would not have been possible since these, described further in Section 3.3, can only eliminate terms
with integer powers of ξ.

From the ‘right end’ part of (9):

S3 =
eξh

hα
−
∫ h

0

ξ eξσ

σα
dσ = αh−α

∞∑
k=1

1

k!(α− k)
(hξ)k. (15)

We note that this sum S3 exactly cancels the sum in (13).

The calculation of I as given in (8) (and thereby also of Dα(z)) now amounts to calculating the
sum in (10) and then correcting this with stencils corresponding to the expansions above in integer
powers of ξ. Next section describes the conversion of these Taylor expansions to FD correction
stencil weights.

3.3 Converting Taylor expansions in ξ to stencil weights.

With use of nodes located at zk, k = 1, . . . , N ,11 the task is to find weights wk at these nodes,
such that as many leading terms in an error expansion S(ξ) =

∑∞
k=0 αkξ

k can be matched (and
thus canceled by subtraction). Applying such a stencil also to the function eξ z, the key idea is to
make

∑N
k=1wke

ξzk =
∑∞

k=0 αkξ
k agree to as many powers of ξ as possible. Taylor expanding the

exponentials and equating powers of ξ gives (when truncated to N terms)
1 1 · · · · · · 1
z1 z2 · · · · · · zN
z2

1 z2
2 · · · · · · z2

N
...

...
...

zN−1
1 zN−1

2 · · · · · · zN−1
N




w1

w2

w3
...
wN

 =


0!α0

1!α1

2!α2
...

(n− 1)!αN−1

 . (16)

Since the coefficients in each of the S1, S2, S3-expansions have a factorial in their denominators,
the factorials in the right hand side vector of (16) immediately cancel out. This linear system
for finding the correction stencil weights wk has a Vandermonde-type coefficient matrix, and is
therefore always non-singular (assuming the nodes zk are distinct). As described previously in [10]
and here illustrated in Figure 1, the weights in quadrature end correction stencils grow rapidly with
n (stencil size), making sizes above n = 3 in most cases impractical.12

11The nodes are in the present application on an h-spaced grid in the complex plane, but can also be arbitrarily
located.

12See also comments in the last paragraph of Appendix A.
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n=1 n=2 n=3 n=4

-10

-5

0

5

10

15

log
10 j

Figure 1: The N = (2n+1)× (2n+1) stencil weights {wj}(2n+1)2

j=1 illustrated for the first few values
of n in the case of singularity-free end corrections. The color is determined by the magnitude of
each wj and the arrow inside each node shows their argument.

In the descriptions in the next two Sections 4 and 5, we continue to focus on the case when the
base point (B) is at the origin, but let the evaluation point (E) be at some arbitrary grid point
location in the complex plane (rather than only along the positive real axis; denoting its location
by z).

4 Evaluation point z well separated from base point: z complex

We assume again that f(z) is non-singular at the base point z = 0. The main idea is to follow
horizontal and vertical grid lines from B to E, as used for contour integrals in [6, 7] (i.e., with
correction stencils also at each path corner). A key consideration is that no correction stencil,
either centered at B or at a path corner point, can be close to E (as the integrand has a singularity
there, and these correction stencils would then become inaccurate). Following this strategy, Figures
2 (a), (b) illustrate suitable paths for two cases of E in the first quadrant. The dashed lines show
branch cuts of the integrand in (1), (2), typically directed from E to the right. In case E is close to
the negative real axis, Parts (c), (d) of the figure illustrate why the fractional derivative will have a
branch line extending to the left from B (caused by the integrand being different in the two cases,
when approaching E from the right).

Depending on the direction by which an interval end point is arrived at, the order of weights in the

stencil will change as illustrated in Figure 3 and a different factor of
(

h
4x+i4y

)α
will also have to

be applied to the stencil (e.g. when the evaluation point is reached from right to left, 4x = −h
and 4y = 0 giving a factor of (−1)α.)

5 Evaluation point close to base point

The end correction approach described by (6) assumes that f(z) is smooth (can be well represented
by a polynomial approximation) near the end point z = 0. When z in (10) is only a few grid

points away from zero, the integrand f(τ)
(z−τ)α+1 violates this, necessitating a different strategy, as is

illustrated in Figure 4 (a). We find the midpoint between B and E and approximate the Taylor
expansion of f(z) centered at this midpoint. The resulting fractional derivative integral can then
be evaluated analytically, term by term. Two practical issues this gives rise to are described next.
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B

E

B

E

B

E

B

E

Figure 2: (a), (b): Suitable integration paths when E is located in the first quadrant, (c), (d) Paths
for when E is located just above and just below the negative real axis, illustrating why the negative
real axis becomes a branch line for a fractional derivative, with the origin as a branch point.

Γ

Γ

Γ

Γ

Figure 3: Illustration of how an end correction rotates with the direction of its line of integration.
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Re z

Im z

Base Point

Evaluation Point

Midpoint

r

Lower Accuracy Region

Re z

Im z

Base Point

Evaluation Point

r

Lower Accuracy Region

(a) Origin non-singular (b) Singularity at the origin

Figure 4: Computational strategy for when the evaluation point E is too close to the base point B
for the approach in Sections 3 and 4 to provide machine accuracy. This region is marked by the
large circles (and by red circles in the later Relative error parts of Figures 5-12). Parts (a) and (b)
in the present figure illustrate the cases described in Sections 5.1 and 6.1, respectively.

5.1 Numerically stable way to approximate the Taylor coefficients

The linear system that provides Taylor coefficients from grid data is of Vandermonde type, and the
task is generally very ill-conditioned. However, if the data points are equispaced around a circle
centered at the expansion point, the Vandermonde matrix becomes a scaled version of the DFT
(Discrete Fourier Transform) matrix, which is orthogonal, and thus perfectly conditioned. This
motivates the choice of grid points marked blue in Figure 4, as an approximation to this perfect
circle case. For our standard choice of n = 2 (i.e., 5× 5 size correction stencils), the ‘rule of thumb’
we have followed is to apply the midpoint procedure within a radius of 10h from the origin.13

5.2 Analytic form of the resulting integrals

The key formula here is ∫ b

−b

zk

(b− z)α
dz = −(2b)1−α(−b)kdk, (17)

where

d0 =
1

α− 1
, dk =

k dk−1 + 1

α− (k + 1)
, k = 1, 2, 3, . . . .

This formula can be obtained for example by repeated integration by parts. Applying it to the
Taylor terms obtained as described above produces the value of the fractional derivative at the
evaluation point.

13Euler-Maclaurin-based estimates suggest error levels of around O( h
|z| )

(2n+1)2 , indicating r ≈ 60h (impractically

large) for n = 1 and r ≈ 3h for n = 3.
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6 Some special cases

6.1 Function f(z) singular at the base point z = 0

If f(z) features a branch point at z = 0, such as f(z) = zβg(z), where g(z) is analytic at the origin,
the methods described above require some minor modifications. When the evaluation point is in
the vicinity of the base point, we can Taylor expand g(z) around the origin (c.f., Figure 4 (b)) and

apply the formula Dαzβ+k = Γ(1+β+k)zβ+k−α

Γ(1+β+k−α) to each term of zβg(z). On the other hand, when
evaluation and base points are far from each other, a new correction stencil at the origin must be
computed. The new weights will be applied to the function from which the singular term has been
extracted, so will be applied to the values of g(z). In order to compute those weights, we will follow
the same procedure as in Section 3.2.2, and obtain similarly to (12)

∫ ∞
0

eξσσβdσ − h
∞∑
k=1

eξkh(kh)β = −h1+β
∞∑
k=0

ζ(−β − k)

k!
(hξ)k. (18)

Figures 9 and 10 show no loss of accuracy compared to the cases when f(z) is non-singular at the
base point. If β is a negative integer, f(z) has a pole at the origin. Then Dαzβ diverges, as also
reflected by the last sum in (18) containing a term with ζ(1) =∞.

6.2 Function f(z) with poles in the complex plane

The integral diverges if f(z) features a pole along the integration path. We will therefore choose in-
tegration paths that go beside poles while not crossing branch cuts. The integrals whose evaluation
points are located at or within n nodes of the poles will diverge. Integrals following paths to some

evaluation point z0, on the different sides of a pole zp will differ by 2πi
Γ(1−α)Residue

(
f′(z)

(z0−z)α , {z, zp}
)

.

Fractional derivatives of a function with poles will therefore feature branch points where the poles
of f are located. The path of the branch cut is arbitrary and points in Figure 8 (showing the
fractional derivative of f(z) = 1

1+z2
) away from the origin. Function values on different sheets are

further illustrated in Figures 13 and 14, again for f(z) = 1
1+z2

.

6.3 Functions f(z) with branch cuts in the complex plane

Apart from some additional care being needed to not integrate across any branch cut, the methods
described above apply. One case is illustrated in Figure 11.

7 Previously available computational approaches

Previously described numerical approaches for calculating fractional derivatives based only on func-
tion values consider only the case of real-valued evaluation points. They fall in three main categories:

1. Function values are given on an equispaced grid,

2. Function values are required at prescribed non-equispaced locations [12]14, and

14Similar to the case for Gaussian quadrature methods.
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3. Function values can be arbitrarily spaced [19, 21, 24].

Further references and discussions can be found for example in [4, 22]. Chapter 2 of the monograph
[16] also contains an extensive survey of numerical methods for fractional derivatives. These are in
many cases based on approximating f(t) by global or by piecewise polynomials, using either equi-
spaced or Gaussian quadrature-type node sets. We will not make any attempt here to survey these
numerous algorithm proposals, but refer readers to the references above. Concerns about several
methods include slow rates of convergence under refinement, or restrictive assumptions (such as
that the Taylor expansion of f(z), centered at the base or evaluation points, converges across the
full interval of interest).

Grünwald-Letnikov formula: The sum

GL
a 4α

hf(t) =

[ t−ah ]∑
j=0

(−1)j
(
α

j

)
f(t− jh) (19)

satisfies

lim
h→0

GL
a 4α

hf(t)

hα
= RL

a Dαf(t).

It has a long history (introduced in 1868). Numerical usage of it is described for ex. in [20], Chapter
7. Following the idea (11) - (15) and again using f(z) = eξz gives

GL = − 1

hα

∞∑
k=0

(−1)k
(
α

k

)
eξkh =

(
ehξ − 1

h

)α
= ξα

(
−1 +

1

2
α(hξ)1 − 1

24
α(1 + 3α)(hξ)2 +

1

48
α2(1 + α)(hξ)3 −+ . . .

)
. (20)

The leading term −ξα agrees with the exact result, but the next term reflects an error of size
O(h1). Since all terms in the expansion (20) contain fractional powers of ξ, there is in this case no
opportunity for FD-type end corrections.

8 Concluding discussion

The approach for calculating fractional derivatives introduced here (trapezoidal rule along grid lines
together with end corrections) is both highly accurate (better than O(h20) convergence rate) and
computationally fast. Grid resolutions typical for ‘reasonably resolved’ functional displays suffice
for double precision accuracy. Future opportunities for investigations include

i. Numerical evaluation of certain special functions. Cases listed in Table 17.1 in [15] include
functions such as 1F1(a; c; z) and 2F1(a; b; c; z) expressed as fractional derivatives of elemen-
tary functions.

ii. Generalizations to cases when the functional data is available only along the real axis.15.

15Extending on [5] in case data is available at grid points also outside the interval [0, t], and on [8] if it is available
only at grid points within [0, t].
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9 Appendix A: Examples of end correction stencils at a singular end point

We give here some examples of correction stencils for TR evaluation of
∫∞
h

f(z)
zα+1dz, to be applied

to f(z)-values around z = 0 for some α in the range 0 < α < 1, and having omitted the factor h−α

in the right hand side of (16). Below are first some examples of n = 1 (3× 3) stencils.

α = 0.01
0.000127 + 0.000107i 0.000191 + 0.001018i −0.000128 + 0.000148i
0.000866 + 0.000000i 1.005706 + 0.000000i −0.001172− 0.000000i
0.000127− 0.000107i 0.000191− 0.001018i −0.000128− 0.000148i

This value of α = 0.01 is close to α = 0 in which case the fractional derivative reduces to the
function value at the evaluation point. Therefore, this stencil is close to one at its center point,
and to zero at all other entries. In this and all following cases, the values above and below the real
axis are the complex conjugates of each other, in particular being real along the real axis.

α = 0.25
0.0051 + 0.0043i 0.0072 + 0.0401i −0.0051 + 0.0059i
0.0349 + 0.0000i 1.1468 + 0.0000i −0.0474 + 0.0000i
0.0051− 0.0043i 0.0072− 0.0401i −0.0051− 0.0059i

α = 0.5
0.0181 + 0.0159i 0.0218 + 0.1433i −0.0182 + 0.0210i
0.1286 + 0.0000i 1.3027 + 0.0000i −0.1685 + 0.0000i
0.0181− 0.0159i 0.0218− 0.1433i −0.0182− 0.0210i

α = 0.75
0.0642 + 0.0591i 0.0491 + 0.5085i −0.0643 + 0.0710i
0.4762 + 0.0000i 1.4682− 0.0000i −0.5706− 0.0000i
0.0642− 0.0591i 0.0491− 0.5085i −0.0643− 0.0710i

α = 0.99
2.4600 + 2.4498i 0.0973 + 19.6691i −2.4600 + 2.4740i

19.6047 + 0.0000i 1.6376 + 0.0000i −19.7990 + 0.0000i
2.4600− 2.4498i 0.0973− 19.6691i −2.4600− 2.4740i

As α approaches one, the weights diverge towards infinity (since the second term in the right hand
side of (12) diverges)16.

In the (much more accurate) n = 2 case, the central weights differ very little from the n = 1 case,
and the outer ones are numerically close to zero. For example for α = 0.5:

α = 0.5
−0.0000− 0.0000i 0.0001 + 0.0001i −0.0000− 0.0006i −0.0001 + 0.0001i 0.0000− 0.0000i

0.0001 + 0.0001i 0.0165 + 0.0145i 0.0222 + 0.1470i −0.0166 + 0.0192i −0.0001 + 0.0001i
−0.0005 + 0.0000i 0.1318 + 0.0000i 1.3030 + 0.0000i −0.1729 + 0.0000i 0.0006 + 0.0000i

0.0001− 0.0001i 0.0165− 0.0145i 0.0222− 0.1470i −0.0166− 0.0192i −0.0001− 0.0001i
−0.0000 + 0.0000i 0.0001− 0.0001i −0.0000 + 0.0006i −0.0001− 0.0001i 0.0000 + 0.0000i

16As α→ 0, the divergence of ζ(α+ 1) is canceled by the factor α in front of it; limα→0 α ζ(α+ 1) = 1.
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If n is increased further, the stencil weights grow rapidly, with the central weight −19.04 for n = 3
and around 1012 for n = 4. If extremely high accuracy is desired, these larger stencils are never-
theless computationally cost-efficient, although their use requires extended precision arithmetic.

10 Appendix B: Illustrations of fractional derivatives and numerical conver-
gence rates

10.1 Illustrations of some computed fractional derivatives

The examples are all cases for which the analytic fractional derivatives are known, in order to allow
straightforward verification that the numerical accuracy is consistently close to machine precision
across the entire displayed regions. For more illustrations using this same numerical approach as
developed here, see [13]. Examples of codes for the present algorithm can be found on GitHub [18].

For each function considered, we display the real and imaginary parts, the magnitude with phase
angle, and the relative error of the approximation. Regarding the errors, the numbers by the
colorbar correspond to log10 of the error, i.e., -16 matches roughly the machine precision. The
plots were produced using n = 2 (i.e., size 5 × 5 correction stencils) and only function values at
the nodes of the displayed computational domain (padded with n = 2 layers of nodes). The end
correction scheme is used in the entire domain except within the red circles shown in the error
plots, where instead the Taylor expansion approaches described in Section 5 is used.

Fractional derivatives of analytic functions are, except on rare occasions (such as the one illustrated
in Figure 9) multi-valued functions. The method presented here can just as well compute values

on any of its sheets, according to the formula Dαf(z) = 1
e2π k α i

(
1

Γ(1−α)

∫ z
0

f ′(τ)
(z−τ)αdτ

)
, where k ∈ Z

and f(z) is assumed to be analytic at z = 0. Figures 13 and 14 illustrate both sheets in the case
of of D1/2 1

1+z2
.

10.2 Convergence rates

Theoretically, with end correction stencils of size 5×5, we expect convergence to occur in the outer
region at a rate better than O(h22). The computations in the inner regions (as described in Section
5) were implemented to give matching levels of accuracy. To verify these rates in a log-log plot of
error vs. h, it is necessary to have a wide range of h-values that give results that are mostly free
from the influence of rounding errors (which arise at the level O(10−15)). That can be achieved
by using a much larger physical domain [−20, 20] × [−20, 20] than used in our previous displays.
As seen in Figure 15, this allows the high convergence rate to be confirmed for both outer and
inner regions, although with the misleading impression that the error levels for the two regions are
strongly different (rather than comparable, as seen in the previous Figures 5-12). In Figures 15 (a),
(b), the thin dashed and solid lines show the errors in the inner and outer regions, respectively, for
the five choices of α = 0.1,0,3, 0.5, 0.7, 0.9 and the heavy solid lines indicates the slopes for O(h26)
and for O(10−15/hα) in case of α = 1/2, corresponding to theoretically expected error rates due to
truncation and rounding errors, respectively.
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Figure 5: Plots of the real, imaginary, magnitude, phase portrait, and relative error of Dαez with

α = 5/7 and h = 0.04. The exact value is Dαez = ez
(

1− Γ(1−α,z)
Γ(1−α)

)
. For the red circle in the last

subplot of Figures 5-12, see the explanation in the caption of Figure 4.
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Figure 6: Plots of the real, imaginary, magnitude, phase portrait, and relative error of Dαz3 with
α = 0.2 and h = 0.04. The exact value is Dαz3 = 6 z3−α

Γ(4−α) .
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Figure 7: Plots of the real, imaginary, magnitude, phase portrait, and relative error of Dα cos
(
π
2 z
)

with α = 1/2 and h = 1/10. The exact value isD1/2 cos
(
π
2 z
)

=
√
π(cos

(
π
2 z
)
S(
√
z)−sin

(
π
2 z
)
C(
√
z)),

where S(z) and C(z) are respectively the Fresnel sine and cosine integral functions. All except for
the error plots have been cropped in the imaginary direction for better clarity.
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Figure 8: Plots of the real, imaginary, magnitude, phase portrait, and relative error of Dα 1
1+z2

with α = 0.5 and h = 1/20. The exact value is D1/2 1
1+z2

=
−8 z3/2 3F2(1,3/2,2;5/4,7/4;−z2)

3
√
π

. The larger

apparent error at some spots around the unit circle (in particular near the singularities at z = ±i)
and along some horizontal and vertical lines are caused by inaccuracies in the algorithm used for
evaluating the 3F2 reference solution (with this issue arising again in Figure 11).
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Figure 9: Plots of the real, imaginary, magnitude, phase portrait, and relative error of Dαz2.5 with

α = 0.5 and h = 1/10. The exact value is D1/2z2.5 = 15
√
π

16 z2, which is entire. The fractional
derivative of a function that features a branch point can have significant effects on it. For instance,
if the function has an algebraic singularity β , the branch point will be canceled if β − α is an
integer, as in this case. If β−α is not an integer, as in Figure 10, a branch point will be introduced
at the origin, along with a branch cut (the position of the cut is arbitrary).
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Figure 10: Plots of the real, imaginary, magnitude, phase portrait, and relative error of Dαz2.89

with α = 0.12 and h = 1/10. The exact value is D0.12z2.89 = Γ(3.89)
Γ(3.77)z

2.77, which features a branch
point at the origin, and a branch cut along the negative real axis.
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Figure 11: Plots of the real, imaginary, magnitude, phase portrait, and relative error of Dα
√

1 + z2

with α = 0.4 and h = 1/20. The exact value is D0.4
√

1 + z2 =
z1.6 3F2(1/2,1,3/2;1.3,1.8;−z2)

0.96 Γ(0.6) .
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Figure 12: Plots of the real, imaginary, magnitude, phase portrait, and relative error of Dα
z log(1+z)

with α = 0.5 and h = 1/20. The exact value is D1/2 log(1 + z) = 2√
π

asinh(
√

z)√
1+z
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(a) First sheet

(b) Second sheet

Figure 13: Plots of the real and imaginary parts for both Riemann sheets of Dα 1
1+z2

with α = 0.5
and h = 1/20.
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(a) First sheet (b) Second sheet

Figure 14: Plots of the magnitudes and phase angles for both Riemann sheets in the same case as
for Figure 13.
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(a) f(z) = ez. (b) f(z) = cos πz2 .

Figure 15: Plots of relative error vs. h for the test functions used for Figures 5 and 7, respectively.
The different curves are explained in Section 10.2.
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