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Abstract

Ability to evaluate contour integrals is central to both the theory and the utilization of
analytic functions. We present here a complex plane realization of the Euler-Maclaurin formula
that includes weights also at some grid points adjacent to each end of a line segment (made up
of equispaced grid points, along which we use the trapezoidal rule). For example, with a 5× 5
sized ’correction stencil’ (with weights about 2 orders of magnitude smaller than those of the
trapezoidal rule), the accuracy is increased from 2nd to 26th order.

Keywords: Euler-Maclaurin, trapezoidal rule, contour integrals, equispaced grids, Gaussian
quadrature, Birkhoff-Young quadrature.
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1 Introduction

With increasing use of computational methods in the study and the utilization of analytic functions,
the need arises for numerically evaluating contour integrals both along open curve segments and
around closed paths. If the analytic function is fast to evaluate at arbitrary points, Gaussian
quadrature is a viable approach for integrating along straight line segments. This paper focuses
on the case when the cost of function evaluations is non-trivial, but with values available on an
equispaced grid.1 Assuming the line segments (including their end points) to be free of singularities,
we show here how integrals along them can be evaluated very accurately and at very low cost.

One approach for integrating along a finite part of a grid line (i.e., with equispaced data) would be
to use an enhanced Gregory-type formula, as described in [3] (based on ideas in [5]). These formulas
are numerically stable (all weights positive) also for high orders of accuracy. The recommended
10th order accurate schemes given in equations (17) and (18) of [3] (i.e. with error O(h10) where h
is the node separation) require however at least 11 nodes along each straight line segment.

∗Email : fornberg@colorado.edu
1The function may have already been evaluated on a grid for graphical display purposes [4, 14], or the fastest

evaluation method for the function might itself be grid based (e.g. the Painlevé functions [6]). Yet another application
case would be if integrals are needed along a large number of different paths.
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(a) 3× 3 stencil at left end of a line segment. (b) 5× 5 stencil at left end of a line segment.

Figure 1: Two examples of Cartesian grid stencils for correcting the trapezoidal rule, which is here
applied along a horizontal path (red dots)
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(a) 7 node stencil at left end of a line segment. (b) 19 node stencil at left end of a line segment.

Figure 2: Two examples of hexagonal grid stencils for correcting the trapezoidal rule.

The approach introduced here permits very high orders of accuracy while also removing the con-
straint on the segment length. In the present context (of having the analytic function available
not only at grid points along each line segment, but also at some grid points surrounding the end
of each line segment), use of a 3 × 3 Cartesian grid ’correction’ stencil brings the standard trape-
zoidal rule (TR) error from O(h2) to O(h10), while a 5 × 5 stencil suffices for O(h26) (which is a
well higher order of accuracy than what is reached in most grid-based contexts). Figures 1 (a,b)
illustrate end-of-segment stencils (with green circles), while Figures 2 (a,b) show hexagonal grid
counterparts providing accuracies O(h8) and O(h20), respectively.2

On Cartesian grids, one would typically follow integration paths that are made up of straight line
segments with 900 angles from segment to segment while, for hexagonal grids, the angles would be
either 600 or 1200.

2As we will see later, the correction will always be zero at the stencil center point. Hence, this point is not marked
by a green ring in these figures.
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2 The Euler-Maclaurin formula

For simplicity of notation, we describe the present algorithms first for the case of a semi-infinite
integration interval 0 ≤ z <∞, with grid spacing h. A common formulation of the Euler-Maclaurin
(EM) formula is then

� ∞
0

f(x)dx =

{
h

∞∑
k=0

f(kh)− h

2
f(0)

}
+
h2

12
f (1)(0)− h4

720
f (3)(0) +

h6

30240
f (5)(0)−+ . . . (1)

=

{
h

∞∑
k=0

f(kh)− h

2
f(0)

}
+

∞∑
k=1

h2kB2k

(2k)!
f (2k−1)(0),

where the B2k are the even order Bernoulli numbers. The sum in the curly brackets is the standard
trapezoidal rule (TR). The goal with the ’correction stencils’ (as illustrated in Figures 1, 2) is to
approximate as many further terms in (1) as the stencil sizes permit.

3 Finite difference formulas in the complex plane

In view of Cauchy’s integral formula f (k)(z) = k!
2πi

�
Γ

f(ξ)
(ξ−z)k+1dξ, it is natural to approximate the

derivatives in (1) with FD stencils that extend about an equal distance in all directions from the
origin.3

3.1 Cartesian grid

3.1.1 3× 3 stencils

The description below for the 3 × 3 stencil case of Figure 1 (a) generalizes immediately to the
remaining cases of Figures 1 and 2.

For each order derivative, there are here 3×3 = 9 weights to be found. This is most easily achieved
by introducing unknowns for the weights and then solving the linear systems that make the FD
formulas exact for the 9 functions 1, z, z2, . . . , z8 when approximating d

dz ,
d3

dz3
, d5

dz5
, d7

dz7
at z = 0.

For each of these derivatives, the weights turn out to obey the symmetry pattern

−c2 + ic3 ic4 c2 + ic3

−c1 0 c1

−c2 − ic3 −ic4 c2 − ic3
Here, and in all further stencil cases we will consider, the coefficient real parts are symmetric across
the real axis and anti-symmetric across the imaginary axis. For their imaginary parts, the role of
the two axes is reversed. The numerical values of these four (real-valued) constants c1, c2, c3, c4 are
given in Table 1 for each of the four derivatives separately, followed by the resulting coefficients
when these derivative approximations are combined together according to (1). We note that, in
the EM combination, all the coefficients scale linearly with h, just as do the terms in the regular
TR (the part in the curly brackets in (1)).

3Exactly equal distance (allowing a circular contour Γ , and thus an alternate way of approximating derivatives)
is possible only for very small grid-based stencils - in this study only the 7-node stencil on a hexagonal grid.
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Constants in Order of derivative EM
the stencil entries 1 3 5 7 combination

c1 8 16 2 4 6044
c2 1 −1 −1 1 821
c3 −1 1 1 1 −779
c4 −8 16 −2 −4 −7556

All entries to be
multiplied by

1

40h

3

40h3
3

h5
63

h7
h

403200

Table 1: For the 3×3 Cartesian correction case: Weights for the leading odd order derivatives, and
for their combination according to the Euler-Maclaurin (EM) formula (1).

Using the same color pattern as in Figure 1 (a), we can now enter actual values for all the coefficients
(rather than only indicating their complex plane positions):

� ∞
0

f(x)dx ≈ h




−821−779i

403200 − 1889i
100800

821−779i
403200

− 1511
100800

1
2 1 + 1511

100800

−821+779i
403200

1889i
100800

821+779i
403200

 1 1 1 1 1 1, . . . . . .

 (2)

For a finite segment, the correction at the right end becomes the negative of the one at the left:4

h




−821−779i

403200 − 1889i
100800

821−779i
403200

− 1511
100800

1
2 1 + 1511

100800

−821+779i
403200

1889i
100800

821+779i
403200

 1 1 . . . 1 1


821+779i
403200

1889i
100800

−821+779i
403200

1 + 1511
100800

1
2 − 1511

100800

821−779i
403200 − 1889i

100800
−821−779i

403200




(3)

These 3× 3 stencil corrections have increased the TR accuracy from O(h2) to O(h10).

If the grid line that we integrate along is not directed straight to the right, i.e. the forward step h
from each data point to the next is not positive, we need only to use the actual (negative or complex)
h in (3). If we consider two segments joined end-to-end in the same direction, the corrections shown
in (3) cancel each other, as ideally should be the case (since there then is no path corner present).
These same observations apply in all further stencil cases we will consider (larger stencils, hexagonal
nodes, etc.)

3.1.2 5× 5 stencils

In the Cartesian 5 × 5 stencil case, given the symmetry pattern discussed above, the (complex)
weights can be expressed in terms of 12 real coefficients:

4Or equivalently (in view of the coefficient symmetries), the correction stencil at the segment end is the same as
the one at the segment start, rotated by 180◦ around its center.
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−c8 + ic9 −c10 + ic11 ic12 c10 + ic11 c8 + ic9

−c6 + ic7 −c2 + ic3 ic4 c2 + ic3 c6 + ic7

−c5 −c1 0 c1 c5

−c6 − ic7 −c2 − ic3 −ic4 c2 − ic3 c6 − ic7

−c8 − ic9 −c10 − ic11 −ic12 c10 − ic11 c8 − ic9
All the coefficients are again rational numbers, but now with quite large numerators and denomi-
nators:

c1 = 37182139549907225268739716199787 / 2353466348072018354398519296000000
c2 = 188233899421548471978708697178243 / 95315387096916743353140031488000000
c3 = −160260779911252254580044326821757 / 95315387096916743353140031488000000
c4 = −131687727101669359961140659400639 / 7060399044216055063195557888000000
c5 = −1799926558582406674551447315953 / 28241596176864220252782231552000000
c6 = 23206576399407920221121276928773 / 1906307741938334867062800629760000000
c7 = −20286200073141493081601692030061 / 1906307741938334867062800629760000000
c8 = −3143936654440121754564025667539 / 15250461935506678936502405038080000000
c9 = 2380481737342021507685958332461 / 15250461935506678936502405038080000000
c10 = 22967666974939223269082915969939 / 1906307741938334867062800629760000000
c11 = −16644192577455846352268227071227 / 1906307741938334867062800629760000000
c12 = 194365919741893952260952097721 / 4034513739552031464683175936000000

In double precision:

c1 ≈ 0.015798883030712201 c7 ≈ −0.000010641618678270
c2 ≈ 0.001974853223122853 c8 ≈ −0.000000206153536053
c3 ≈ −0.001681373645876284 c9 ≈ 0.000000156092434931
c4 ≈ −0.018651598341250864 c10 ≈ 0.000012048247231890
c5 ≈ −0.000063733173837282 c11 ≈ −0.000008731115239836
c6 ≈ 0.000012173572969814 c12 ≈ 0.000048175798197548

With this correction stencil (having 24 non-trivial entries), the accuracy has improved from O(h2)
for TR to O(h26). Figure 3 illustrates the magnitude of the quadrature weights when this correction
stencil is applied at the left end of a segment.

3.2 Hexagonal grid

3.2.1 7-node stencil

For the 7-node stencil illustrated in Figure 2 (a), the symmetries become

−c2 + ic3 c2 + ic3
−c1 0 c1

−c2 − ic3 c2 − ic3
(4)
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Figure 3: Illustration of the magnitudes of the weights in the 5 × 5 case schematically shown in
Figure 1 (b). Entries belonging to the TR formula are shown in red, to the correction stencil in
green, and the overlapping entries in blue. Compared to the TR weights (1/2 at each end, and 1
otherwise), the correction stencil weights are two (or more) orders of magnitude smaller.

and the counterpart to Figure 2 (a), with numerical values included, becomes

h




− 131

15120 − i
5
√
3

756
131

15120 − i
5
√
3

756

− 199
15120

1
2 1 + 199

15120

− 131
15120 + i5

√
3

756
131

15120 + i5
√
3

756


1 1 1 1, . . . . . .


Use of this stencil increases the TR accuracy from O(h2) to O(h8).

3.2.2 19-node stencil

The stencil coefficients follow the same symmetry pattern as in previous cases:

−c7 + ic8 ic9 c7 + ic8
−c5 + ic6 −c2 + ic3 c2 + ic3 c5 + ic6

−c4 −c1 0 c1 c4
−c5 − ic6 −c2 − ic3 c2 − ic3 c5 − ic6

−c7 − ic8 −ic9 c7 − ic8
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The optimal coefficients (giving accuracy O(h20) ) are here

c1 = 185920454873 / 14783258730240 ≈ 0.012576418925327275
c2 = 30403545703 / 3695814682560 ≈ 0.008226480036044505

c3 = −525612281
√

3 / 79054859520 ≈ −0.011515891386080470
c4 = −915593597 / 29566517460480 ≈ −0.000030967245236908
c5 = 2672195 / 15810971904 ≈ 0.000169008901933724

c6 = −631929059
√

3 / 11087444047680 ≈ −0.000098718264756088
c7 = −227182799 / 14783258730240 ≈ −0.000015367572410492

c8 = 2786501
√

3 / 158109719040 ≈ 0.000030525392978027

c9 = −6475949479
√

3 / 44349776190720 ≈ −0.000252913869883840

Compared to the TR weights, the correction weights are again about two (or more) orders of
magnitude smaller.

4 Numerical verifications

We choose as a numerical test problem to integrate the function

f(z) =
2

z − 0.4 (1 + i)
− 1

z + 0.4 (1 + i)
+

1

z + 1.2− 1.6i
− 3

z − 1.3− 2i
, (5)

shown by surface plots in Figures 4 and 6.

4.1 Comparison between present grid-based methods

We consider two different closed paths, both illustrated in Figure 4:

1. The rectangular path with corners z = {1, 1 + i,−1 + i,−1} (using a Cartesian grid), and

2. The equilateral triangular path with corners z = {1,
√

3i,−1} (using a hexagonal grid),

and integrate around these in the positive direction. In either case, the analytic result is
�
C f(z)dz =

4πi (since the only singularity inside the paths is the residue 2 pole at z = 0.4 (1 + i)). Figure
5 shows how the numerical errors in these quadratures decrease with the step size h on the equi-
spaced grids.5 For h relatively large, the exponentially decaying error from the TR dominates.6

There is then a clear transition point, after which the algebraic order errors from the ends of the
segments become dominant. The slopes of these straight lines confirm the algebraic convergence
orders quoted above. Figure 6 illustrates in a different way the quadrature accuracy by showing a
grid density that is sufficient in this test case for full double precision (10−16) quadrature accuracy.

5Computed using the Advanpix: Multiprecision Computing Toolbox for MATLAB; Advanpix LLC, Yokohama,
Japan.

6The somewhat slower exponential rate in the hexagonal path case is merely a reflection of this (triangular) path
passing somewhat closer to the nearest pole, as seen in Figure 4. Better than algebraic convergence of TR when
not affected by end-of-segment effects follows from the EM formula. Exponential convergence of the TR for periodic
problems was analyzed by Poisson in the 1820’s [11]. For a modern survey of the TR in this case, see [13].
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Figure 4: Magnitude and phase angle display of the test function (5) with the two integration paths
marked over the magnitude surface.
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(a) Real part of f(z) (b) Imaginary part of f(z)

Figure 6: Real and imaginary parts of the same function f(z) as illustrated previously in Figure 4,
here showed with a sufficient grid density for the Cartesian 5×5 node method to return the integral
to full double precision 10−16 accuracy. As before, TR points are marked red and correction stencil
points green.

4.2 Comparisons against Gaussian and Clenshaw-Curtis quadrature

This paper is about efficient contour integration when function values are already available on an
equispaced grid (making the cost of the present quadrature methods negligible). It can nevertheless
be of interest to compare against standard very high order methods, such as Gaussian and Clenshaw-
Curtis quadratures (below abbreviated GQ and CC, respectively) in the case when no grid data is
available, and all required function values need to be computed. The two methods GQ and CC are
surveyed in [12] (with brief MATLAB codes provided).

As a test problem, we now consider
� 1
−1 f(z)dz with the same test function (5) as above, giving

the result shown in Figure 7. We show here the error as a function of the total number of function
evaluations needed, with the ones for the Cartesian 3×3 and 5×5 nodes cases being entirely grid
based, whereas the evaluation points for both GQ and CC are the special ones needed for these
particular methods.7 The difference in the initial exponential convergence rates between “Cartesian
5×5 nodes” and “GQ” seen in Figure 7 can be attributed to GQ having its node density ’depleted’
by a factor 2/π near the interval center. The Cartesian grid method can also in some sense be said
to have a depletion of nodes along the segment, as it uses additional nodes near the interval ends.

For accuracy levels around 10−10, the Cartesian 3x3 node approach is seen to compete well. If one
wishes to reach either double (10−16) or quad (10−33) precision (dotted lines in Figure 7), we can
note that CC is (in this special case) not competitive. This situation is in other applications not
typical. For example, the second line in the abstract of [12] notes “... experiments show that the
supposed factor-of-2 advantage of Gauss quadrature is rarely realized.” Analytic functions are in
this context ’exceptional’, with the factor-of-2 difference very apparent. Thorough discussions on
CC and GQ can be found in several additional recent studies, e.g. [9, 15].

7In the node count for the “Cartesian 3×3 and 5×5 nodes” cases, we include in the number of function evaluations
both the TR nodes along the line as well as one set of end correction nodes, since these latter sets typically will be
used twice (for each line segment sharing a path corner).
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Figure 7: Comparisons between a present Cartesian grid-based methods and the Gaussian and
Clenshaw-Curtis methods in the case when no grid data is available, and all function evaluations
need to be carried out just for the purpose of the quadrature.

The very high order GQ methods’ nodes and weights can be pre-computed once and for all, so
that does not necessitate any recurring cost. However, even in this case when function evaluations
need to be done for the quadrature purpose only, the present methods (based on TR with end
corrections) are seen to be quite competitive with GQ.

4.3 Some comments on Birkhoff-Young formulas

With regard to alternative quadrature approaches, we can also note the Birkhoff-Young (BY)
formula proposed in 1950 [2] (entry 25.4.27 in [1])

� z0+h

z0−h
f(z)dz =

h

15
[24f(z0) + 4 (f(z0 + h) + f(z0 − h))− (f(z0 + ih) + f(z0 − ih))] +O(h7). (6)

This formula also approximates an integral along a line segment, using data in the complex plane
that is not on the line. The weights in this 5-point formula and in a higher order accurate 9-point
version can be summarized as follows:

h


− 1

15

4
15

24
15

4
15

− 1
15

 and h


− 1

450 + i
105 − 89

1575 − 1
450 −

i
105

376
1575

74
45

376
1575

− 1
450 −

i
105 − 89

1575 − 1
450 + i

105

 , resp.

The concept behind (6) (and its generalizations) is quite different from the present TR end cor-
rection approach. Integrating over a longer interval requires these formulas to be repeated every
2h along the line of integration (i.e., they are not designed to be interval end corrections). Later
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Figure 8: Accuracy comparison for the Cartesian grid test case of integrating around a rectangle.
Comparison between repeated application of two Birkhoff-Young (BY) formulas and the proposed
end correction methods.

enhancements described in the literature focus mostly on increasing the accuracy by also using
non-equispaced nodes. For an up-to-date overview, see [10].

Figure 8 compares the Cartesian node cases (shown before as blue curves in Figure 5) against the
BY 5-point and 9-point schemes. For h→ 0 (to the right in the figure), the slopes will reflect the
schemes’ algebraic order of accuracy (for both approaches largely a matter of the chosen stencil
size). A more fundamental difference arises if errors along the rectangle sides dominate those near
the corners (in this figure seen to the left for h relatively large), The BY schemes lose along these
sides several orders of magnitude in accuracy, since they do not there reduce to the regular TR
method.8 Whenever the number of nodes along a side exceeds 11, the Cartesian 5× 5 node scheme
uses fewer function values than either of the two BY 5-point and 9-point schemes. The additional
nodes the BY schemes involve along the straight sides of the integration path reduce the accuracy
rather than improve on it.

5 Conclusions

For numerical quadrature based on equispaced data, many contemporary textbooks focus on the
trapezoidal rule, and use then the Newton-Cotes approach to reach higher orders. The even more
classical Gregory methods9 were commonly described in numerical texts up to about 50 years ago
(e.g., [7]), but are seldom described nowadays, in spite of being advantageous in several key regards.
It was noted in [3, 5] that the Gregory approach furthermore can be made to ’bypass’ the Runge
phenomenon, and gives positive quadrature weights also for quite high accuracy orders (to 20th

order, and beyond). In the present study, we have utilized the further assumptions that (i) the
integrands are analytic functions, and (ii) function values are available also at some equispaced
grid points surrounding each end of the straight line segments (rather than only at equispaced
grid points within the line segment). With these assumptions, we have here demonstrated that

8Creating a BY-type scheme, for ex. with a 3 × 4 weight stencil approximating the integral just between its two
interior points, and repeating this every h (rather than every 2h) sideways provides a better approximation along the
line interior (however, still falling short of the simpler TR scheme).

9First described in a letter written by James Gregory in 1670 [8]. Although likely first developed (by Cotes)
around 1707, the first mention in the literature of the Newton-Cotes formulas dates to 1722.
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the Euler-Maclaurin formula offers excellent opportunities for very high accuracy calculations in a
way which does not seem to have been previously utilized. The correction concept described here
applies equally well to Cartesian as to hexagonal equispaced grids. It can readily be generalized to
still higher orders of accuracy than what we have here given closed form weights for.
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